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Abstract
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1. Introduction

The modelling of �nancial time series volatility has been a �ourishing
�eld of research. A number of theoretical and empirical studies focus on the
apparent persistence in volatility manifested by slowly decaying autocorrela-
tion functions which induces the frequent characterization of volatility as a
long memory process (see Ding et al., 1993).
At the same time, many studies point out that structural breaks or regime

switches may induce spurious long memory e¤ects in time series (see for ex-
ample Liu, 2000; Diebold and Inoue, 2001; Granger and Hyung, 2004; Starica
and Granger, 2005 and Davidson and Sibbertsen, 2005). They provide ex-
amples in which long memory can be easily confused with structural breaks,
concluding that it is very di¢ cult to distinguish between true and spurious
long memory processes (see for instance Berkes et al., 2006 and Zhang et al.,
2007). A growing strand of literature has tried to address the issue by de-
veloping tests that distinguish between true and spurious long memory. For
example we refer the Berkes et al. (2006), Ohanissian et al. (2008), Perron
and Qu (2010), Qu (2011) and Shao (2011) tests. For reviews on structural
breaks and long memory, we refer to Sibbersten (2004), Banerjee and Urga
(2005) and Perron (2006).
From an empirical point of view, although the existing literature that

examines long memory or structural changes is prominent, studies that fo-
cus on their interaction are limited but steadily growing. The distinction
between long memory and structural breaks has not produced, yet, a clear
answer as to which feature characterizes volatility time series or which fea-
ture is dominant. However the correct classi�cation of volatility as either long
memory process or a process subjected to structural breaks or both, can lead
in measurable forecasting gains. Choi et al. (2010) examine the existence of
structural breaks and long memory in daily exchange rate realized volatil-
ity series, establishing that part of long memory is due to structural breaks.
McMillan and Ruiz (2009) �nd that the long memory property largely disap-
pears when volatility time-variation is taken into account in absolute stock
returns. Bisaglia and Gerolimetto (2009) examine the existence of long mem-
ory and occasional breaks in daily log absolute returns, concluding that the
series is characterized by structural breaks and not by long memory. Morana
and Beltratti (2004) �nd that while long memory is evident in the daily ex-
change rate realized volatility, this feature is partially explained once changes
are accounted for.
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This paper provides empirical evidence as to whether long memory in
daily log-range series could be explained by the presence of structural breaks.
Along these lines, our analysis contributes to relevant literature in three
important ways. First, we use the daily log-range as a volatility proxy. This
is originated from the fact that the most commonly used proxies such as the
absolute or square daily returns are less informative compared to range based
volatility proxies (see for instance Garman and Klass, 1980; Parkinson, 1980
and Alizadeh et al., 2002). Particularly, the increased noise levels present in
the absolute or square returns might mask the presence and/or the number
of breaks. Second, a sequential break search procedure is adopted that does
not �x the upper bound of allowed breaks given prior empirical evidence that
volatility regimes might be extremely short lived (see Liu, 2000). Restricting
the upper bound of allowed breaks to values typically encountered in applied
macroeconomic series, e.g. 3 to 5 breaks, might leave a large number of
breaks undetected. Third, we consider a smooth transition trend model that
allows abrupt shifts, smooth shifts or a combination. The existing tests for
structural breaks impose only abrupt changes, but changes could also be
characterized as smooth, a feature that abrupt break tests ignore. Smooth
changes may be more realistic because volatility usually evolves over time in
a continuous manner (McMillan and Ruiz, 2009).
Overall, the aim of this paper is �rst to examine empirically whether the

long memory behavior observed in daily log-range series could be spurious
and second, drawing on these �ndings, to investigate empirically if the long
memory behavior can be explained by the presence of structural breaks.
Using data from the US stock market, we �nd strong evidence of long memory
in log-range series, while the results from stochastic volatility models reveal
that a high persistent component in volatility is a too strong assumption.
The break analysis indicates that all series under scrutiny experienced a
large number of structural breaks. However a number of identi�ed breaks
are better described as smooth transitions. After controlling for the changes,
the long memory feature is no longer supported.
The rest of the paper is organized as follows. Section 2 presents the log-

range volatility proxy and the data. Section 3 presents the long memory
and stochastic volatility approaches to modelling the long run component
of volatility and includes the discussion of our results. Section 4 provides
the structural break analysis and the subsequent discussion while Section 5
concludes.
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2. Volatility proxy and Data

In this study, volatility is approximated by the log-range. Range based
volatility proxies are more informative compare to the classical log return-
based volatility estimators, as mentioned by Garman and Klass (1980) and
Parkinson (1980) among others. Following Alizadeh et al. (2002), we formu-
late the log-range volatility proxy as the di¤erence between the highest and
lowest log prices

Rt = ln (ln (Ht)� ln (Lt)) = ln (ln (Ht=Lt))

where Ht and Lt denote the highest and the lowest price of the t day. The
superior e¢ ciency of the log-range is demonstrated by Alizadeh et al. (2002)
who �nd that under benchmark assumptions on the data generating process,
the log-range standard deviation is about one quarter of the standard de-
viation of the log absolute returns. As such, the log-range volatility proxy
outperforms the usual volatility proxies of log absolute or squared returns
since its adoption curtails the impact of noise present in the absolute or
squared log-return measures of volatility. In addition, as shown by Alizadeh
et al. (2002), range based volatility estimation can be powerful and conve-
nient due its apparent near log-normality. The log-range is nearly normally
distributed1 with mean 0:43 + ht and variance 0:292, with ht the daily log-
volatility (ht = ln�t)

Rt � N
�
0:43 + ht; 0:29

2
�

while it is robust toward microstructure e¤ects, particularly in liquid markets.
We study the S&P 500 and Dow Jones Industrial Average (DJIA) indices

along with the thirty stocks that were components of the Dow Jow Industrial
Average index as of 20/06/2011, namely AA, AXP, BA, BAC, CAT, CSCO,
CVX, DD, DIS, GE, HD, HPQ, IBM, INTC, JNJ, JPM, KFT, KO, MCD,
MMM, MRK, MSFT, PFE, PG, T, TRV, UTX, VZ, WMT and XOM. The
data sample runs from January 2nd 2002 to June 20th 2011, covering the
period after the dotcom bubble and the recent �nancial crisis, resulting in a
total of 2384 daily observations.
Table 1 presents descriptive statistics for all log range series. All series

have low kurtosis and display the typical long memory pattern of slowly

1See also, Brandt and Jones (2006).
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decaying autocorrelations2. Figure 1 shows the AA log-range series and its
autocorrelation function as an example3. The top panel presents the log range
series, while the bottom the autocorrelation function up to T � 1 lag. The
autocorrelation function decreases to zero approximately at lag 400, reaches a
minimum value at lag 1000 and goes back to near zero values at distant lags.
Perron and Qu (2010) demonstrate that this shape of the autocorrelation
function could characterize a short memory process with level shifts. Though,
if we restrict our attention to autocorrelations up to lag 400, the function
decays in a hyperbolic pattern akin to a long-memory process. Approximate
normality is rejected mostly on the basis of positive skewness ranging from
0:269 to 0:798 across series. Alizadeh et al. (2002) demonstrate that the
theoretical skewness of log-range series is 0:17. However, we emphasize that
if we consider subsamples up to the end of 2006, excluding the period during
the �nancial crisis, the feature of skewness is no longer present in all series.

