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Abstract

The probabilistic structure of periodically collapsing bubbles implies

different values for the slope coefficient of alternative efficient market hy-

pothesis tests depending on whether the bubble is in an explosive regime

or not. We exploit this fact and propose a new method for bubble detec-

tion. The method does not require the specification of the process followed

by fundamentals, it is not affected by a possible explosive root of the de-

terminants of the asset price, and provides a date-stamping strategy. We

analyze the Reichsmark/Dollar exchange rate for the interwar German

hyperinflation period and identify periods of rational exuberance.
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1 Introduction

The empirical literature on whether rational bubbles were present during the

German hyperinflation period appears inconclusive (see, e.g., Burmeister and

Wall, 1982, 1987; Hamilton and Whiteman, 1985; Christiano, 1987; Casella,

1989; Sargent, 1977; Taylor, 1991; Durlauf and Hooker, 1994; Engsted, 1993,

1994; Hooker, 2000). The existing literature focuses on statistical tests on the

properties of the demand for money during the period up to summer 1923

when the probability of monetary reform was negligible. However, these tests

depend on the validity of a variety of different hypotheses. For instance, Casella

(1989) reports that the presence of bubbles can be rejected if the money supply

process is assumed exogenous to the current inflation rate but not when the

monetary process follows a feedback rule from inflation. While, Burmeister and

Wall (1982) show that bubbles cannot be rejected if the money supply process

depends on expected inflation. The assumption that the error process follows

a random walk is also crucial for identification in a variety of tests (see, e.g.,

Christiano, 1987; Sargent, 1977; Casella, 1989).

The purpose of this paper is to propose a new test for rational speculative

bubbles based on forward market data. We will set the idea out in the context

of a discrete model of the foreign exchange market though it appears readily

generalized to other markets involving a forward price.1 The key intuition is

that when a bubble is occurring the forward rate for period t+ n, the spot rate

at time t, and the spot outcome at t + n will all embody the bubble but with

1Evans (1986) proposes a test also employing forward rates that differs from that in this

paper. He defines a speculative bubble as a subperiod during which there is a nonzero median

in the distribution of the excess return to holding foreign currency when allowance is made

for risk premia. Our test is conjectured solely on the basis of rational bubbles and is more

specific than the test of Evans. Jarrow et al. (2011) propose a new test for bubbles based

on volatility estimation techniques combined with the method of reproducing kernel Hilbert

spaces. However, our sample size is too small to make inferences employing their method.
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different weights. This is a consequence of the probabilistic structure of rational

bubbles that pop. As a consequence we have a structure which is similar to a

peso problem albeit with an explosive process. We demonstrate that when the

bubble is occurring this generates a relationship between changes in (the level of)

the spot rate and the forward premium (forward rate) in which the coefficient on

the forward premium (forward rate) will be expected to exhibit a coefficient that

can be greater than unity. Our methodology has three advantages over existing

methods.2 First, it is robust to the process followed by fundamentals and,

under rational expectations (RE), it is free of misspecification or unobservable

components issues. Second, the identification of rational bubbles is invariant to

possible explosive roots in the fundamentals. Third, it provides a framework for

dating bubble phenomena.

We apply our test in the interwar hyperinflation period in Germany between

24th December 1921 and 11th August 1923.3 We run rolling efficient mar-

ket hypothesis (EMH) regressions employing weekly spot Reichsmark/Dollar

(RM/$) and one-month forward rates and use the Bonferroni method proposed

by Cavanagh et al. (1995) for hypothesis testing in the presence of persistent

regressors. Since bubbles, when occurring, imply an explosive asset price we

also investigate the periods where the daily spot rate exhibited explosive be-

havior employing the test of Phillips et al. (2012) on a new daily series of the

RM/$ spot rate obtained from The Commercial and Financial Chronicle. The

unit root test results indicate two long periods (from the middle to the end

2These methods include excess volatility tests, West’s specification test, unit root and

cointegration tests. See Gürkaynak (2008) for a comprehensive review of the literature on

econometric tests for bubbles.
3The greater number of observations employed in our test also might mitigate against a

problem outlined by Evans (1991) and West (1994) in studies employing monthly data on

prices and money in the period 1921-1923. The basic problem as outlined by these authors is

that, if prices and money supply are growing smoothly for a significant period of observations,

standard tests may accept cointegration in money demand or the same degree of integration

for the rate of inflation and rate of monetary change even in the presence of a bubble.
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of 1922 and from April 1923 to the end of the sample period) of explosive be-

havior. However, the results based on our method suggest the exchange rate

contained a rational bubble component only in the period from September to

November 1922. A possible explanation for the discrepancy between the two

methods is that the explosive behavior of the spot rate in some periods was due

to movements in fundamentals.

The rest of the paper is structured as follows. The next section describes

the new test for rational bubbles in the context of the EMH using the forward

exchange market. The test is examined for both the implied slope coefficient of

the Fama regression and the regression in levels of spot on forward rates. Sec-

tion 3 illustrates the empirical application using data for the German interwar

hyperinflation period. The final section concludes.

2 Rational Bubbles in the Forward Exchange

Market

We do not specify any particular model of exchange rate determination but

rather write the log of the spot rate at time t, st, as the sum of the two compo-

nents of its RE solution: the log of the fundamental, xt, plus the bubble term,

Bt,
4

st = xt +Bt. (1)

Assuming initially a one period horizon, the log of the forward rate at time t

for delivery at time t+ 1, ft,1, is equal to

ft,1 = Et(st+1) + pt = Etxt+1 + EtBt+1 + pt, (2)

4This expression assumes absence of the terminality condition. For instance, in the case of

the monetary model of exchange rate determination the fundamental term xt would be the

discounted value of all current and future relative money and income between the domestic

and foreign countries.
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where Et is the mathematical expectation at time t, and pt is a zero-mean

covariance stationary time-varying risk premium. Rational bubbles have the

property (see Diba and Grossman, 1988)

EtBt+1 = (1 + r)Bt (3)

Bt+1 = (1 + r)Bt + vt+1,

where r > 0 is a constant derived from the structural model determining the

exchange rate, and vt+1 is the random forecast error. We assume the simplest

form of rational speculative bubbles, the type proposed by Blanchard (1979),

though the analysis holds for more complicated forms such as the one proposed

by Evans (1991). In his bubble process there are two regimes which occur with

probabilities π and 1 − π. In the first regime (A), the bubble survives with

probability π and continues to grow at an expected rate (1+r)Bt

π , and in the

second regime (C) the bubble collapses5

Bt+1 =


(1+r)Bt

π + ϵt+1 in state A

ϵt+1 in state C
(4)

and consequently (3) holds. The difference between the actual rate of growth

of the bubble term, which will show up in the spot rate, and its expected value,

which is part of the forward rate, will give rise to different values of the coefficient

regression in EMH tests.

2.1 Fama Regression

We first employ the regression developed by Fama (1984) for the joint hypothesis

of market efficiency and RE in the case of the forward rate n periods ahead

st+n − ft,n = α+ β1,n(ft,n − st) + ut+n, (5)

5The expected value of the bubble term is therefore

Et(Bt+1) =


(1+r)Bt

π
in state A

0 in state C
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where α, β1,n are the regression coefficients, n is the horizon