[Table 1 here]

[Figure 1 here]

3. Long memory and stochastic volatility models

3.1. Long memory

Baillie (1996) provides a detailed survey of econometric work on long
memory and its application in economics and �nance. One de�nition of long
memory for a stationary discrete time series process, yt, is that

lim
n!1

nX
j=�n

���j�� =1
2Albeit, in all series, the empirical autocorrelation magnitudes are signi�cantly lower

than those produced by the corresponding absolute return series.
3In order to save space, we use the AA DJIA component as a representative series for

the �gures.
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with �j the autocorrelation function of yt at lag j. Furthermore, the spectral
density of the series is unbounded at low frequencies. A more general de�ni-
tion of long memory can be given in terms of decay rates of autocorrelations.
The autocorrelation function of a long memory process is given by

�k � k2d�1 as k !1

where d > 0 means that the autocorrelations of this process decay in a
hyperbolic fashion, in contrast to the exponential rate of a stationary short-
memory series.
The most widely adopted class of long memory models employed in econo-

metrics is the class of fractionally integrated models. This class provides
an attractive alternative to the I(1)=I(0) dichotomy in econometrics with
long memory nonstationarity versus short memory stationarity replaced by
processes with a continuum of memory or persistence characteristics de�ned
through a single parameter d 2

�
�1
2
; 1
�
, the order of integration. That class

of models is based on the representation

(1� L)d yt = ut
where ut is a stationary, weakly dependent, zero mean process. TheARFIMA(p; d; q)
model developed by Granger (1980), Granger and Joyeux (1980) and Hosking
(1981) belongs to this class of models. For �0:5 < d < 0, yt is characterized
as a stationary short-memory series and addressed as antipersistent. For
d = 0 we obtain an I(0) series. For 0 < d < 0:5 the series is regarded as
persistent (long memory) but stationary and mean-reverting and �nally, for
0:5 < d < 1 the series is nonstationary long memory but mean reverting.
For d = 1 we obtain an I(1) series. There are several parametric and semi-
parametric methods in order to estimate the fractional di¤erencing parameter
d (see Banerjee and Urga, 2005). Although the latter are preferable due to
their robustness to model mispeci�cation, the semi-parametric estimators are
less e¢ cient.
We implement two semi-parametric procedures, the most commonly used

in empirical studies, the log-periodogram estimator of Geweke and Porter-
Hudak (1983), GPH, and the Gaussian semi-parametric estimator of Robin-
son (1995), GSP. Moreover, we estimate parametric ARFIMA(p; d; q) mod-
els based on the maximum likelihood procedures explained in Doornik and
Ooms (2004).
Recent studies show that the long memory characteristic might be spuri-

ous due to unaccounted structural changes or regime switches, e.g. Liu (2000)
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and Diebold and Inoue (2001). In order to examine the null hypothesis of
long memory against the alternative of a short memory process contami-
nated by level shifts, we employ �ve test statistics proposed by Perron and
Qu (2010) and Qu (2011). The �rst group of tests are the td; sup�td and
mean� td of Perron and Qu (2010). The td test statistic is given by

td (a; c1; b; c2) =
p
24c1 [T a] =�2

�
d̂a;c1 � d̂b;c2

�
where d̂a;c denote the log-periodogram estimate of d when m = c [T a] fre-
quencies are used. The sup�td is the supremum of the td (1=3; c1; 1=2; 1),

sup�td = sup
c12[1;2]

td (1=3; c1; 1=2; 1)

and the mean� td is de�ned as the average of the td (1=3; c1; 1=2; 1),

mean� td = meanc12[1;2]td (1=3; c1; 1=2; 1)
(see Perron and Qu (2010) for an extensive analysis). The td statistic is
asymptotically normal distributed. Since the limit distribution of the sup�td
and mean� td is not available, we use a parametric bootstrap procedure to
compute the relevant critical values, following Perron and Qu (2010).
The remaining two test statistics, W and W "prewhitening", are due to

Qu (2011). The former test is based on the pro�led likelihood function of
the local Whittle estimator, while the latter is an extension of the W so
as to control the test size in the presence of short memory (see Qu (2011)
for details). Both tests include a trimming parameter, ", which ensures a
reliable asymptotic approximation even in small samples. Qu (2011) suggests
to choose " = 0:02 for large samples, while the asymptotic critical values for
the tests are 1:118, 1:252 and 1:517 for 10%, 5% and 1% signi�cant level,
correspondingly.

3.2. Long memory estimation and test results

We estimate the long memory parameter using the GPH and GSP semi-
parametric approaches for di¤erent truncation values,m = T 0:5; T 0:6 and T 0:7

and parametric ARFIMA (p; d; q) models, speci�cally an ARFIMA (0; d; 0)
and ARFIMA (1; d; 0) . Table 2 provides a brief overview of the estimated
d values for each log-range series. All semiparametric estimates are statis-
tically di¤erent from zero and close to or greater than 0:5 suggesting near
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nonstationary or nonstationary but mean reverting behavior of the log-range
volatility series. Notice that benchmark unit root tests reject the null of a
unit root.

[Table 2 here]

The estimated values of d by the GPH and GSP fall within both the sta-
tionary and nonstationary regions depending on the number of periodogram
ordinates used. For m = T 0:5 the GPH estimates of the long memory para-
meter spread over the range 0:462 to 0:741, for m = T 0:6 lie between 0:469
and 0:679 and when m = T 0:7 is employed, they reach the lowest values
ranging from 0:399 to 0:595. The GSP estimates of d are close to that of
GPH estimates. Under the hypothesis of no level shifts, the results imply
that indices and DJIA stock components have volatility that exhibits either
stationary or nonstationary long memory characteristics depending on the
di¤erent truncation values m.
Perron and Qu (2010) showed that the estimates of d by the log peri-

odogram regression for a short memory series with breaks will vary with m.
As m increases the short memory component becomes more important rela-
tive to the level shift component and the estimate of d falls. On the contrary,
for a truly long memory process, d is independent of m. Our results for
all series reveal that the value of d indeed declines as the truncation value
increases advocating in favor of simultaneous presence of a level shift com-
ponent and short memory dynamics. Following Perron and Qu (2010) we
compute the log periodogram estimates of d (GPH) for truncation values m
ranging from 10 to T 3=4 for all series. Figure 2 presents the long memory
parameter estimates for the AA log range series4. The memory parameter
estimates are nonstationary for small values of m and as m increases the es-
timate of d gradually decreases. The results support the theoretical �ndings
of Perron and Qu (2010) as d declines with m.

[Figure 2 here]

A further aspect worth mentioning from Table 2, is the memory estimates
from maximum likelihood methods. It appears that maximum likelihood es-
timation produces results that are not in accordance with semiparametric

4The behavior of the long memory parameter is similar across all examined series.
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estimates, at least with respect to the presence of nonstationarity in the
underlying series (right panel of Table 2). Estimation of ARFIMA (0; d; 0)
models produces estimates of d with mean 0:34 across series whereas es-
timates based on an ARFIMA (1; d; 0) model are centred around d̂ = 0:42
with the autoregressive parameter being suspiciously negative around a mean
value of �0:17. The negative value of the autoregressive parameter is sugges-
tive of overdi¤erencing, also re�ected in the in�ated d̂ estimate. We consider
ARFIMA (p; d; 0) models with p > 1, as well. The addition of autoregres-
sive parameters in�ates further the value of the estimated long memory pa-
rameter whereas AR parameters remain consistently low and negative. Such
model estimates become meaningless in economic terms and resemble near
root cancellation in ARMA models with redundant parameters.
So far, descriptive measures along with semiparametric and parametric

estimation of long memory models indicate that the log-range series might
display spurious long memory characteristics. Motivated by the results, we
apply the test statistics proposed by Perron and Qu (2010) and Qu (2011).
Table 3 summarizes the test statistic results along with the simulated critical
values for the sup�td and mean� td tests. The rejection of the long memory
null hypothesis is almost uniform. The null is rejected at least by two tests
in each series. These �ndings suggest that the evidence of long memory is
not as strong as considered.

[Table 3 here]

3.3. Log-range based stochastic volatility factor models
If the log-range series can be decomposed to the sum of two processes,

a persistent long term process plus a short memory process which can be
even noise, then the �ndings of the GPH, GSP and maximum likelihood pro-
cedures regarding d could be justi�ed. Superposition of independent short
memory processes can mimic empirically observed slow decaying autocorre-
lation functions or power laws (see LeBaron, 2001; Barndor¤-Nielsen, 2001
and Barndor¤-Nielsen and Shephard, 2001 among others). In the context
of GARCH models Granger and Ding (1996) suggested a two-component
GARCH model, one component describing short-run dynamics whereas the
persistent component speci�ed as an IGARCH process determines the long
run behavior of volatility.

9



In light of Alizadeh et al. (2002) analysis, we proceed with estimation of
factor stochastic volatility models. A single factor stochastic volatility model
for the log-range, Rt, expressed as a linear state space system of equations
(see Harvey et al., 1994) can take the form

Rt = 0:43 + ht + "t
ht = �h+ �

�
ht�1 � �h

�
+ �t

(1)

where ht determines the latent log-volatility, �h is the mean of ht, � is the
autoregressive parameter, �t � nid

�
0; �2�

�
and "t � nid (0; 0:292). The �rst

equation in (1) is the signal equation that relates the log volatility proxy to
the underlying latent log volatility, while the second is the state or transition
equation and represents the dynamics of the latent volatility.
In the case of (1) being inadequate to �t the data, Alizadeh et al. (2002)

proposed a two factor model. In the two factor model the state equation is
enhanced by including a second latent component so that

Rt = 0:43 + �h+ h1;t + h2;t + "t
h1;t = �1h1;t�1 + �1;t
h2;t = �2h2;t�1 + �2;t

(2)

with latent volatility given by the sum ht = �h+ h1;t+ h2;t and �1, �2 are the
autoregressive parameters for each volatility component. The error terms �1;t
and �2;t are assumed contemporaneously and serially independent N

�
0; �2i;�

�
random variables.
Estimation of (1) and (2) is based on Kalman �lter implementation and

Gaussian quasi-maximum likelihood methods. The approximate Gaussianity
of the log-range produces highly e¢ cient parameter estimates and extractions
of latent volatility.

3.4. Estimation of stochastic volatility models

The left panel of Table 4 reports the estimates of the one factor stochastic
volatility model (1). The estimated autoregressive volatility parameter � for
all DJIA components and indices is high stretching from 0:853 to 0:992 and
points towards a rather persistent or even unit root process being present.
This is in contrast to the Alizadeh et al. (2002) results for future exchange
rate series where a short memory dependence structure was revealed. How-
ever, when we employed recursive and rolling windows estimation of the au-
toregressive parameter �, we came across considerable time varying behavior.
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In particular, during "calm" sub-sample intervals characterized by relatively
low volatility and an adequate number of observations, the estimated values
of � were around a mean value of 0:6 as in Alizadeh et al. (2002).

[Table 4 here]

The residuals from the signal equation are correlated, however substantial
negative residual serial correlation is uniformly present in all DJIA compo-
nents and S&P 500 index, whereas DJIA index residuals appear to have low
positive correlation, especially at lags 1 and 2. The negative residual corre-
lation is similar to the ARFIMA results mentioned earlier and is suggestive
of some type of overdi¤erencing or mispeci�cation. It is also in contrast to
the Alizadeh et al. (2002) residual inspection results where positive leftover
correlation was detected. In order to get over the de�ciencies of the one fac-
tor stochastic volatility model, and in light of the remaining residual positive
serial correlation, Alizadeh et al. (2002) proceed in the estimation of a two
factor stochastic volatility model. Although in our case this is not suggested
by the residual descriptives, we also proceed with estimating model (2) for
comparison reasons5.
The estimated autoregressive parameters from the two factor stochastic

volatility model are presented in the right panel of Table 4. Parameter �1
estimates point to high persistence, possibly to a unit root component, since
they vary from 0:980 to 0:997. The second factor appears to be transient
with its estimated parameter �2 varying from a low of 0:111 to a high of
0:674. The estimate of parameter �2 for the S&P 500 is negative and equals
to �0:235. All estimates are highly statistically signi�cant suggesting the
existence of at least two latent volatility components, a persistent long run
and a transient short run component. However, the autocorrelation diagnos-
tics for residuals from the two factor stochastic volatility model still show
the same uniform negative serial correlation pattern at least at lag 1 that
suggests overdi¤erencing or that the near unit root persistent component is
estimated with a positive bias. The introduction of more factors into the
model becomes quickly non-intuitive in economic terms and does not solve
the "overdi¤erencing e¤ect".

5The log range series of the DJIA index is adequately modeled by the one factor model.
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4. Structural break analysis

4.1. Multiple abrupt mean break model
Granger and Hyung (2004) recommend that a way to explain overdif-

ference is neglected nonlinearity, such as level shifts, smooth transitions or
nonlinear trends. We test the null hypothesis of constant unconditional mean
against the alternative of multiple instantaneous breaks in the unconditional
mean of the daily log-range series Rt. Under the alternative, a model with
m breaks, that is m+ 1 mean regimes, is considered

Rt = �j + ut , t = Tj�1 + 1; :::; Tj , j = 1; :::;m+ 1 (3)

where T denotes sample size with T0 = 1 and Tm+1 = T and ut a linear
process of martingale di¤erences.
Given the large sample size at hand and the fact that we do not want to

overly restrict the minimal subsample length and subsequently the number
of multiple breaks "allowed", we adopt the Bai (1997b) sequential procedure
for detecting multiple structural breaks in the mean. The �rst (if m > 1)
break point is identi�ed using the test statistic

max
k2f[�T ];[�T ]+1;:::;[(1��)T ]g

FT (k) = max
ST � ST (k)

�̂2

where ST represents the restricted residual sum of squares under the null of
no break from (3), ST (k) is the unrestricted residual sum of squares under
the alternative of a single break at date k and �̂2 is a consistent estimator6 of
the long run variance of Rt. We set � = 0:15 so that both pre- and post-break
periods contain at least 15% of the available observations and [:] denotes the
integer part. We use the method of Hansen (1997) to obtain approximate
asymptotic p-values and employ a 5% signi�cance level throughout. The
estimated break date is given by

k̂ = arg max
k2f[�T ];[�T ]+1;:::;[(1��)T ]g

FT (k)

and corresponds to the date where FT (k) is maximized7.

6Three di¤erent estimators are employed, the Newey and West (1987, 1994) and the
Andrews (1991) quadratic spectral kernel estimator.

7Con�dence intervals for k̂ can be computed using the methods developed by Bai
(1997a).
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After identifying the �rst break date, the sample is divided into two sub-
samples where hypothesis testing of parameter constancy for each subsample
is performed. If the constancy test fails then the corresponding subsample
is further divided into subsamples at the newly estimated break point and
the parameter constancy test is applied for the hierarchically obtained sub-
samples. The minimum subsample length is set to 10 working days or two
weeks in order to avoid the application of autocorrelation robust estimates
on very small samples. This procedure is repeated until the parameter con-
stancy test is not rejected for all subsamples. The number of break points is
equal to the number of subsamples minus 1. The limit distributions of the
break date estimates �̂ 1 =

h
T̂1
T

i
; :::; �̂m =

h
T̂m
T

i
depend on the parameters in

all segments of the sample, particularly on the relative break positions and
magnitudes. To remedy this problem, Bai (1997b) suggested a "repartition"
procedure that amounts to re-estimating each break date conditional on the
adjacent break dates. For example, let the initial estimates of the m break
dates be denoted by

�
T̂
(0)
1 ; :::; T̂

(0)
m

�
: The second round estimate (�rst repar-

tition run) for the ith break date is obtained by �tting a one break model
to the segment starting at T̂ (0)i�1 and ending at date T̂

(0)
i+1 (with T̂

(:)
0 = 0 and

T̂
(:)
m+1 = T ). The number of rounds continues until there is no change in the
number of breaks and the maximum di¤erence of a newly found break in
the last round from the corresponding date in the previous round does not
exceed 10 working days. The estimates obtained from this repartition proce-
dure have the same limit distributions as those obtained by a simultaneous,
but more computationally demanding, procedure8.
A central feature of the testing procedure based on model (3) is that

structural change occurs instantaneously. The mean volatility level "jumps"
at Tj�1 + 1 to a new mean level �j so that the transition from �j�1 to �j
is completed within a day interval. Such instant changes are intuitive given
that the arrival of major news is rapidly incorporated by market participants
and triggers volatility jumps or switches in volatility.
Empirical models with abrupt level shifts similar to (3) have been con-

sider by Liu (2000), Gourieroux and Jasiak (2001), Granger and Hyung
(2004), Davidson and Sibbertsen (2005), Lu and Perron (2010), Perron and
Qu (2010) and references therein as generating long-memory characteristics.

8See Bai and Perron (1998, 2003a,b).
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4.2. Multiple abrupt structural break results

Table 5 presents the estimated number of breaks for the multiple break
model based on the Bai�s methodology. Also, it reports descriptive statistics
on the residuals ût; that is the break-adjusted log-range series. In particular,
the estimated autoregressive lag order, the sum of the autoregressive para-
meters and the estimates of the long memory parameter d from competing
ARFIMA (0; d; 0) and ARFIMA (1; d; 0) speci�cations on ût are tabulated.
The estimated structural break dates per month are summarized in Figure
3.

[Table 5 here]
[Figure 3 here]

A number of immediate �ndings can be derived from inspecting Table
5. First, there are numerous volatility mean level shifts in all series under
scrutiny. The total number of level shifts is 763. The number of estimated
breaks ranges from 17, in the BA and MRK stocks, to 41 level shifts in
the JPM. The median number of detected shifts across stocks equals 25.
The estimated number of level shifts for the S&P500 index lie between these
extremes, while the DJIA index appears to be more volatile as the estimated
number of shifts is 44.
The number of identi�ed shifts are high compared to other studies that

examine stock market series. For instance, Granger and Hyung (2004) use
the same methodology with this study to detect level shifts in the log absolute
returns of 12 subperiods of S&P 500 index, covering the period from 1928 to
2002. The number of identi�ed shifts ranges from 4 to 13, while each period
contains 1705 observations (only the last period includes 1113 observations).
McMillan and Ruiz (2009) examine for breaks in log absolute index returns
from ten countries over the period 1990 - 2005. They implement the method-
ology by Bai and Perron (2003a), which allows for a maximum number of
breaks, usually set at �ve breaks. The maximum number of breaks is 4 for
the Germany index. Bisaglia and Gerolimetto (2009) identi�ed 13 shifts in
S&P 500 log absolute returns for the time period from January 2nd 1988 to
June 15th 2005, following the methodology of Bai and Perron (1998, 2003a).
Lu & Perron (2010) proceed in the estimation of a random level shift model
in order to detect level shifts in the absolute log returns of the S&P 500,
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AMEX, Dow Jones and NASDAQ indices. Although the long examined time
period, they identify a few shifts; 15 for the S&P 500, 28 for the AMEX, 12
for the Dow Jones and 7 for the NASDAQ.
The di¤erence in the number of the identi�ed breaks in this study is

due to the volatility proxy and the methodology. The log-range approach
reduces the noise encompassed in the volatility proxy resulting in a more
"clear" proxy. Moreover, the Bai (1997)�s approximation used in this study
does not impose any bounds on the number of identi�ed breaks.
In order to verify - ex post - the statistical signi�cance of shifts and guard

against the possibility of overestimating the number of breaks, we examine
the equality of mean log-range estimates across subsamples by employing
Wald tests of the null hypothesis of pairwise coe¢ cient equality �j��j+1 = 0
in the following model,

Rt =
m+1P
j=1

�jDj;t + ut

where m denotes the number of detected level shifts and Dj;t denotes a
dummy variable taking the value of 1 within the jth subsample interval.
The null hypothesis of equal mean estimates across the subsamples de�ned
by the level shifts is strongly rejected for all cases and further strengthens
the case of level shifts.
Based on the break dates as illustrated in Figure 3 we are able to separate

the full sample into three distinct sub-sample periods. Two of the periods
are marked by episodes of increased instability, while one of the sub-samples
marks a period of tranquility. The �rst period runs from January 2002 to
November 2002, the second covers the time period between December 2002
and May 2007 and the third extends from June 2007 to June 2011. The �rst
time period can be associated with the general stock market downturn during
2002 in the aftermath of the dotcom bubble. Stock markets faced dramatic
declines in this period, especially during July and September. In this period
the number of identi�ed level shifts is relatively high, as we estimate a total of
106 breaks in the stocks and 10 in indices. June, July, August and November
can be characterized as the most volatile months, as we detect 18, 13, 16 and
22 breaks in stocks, respectively and a shift per month in each index.
The second period is relatively calm. Despite the high number of iden-

ti�ed breaks (194 shifts in DJIA components and 17 in indices), it covers a
long lasting period of four and a half years.
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The �nal period is the most unstable (volatile) and is related to the
recent �nancial crisis. The majority of the identi�ed shifts is located in
this period. We detect 463 �rm oriented level shifts and 49 market and
industry oriented. Most of the identi�ed shifts are related to major economic
events. We focus on the months that experienced the highest number of
shifts in this period, namely, September, October and December 2008. The
�nancial institution crisis hit its peak during these months. Several major
institutions, such as Lehman Brothers, Merrill Lynch, Fannie Mae, Freddie
Mac, Washington Mutual, Wachovia, Citigroup and AIG, either failed or
were subject to government takeover.
In September, we detect level shifts in 26 out of 30 DJIA stocks, while

in three of them, namely CAT, IBM and JPM, two shifts are identi�ed (29
total). Moreover, two shifts are identi�ed in the DJIA index and one in the
S&P 500. Despite that we detect shifts in 18 stocks during October, ten of
them (AA, AXP, BA, DD, KO, MMM, MRK, T, VZ and XOM) are the most
a¤ected, as they faced with two level shifts (28 total). Also, two level shifts
are identi�ed in each index. Finally, in December 28 stocks faced with level
shifts, with the exception of KO stock which faced two shifts (29 total). In
this month, we identify a level shift in each index, as well.

[Figure 4 here]

Another interesting feature of the detected shifts is related to their dura-
tion. Figure 4 shows the distribution of the duration of the identi�ed volatility
regimes based of the number and location of the detected breaks. Notice that
the breaks cannot be termed "infrequent" as the median regime duration is
64 trading days, that corresponds to three trading months, for the DJIA
stocks and 41 days for the indices. There are many short-lasting regimes and
a few with long duration which generate a heavy tail duration distribution.
This pattern of duration could be responsible for the long memory behav-
ior of series according to Liu (2000) who points out that if the duration of
regimes has a heavy-tail distribution, then the underlying series can display
long memory characteristics. The large number of short regimes is cancelled
out by the short duration of these regimes and as a result the long-lasting
regimes induce persistence.
The third and fourth columns of Table 5 present diagnostic checks of re-

maining correlation on the break-adjusted residual series ût = Rt�
m+1P
j=1

�̂jDj;t,
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as a tool of assessing the impact of breaks on the series dynamics. It appears
that the break adjusted series ût exhibit positive but small correlation. A
low order AR model with short memory can be identi�ed for each residual
series. If we use the sum of the autoregressive parameters as an indicator
of persistence, we obtain sums that stretch from 0:145 to 0:394 suggesting
short leftover memory. The positive autoregressive coe¢ cient signs for all se-
ries corroborate against over�tting by the structural breaks procedure. The
autoregressive lag order is selected using the AIC criterion with maximum
lag set at 12. An alternative way to capture the remaining "persistence" is
through the long memory parameter from a fractional white noise model,
ARFIMA(0; d; 0). Once the level shifts are accounted for the picture is com-
pletely di¤erent, the long memory parameter estimates are severely down-
sized, as can be shown from the �fth column of Table 5. The values of d̂ from
the break-adjusted series have been substantially reduced, being below 0:18
(expect for the BAC stock) and the leftover memory is of no economic and
practical importance given the small d̂ values.
Finally, notice that when we estimate ARFIMA(1; d; 0) models, we �nd

that the AR(1) coe¢ cient estimates (sixth column of Table 5) are highly
in�ated, with a median value of 0:95, while the estimates of the long memory
parameter (seventh column of Table 5) are highly negative in�ated which is
a sign of mispeci�cation for the ARFIMA(p; d; 0) model with p > 0.

4.3. Smooth transitions

The analysis so far reveals that volatility dynamics can be represented
through a model with multiple abrupt level shifts plus a short run component
that exhibits low positive correlation.
Despite the fact that volatility breaks need not happen instantly or within

a trading day, almost all existing tests are constructed under the assumption
of abrupt breaks. In periods of increased economic uncertainty, for example
when uncertainty is originated by macroeconomic instability, volatility may
increase slowly enough as to produce a smooth transition pattern, at least
for a short period of time. Such patterns might also arise when market
participants do not react simultaneously to changes in uncertainty levels, for
example due to arbitrage limits. Although we do not argue in favor of long-
term trend movements in volatility, there are no a priori restrictions as to
the instantaneous character of a volatility level shift. Generally, as Hansen
(2001) points out "while it may seem unlikely that a structural break could
be immediate and might seem more reasonable to allow a structural change
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to take a period of time to take e¤ect, we most often focus on the simple
case of an immediate structural break for simplicity and parsimony".
In order to encompass the possibility of a smooth transition change in

mean volatility levels, we consider an alternative model speci�cation around
each candidate break date. In particular, we employ the logistic smooth
transition speci�cation which, for the limited case of a single break, admits
the form

Rt = �h1 + �h2St

�
t

T
; 
; �

�
+ ut (4)

St

�
t

T
; 
; �

�
=

�
1 + exp

�
�


�
t

T
� �

����1
, 
 > 0

Parameter � determines transition midpoint since S�1 = 0 , S�T = 1
2
and

S+1 = 1 while parameter 
 determines transition speed. For relatively small

 values, function St slowly traverses the interval (0; 1) implying a log-range
mean level that smoothly moves from �h1 to �h1 + �h2. As 
 increases, the
transition of St from 0 to 1 becomes so rapid that resembles the instantaneous
break case.
González and Teräsvirta (2008) provide a procedure (QuickShift) for a

sequence of speci�cation tests that can estimate the number of smooth tran-
sition break points when we generalize (4) to the multiple break case. How-
ever, it becomes numerically di¢ cult to obtain exact maximum likelihood or
nonlinear least square estimates from model

Rt = �h1 +
mP
j=2

�hjSt

�
t

T
; 
j; � j

�
+ ut (5)


j > 0 , 0 � � j � 1 , � j < � j+1
as the number of breaks m increases. Given that the instantaneous breaks
procedure supports the presence of numerous breaks in volatility levels, we
will attempt only subsample local estimation of smooth transition models
around the break points suggested by the instantaneous breaks procedure.
The �nal �tted values R̂t proxying the latent log-volatility will be a combi-
nation of instant and smooth transition changes.

4.4. Smooth transition results
Table 6 reports the results of the aforementioned experiment that locally

employs logistic smooth transition functions as a candidate transition mech-
anism. The percentage of the identi�ed level shifts that admits a smooth
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transition representation for each series is shown at the second column. The
third and fourth columns display the estimated lag order and the sum of
the autoregressive parameters from the break adjusted residual series where
the adjustment permits the combination of abrupt and smooth breaks. Fig-
ure 5 represents six of the identi�ed smooth level shifts for the AA DJIA
component as a visual aid.
A large number of level shifts previously identi�ed as abrupt are now

replaced by smooth transitions in all DJIA component and indices. For
some of the series almost the half abrupt level shifts are replaced by smooth
transitions, while the indices, S&P 500 and DJIA, exhibit a higher number
of smooth transitions, 15 and 22 correspondingly, compared to stocks. The
median value of replaced abrupt changes by smooth transitions in stocks
equals 10. Moreover, it is interesting to note that smooth transitions, in both
stocks and indices, last from a few days up to a maximum of one business
month (near 22 days) thus the daily data do not support the existence of any
long-term trend in volatility. Finally, residual correlation after incorporating
smooth transitions is marginally lower, while the autoregressive lag order
is reduced in some residual series. Thus, structural changes, abrupt and
smooth, account for nearly all of the long memory part present in log-range
series and only a short run component in volatility is evident.

[Table 6 here]
[Figure 5 here]

Our conclusion in favor of a short memory process with multiple level
shifts, instead of a long memory process, is in line with the results of Var-
neskov and Perron (2011) despite their di¤erent approach. In particular,
they combine the level shifts and the long memory by employing a random
level shift ARFIMA model in logarithm daily absolute returns.

5. Conclusions

This paper adds on a previous stream of research that questions em-
pirically two data characterizations of volatility, namely long memory and
structural breaks. We employ the log-range as a volatility proxy in order
to minimize noise e¤ects on a latent volatility component that potentially
undergoes level shifts. Our �rst aim was to evaluate whether the evidence
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for long memory may be considered to some extent spurious. We �nd that
the latent volatility process can mimic unit root or near unit root behavior
as well as behavior that resembles mean reverting long memory processes
when level shifts are unaccounted. We then conduct a multiple mean break
analysis that produced evidence for multiple signi�cant structural breaks in
all examined series that cannot be characterized as occasional. A large num-
ber of breaks is not instantaneous, however slowly evolving trends do not
exceed one business month in length. When accounting for the level shifts,
the evidence in favor of long-memory in the log-range series disappears. The
most appealing volatility representation comes from a multiple level shift
component plus a short run component that is adequately modelled as a low
order AR (p) process with positive correlation.
It will be of interest in future work to attempt univariate or multivariate

model speci�cations where breaks are frequent but considered endogenous.
That case, presents potential gains from forecasting the timing and size of
breaks and needs to be explored further.

Acknowledgement

Results are generated using Ox version 5.10 (see Doornik, 2007), the
Ar�ma package version 1.04 (see Doornik and Ooms, 2003), the R software
and EViews 7.

References

Alizadeh, S, Brandt, M.W., Diebold, F.X. 2002. Range-based estimation of
stochastic volatility models. J. Finance 57, 1047�1091.

Andrews, D.W.K. 1991. Heteroscedasticity and autocorrelation consistent
covariance matrix estimation. Econometrica 59, 817�858.

Bai, J., 1997a. Estimation of a change point in multiple regression models.
Rev. Econ. Stat. 79, 551�563.

Bai, J., 1997b. Estimating multiple breaks one at a time. Econom. Theory
13, 315�352.

Bai, J., Perron, P., 1998. Estimating and testing linear models with multiple
structural changes. Econometrica 66, 47�68.

Bai, J., Perron, P., 2003a. Computation and analysis of multiple structural
change models. J. Appl. Econom. 18, 1�22.

20



Bai, J., Perron, P., 2003b. Critical values in multiple structural change tests.
Econom. J. 6, 72�78.

Baillie, R.T., 1996. Long memory processes and fractional integration in
econometrics. J. Econom. 73, 5�59.

Banerjee, A., Urga, G., 2005. Modelling structural breaks, long memory and
stock market volatility: An overview. J. Econom. 129, 1�34.

Barndor¤-Nielsen, O.E., 2001. Superposition of Ornstein-Uhlenbeck type
processes. Theory Probab. Appl. 45, 175-194.

Barndor¤-Nielsen, O.E., Shephard, N., 2001. Non-gaussian Ornstein-Uhlenbeck-
based models and some of their uses in �nancial economics. J. R. Stat.
Soc. Ser. B (Statistical Methodology) 63, 167�241.

Berkes, I., Horváth, L., Kokoszka, P., Shao, Q., 2006. On discriminating
between long-range dependence and changes in mean. Ann. Stat. 34,
1140�1165.

Bisaglia, L., Gerolimetto, M., 2009. An Empirical Strategy to Detect Spuri-
ous E¤ects in Long Memory and Occasional-Break Processes. Commun.
Stat.-Simul. Comput. 38, 72�189.

Brandt, M.W., Jones, C.S., 2006. Forecasting volatility with range-based
EGARCH models. J. Bus. Econ. Stat. 24, 470�486.

Choi, K., Yu, W.C., Zivot, E., 2010. Long memory versus structural breaks
in modelling and forecasting realized volatility. J. Int. Money Finance 29,
857�875.

Crato, N, de Lima, P., 1994. Long range dependence in the conditional
variance of stock returns. Econ. Lett. 45, 281�285.

Davidson, J., Sibbertsen, P., 2005. Generating schemes for long memory
processes: Regimes, aggregation and linearity. J. Econom. 128, 253�282.

Diebold, F., Inoue, A., 2001. Long memory and regime switching. J.
Econom. 105, 131-159.

Ding, Z., Granger, C.W.J., Engle, R.F., 1993. A long memory property of
stock market returns and a new model. J. Empir. Finance 1, 83-106.

Doornik, J.A., 2007. Object-Oriented Matrix Programming Using Ox, 3rd
ed, Timberlake Consultants Press, London.

Doornik, J.A., Ooms, M., 2003. Computational aspects of maximum likeli-
hood estimation of autoregressive fractionally integrated moving average
models. Comput. Stat. Data Anal. 41, 333�348.

Doornik, J.A., Ooms, M., 2004. Inference and forecasting for ARFIMA mod-
els, with an application to US and UK in�ation. Stud. Nonlinear Dyn.
Econom. 8, Article 14.

21



Garman, M., Klass, M., 1980. On the estimation of price volatility from
historical data. J. Bus. 53, 67�78.

Geweke, J., Porter-Hudak, S., 1983. The estimation and application of long
memory time series data. J. Time Ser. Anal. 4, 15�39.

González A, Teräsvirta T. 2008. Modelling autoregressive processes with a
shifting mean. Stud. Nonlinear Dyn. Econom. 12, Article 1.

Gourieroux, C., Jasiak, J., 2001. Memory and infrequent breaks. Econ. Lett.
70, 29�41.

Granger, C.W.J., 1980. Long memory relationships and the aggregation of
dynamic models. J. Econom. 14, 227�238.

Granger, C.W.J., Ding, Z., 1996. Modeling volatility persistence of specula-
tive returns: a new approach. J. Econom. 73, 185�215.

Granger, C.W.J., Joyeux, R., 1980. An introduction to long memory time
series models and fractional di¤erencing. J. Time Ser. Anal. 1, 15�39.

Granger, C.W.J., Hyung, N., 2004. Occasional structural breaks and long
memory with an application to the S&P 500 absolute stock returns. J.
Empir. Finance 11, 399�421.

Hansen, B., 1997. Approximate asymptotic p-values for structural change
tests. J. Bus. Econ. Stat. 15, 60�67.

Hansen, B., 2001. The New Econometrics of Structural Change: Dating
Breaks in U.S. Labor Productivity. J. Econ. Perspect. 15, 117-128.

Harvey, A., Ruiz, E., Shephard, N., 1994. Multivariate stochastic variance
models. Rev. Econ. Stud. 61, 247�264.

Hosking, J., 1981. Fractional di¤erencing. Biom. 68, 165�176.
LeBaron, B., 2001. Stochastic volatility as a simple generator of apparent
�nancial power laws and long memory. Quant. Finance 1, 621 �631.

Liu, M., 2000. Modeling long memory in stock market volatility. J. Econom.
99, 139�171.

Lu, Y., Perron, P., 2010. Modeling and forecasting stock return volatility
using a random level shift model. J. Empir. Finance 17, 138�156.

McMillan, D., Ruiz, I., 2009. Volatility persistence, long memory and time-
varying unconditional mean: Evidence from 10 equity indices. Q. Rev.
Econ. Finance 49, 578�595.

Morana, C., Beltratti, A., 2004. Structural change and long-range depen-
dence in volatility of exchange rates: either, neither or both? J. Empir.
Finance 11, 629�658.

Newey, W.,West, K., 1987. A simple positive semi-de�nite heteroskedasticity

22



and autocorrelation consistent covariance matrix. Econometrica 55, 703�
708.

Newey, W.,West, K., 1994. Automatic lag selection in covariance matrix
estimation. Rev. Econ. Stud. 61, 631�653.

Ohanissian, A., Russell, J.R., Tsay, R.S., 2008. True or spurious long mem-
ory? A new test. J. Bus. Econ. Stat. 26, 161�175.

Parkinson, M., 1980. The extreme value method for estimating the variance
of the rate of return. J. Bus. 53, 61�65.

Perron, P., 2006. Dealing with structural breaks. In Palgrave Handbook of
Econometrics, Vol. 1: Econometric Theory (eds K. Patterson and T. C.
Mills). UK: Palgrave Macmillan, 278�352.

Perron, P., Qu, Z., 2010. Long-memory and level shifts in the volatility of
stock market return indices. J. Bus. Econ. Stat. 28, 275�290.

Porter-Hudak, S., 1990. An application of the seasonal fractionally di¤er-
enced model to the monetary aggregate. J. Am. Stat. Assoc. 85, 335�
350.

Qu, Z., 2011. A test against spurious long memory. J. Bus. Econ. Stat. 29,
423�438.

Robinson, P.M., 1995. Gaussian semiparametric estimation of long-range
dependence. Ann. Stat. 23, 1630�1661.

Shao, X., 2011. A simple test of changes in mean in the possible presence of
long-range dependence. J. Time Ser. Anal. 32, 598�606.

Sibbersten, P., 2004. Long memory versus structural breaks: An overview.
Stat. Pap. 45, 465�515.

St¼aric¼a, C., Granger, C.W.J., 2005. Nonstationarities in stock returns. Rev.
Econ. Stat. 87, 503�522.

Velasco, C., 1999. Non-stationary log-periodogram regression. J. Econom.
91, 325�371.

Varneskov, R.T., Perron, P. 2011. Combining Long Memory and Level Shifts
in Modeling and Forecasting the Volatility of Asset Returns, Boston Uni-
versity Working Paper

Zhang, A., Gabrys, R., Kokoszka, P., 2007. Discriminating between long
memory and volatility shifts, Austrian J. Stat. 36, 253-275.

23



Table 1. Descriptive Statistics

mean median max min stdev skew kurt ACF(1) ACF(2)
Indices

S&P500 -4.421 -4.458 -2.216 -6.036 0.613 0.379 3.249 0.610 0.640
DJIA -3.951 -4.007 -1.929 -5.757 0.433 0.549 4.853 0.745 0.745

Dow Jones Industrial Average components
AA -3.572 -3.622 -1.271 -4.859 0.531 0.553 3.493 0.587 0.563
AXP -3.819 -3.858 -1.316 -5.988 0.696 0.380 2.922 0.755 0.733
BA -3.823 -3.862 -1.949 -5.326 0.495 0.323 3.200 0.542 0.505
BAC -3.889 -3.990 -0.733 -5.510 0.763 0.798 3.598 0.819 0.778
CAT -3.762 -3.815 -1.553 -5.090 0.500 0.529 3.381 0.571 0.525
CSCO -3.721 -3.749 -1.939 -5.786 0.520 0.269 3.180 0.595 0.552
CVX -3.991 -4.030 -1.768 -5.361 0.483 0.692 4.413 0.576 0.533
DD -3.896 -3.937 -1.902 -5.571 0.509 0.492 3.446 0.578 0.556
DIS -3.868 -3.918 -1.973 -5.256 0.540 0.473 3.166 0.632 0.574
GE -3.947 -4.001 -1.555 -5.729 0.629 0.571 3.355 0.699 0.685
HD -3.799 -3.848 -1.500 -5.203 0.529 0.465 3.234 0.610 0.578
HPQ -3.771 -3.814 -1.538 -5.457 0.533 0.348 3.174 0.571 0.519
IBM -4.106 -4.163 -2.184 -5.834 0.528 0.510 3.352 0.619 0.603
INTC -3.709 -3.734 -2.142 -5.165 0.497 0.305 2.952 0.586 0.556
JNJ -4.324 -4.367 -2.078 -5.804 0.537 0.434 3.368 0.618 0.577
JPM -3.756 -3.818 -1.336 -5.456 0.674 0.487 3.115 0.771 0.733
KFT -4.114 -4.140 -2.158 -5.635 0.494 0.409 3.399 0.474 0.375
KO -4.234 -4.278 -2.192 -5.957 0.507 0.501 3.580 0.572 0.544
MCD -4.020 -4.033 -1.459 -5.770 0.512 0.339 3.394 0.547 0.506
MMM -4.097 -4.137 -1.302 -5.436 0.476 0.660 4.129 0.512 0.474
MRK -3.907 -3.951 -1.711 -5.338 0.519 0.535 3.685 0.536 0.492
MSFT -3.965 -4.005 -2.065 -5.363 0.531 0.389 3.027 0.595 0.556
PFE -3.956 -3.991 -1.784 -5.353 0.488 0.512 3.650 0.529 0.476
PG -4.286 -4.331 -0.766 -5.635 0.495 0.795 5.036 0.529 0.481
T -3.927 -3.990 -1.761 -5.501 0.560 0.463 3.078 0.655 0.611
TRV -3.911 -3.979 -1.381 -5.447 0.596 0.702 3.687 0.647 0.624
UTX -4.014 -4.034 -1.852 -5.460 0.514 0.412 3.440 0.565 0.542
VZ -3.974 -4.017 -1.625 -5.389 0.539 0.450 3.141 0.634 0.590
WMT -4.107 -4.145 -2.005 -5.688 0.489 0.434 3.541 0.554 0.537
XOM -4.032 -4.063 -1.811 -5.393 0.492 0.581 4.109 0.595 0.554
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Table 2. Semi-parametric and maximum likelihood estimation of the long memory parameter

GPH GSP ARFIMA (0; d; 0) ARFIMA (1; d; 0)

Levels T 0:5 T 0:6 T 0:7 T 0:5 T 0:6 T 0:7 d̂ d̂ AR (1)
Indices

S&P500 0.620 0.638 0.531 0.628 0.645 0.574 0.333 0.465 -0.311
DJIA 0.642 0.658 0.595 0.643 0.683 0.601 0.401 0.494 -0.243

Dow Jones Industrial Average components
AA 0.718 0.469 0.416 0.649 0.518 0.457 0.330 0.411 -0.173
AXP 0.688 0.605 0.454 0.706 0.653 0.530 0.388 0.468 -0.189
BA 0.706 0.582 0.444 0.669 0.559 0.445 0.315 0.386 -0.155
BAC 0.741 0.610 0.544 0.704 0.641 0.545 0.431 0.475 -0.101
CAT 0.616 0.599 0.498 0.596 0.566 0.484 0.330 0.397 -0.147
CSCO 0.692 0.630 0.484 0.629 0.607 0.484 0.326 0.394 -0.152
CVX 0.498 0.596 0.522 0.530 0.571 0.528 0.346 0.423 -0.160
DD 0.669 0.567 0.481 0.664 0.572 0.480 0.324 0.407 -0.190
DIS 0.700 0.642 0.504 0.623 0.643 0.487 0.355 0.404 -0.108
GE 0.709 0.627 0.495 0.673 0.623 0.533 0.365 0.459 -0.219
HD 0.592 0.610 0.463 0.660 0.633 0.493 0.339 0.415 -0.175
HPQ 0.599 0.599 0.443 0.599 0.603 0.476 0.337 0.397 -0.127
IBM 0.651 0.582 0.588 0.624 0.584 0.559 0.347 0.444 -0.217
INTC 0.714 0.608 0.488 0.682 0.633 0.493 0.327 0.402 -0.178
JNJ 0.658 0.589 0.508 0.612 0.572 0.498 0.355 0.427 -0.155
JPM 0.740 0.592 0.501 0.708 0.648 0.544 0.406 0.466 -0.138
KFT 0.462 0.555 0.437 0.467 0.530 0.428 0.304 0.336 -0.067
KO 0.619 0.639 0.486 0.644 0.618 0.492 0.327 0.403 -0.167
MCD 0.617 0.513 0.435 0.724 0.582 0.475 0.318 0.385 -0.151
MMM 0.624 0.547 0.514 0.580 0.517 0.452 0.311 0.382 -0.150
MRK 0.580 0.515 0.413 0.554 0.557 0.453 0.323 0.391 -0.143
MSFT 0.641 0.679 0.483 0.600 0.613 0.497 0.330 0.401 -0.168
PFE 0.627 0.550 0.399 0.618 0.541 0.446 0.321 0.381 -0.123
PG 0.593 0.490 0.452 0.580 0.511 0.481 0.322 0.390 -0.143
T 0.697 0.622 0.492 0.654 0.632 0.530 0.356 0.421 -0.149
TRV 0.691 0.605 0.546 0.636 0.613 0.536 0.360 0.448 -0.193
UTX 0.660 0.646 0.507 0.625 0.608 0.501 0.327 0.413 -0.190
VZ 0.667 0.611 0.462 0.653 0.624 0.504 0.352 0.417 -0.147
WMT 0.570 0.602 0.511 0.614 0.613 0.513 0.322 0.407 -0.187
XOM 0.559 0.591 0.535 0.563 0.584 0.503 0.359 0.436 -0.156
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Table 5. Results of abrupt level shifts detection.

ARFIMA(0; d; 0) ARFIMA(1; d; 0)

# of breaks p sum AR (p) d̂ d̂ AR(1)
Indices

S&P500 32 4 0.278 0.081 -0.896 0.977
DJIA 44 2 0.219 0.108 -0.838 0.947

Dow Jones Industrial Average components
AA 21 2 0.256 0.147 -0.799 0.952
AXP 34 3 0.278 0.141 -0.795 0.940
BA 17 3 0.284 0.146 -0.814 0.964
BAC 30 3 0.360 0.219 -0.712 0.945
CAT 24 3 0.257 0.136 -0.812 0.954
CSCO 24 2 0.174 0.101 -0.836 0.950
CVX 34 3 0.204 0.103 -0.843 0.954
DD 28 4 0.264 0.111 -0.855 0.968
DIS 19 3 0.316 0.169 0.091 0.111
GE 23 3 0.304 0.139 -0.809 0.951
HD 21 3 0.226 0.116 -0.844 0.969
HPQ 23 2 0.255 0.160 -0.797 0.965
IBM 25 4 0.348 0.144 -0.813 0.959
INTC 26 2 0.145 0.088 0.000 0.000
JNJ 32 3 0.272 0.144 -0.798 0.947
JPM 41 3 0.258 0.151 -0.777 0.935
KFT 26 2 0.215 0.116 0.000 0.170
KO 23 2 0.216 0.124 0.104 0.000
MCD 26 2 0.145 0.085 0.000 0.107
MMM 19 7 0.357 0.151 0.152 0.000
MRK 17 3 0.313 0.167 -0.794 0.969
MSFT 22 4 0.327 0.146 -0.813 0.962
PFE 23 2 0.222 0.134 -0.792 0.934
PG 30 2 0.158 0.094 -0.824 0.927
T 31 2 0.176 0.108 -0.813 0.937
TRV 20 5 0.394 0.176 -0.800 0.979
UTX 23 4 0.285 0.126 -0.835 0.968
VZ 21 4 0.324 0.162 -0.801 0.969
WMT 28 2 0.186 0.100 0.087 0.000
XOM 32 3 0.278 0.150 -0.806 0.960
Column "# of breaks" reports estimated number of breaks, Column "p" reports estimated
residual lag order using the AIC criterion with maximum lag set at 12. Column "sum AR(p)"
reports the sum of statistically signi�cant autoregressive coe¢ cients in the corresponding residual
AR(p) model. Column "ARFIMA(0,d,0)" reports statistically signi�cant maximum likelihood
estimates of d for the residual series. Columns "ARFIMA(1,d,0)" report statistically signi�cant
maximum likelihood estimates of d and of the AR(1) coe¢ cient for the residual series.
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Table 6. Results of smooth transitions

% smooth transitions p sum AR (p)
Indices

S&P500 46.88 3 0.241
DJIA 50.00 2 0.189

Dow Jones Industrial components
AA 47.62 2 0.250
AXP 41.18 3 0.274
BA 41.18 3 0.280
BAC 26.67 3 0.355
CAT 50.00 3 0.253
CSCO 45.83 2 0.197
CVX 35.29 3 0.193
DD 35.71 4 0.220
DIS 26.32 3 0.304
GE 26.09 3 0.298
HD 38.10 3 0.215
HPQ 47.83 2 0.245
IBM 52.00 4 0.345
INTC 34.62 2 0.141
JNJ 46.88 3 0.265
JPM 26.83 2 0.221
KFT 38.46 2 0.218
KO 39.13 2 0.215
MCD 42.31 2 0.146
MMM 36.84 6 0.292
MRK 35.29 3 0.311
MSFT 36.36 4 0.314
PFE 26.09 2 0.218
PG 43.33 1 0.121
T 38.71 2 0.179
TRV 30.00 5 0.388
UTX 39.13 4 0.271
VZ 23.81 4 0.320
WMT 39.29 2 0.180
XOM 37.50 2 0.230
Note: Column "% smooth transitions" expresses the proportion of
smooth transition shifts relative to the total number of level shifts.
Column "p" reports estimated residual lag order. Column "sum
AR(p)" reports the sum of statistically signi�cant autoregressive
coe¢ cients in the corresponding residual AR(p) model.
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Figure 1: Log-range series (top panel) and autocorrelation function (bottom panel) of AA
stock.
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Figure 2: GPH estimates across di¤erent number of frequency ordinates (m) for AA log-
range series.
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Figure 3: Identi�ed structural breaks per month.
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Figure 4: Distribution of breaks duration
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Figure 5: Smooth level shifts for AA log-range series.
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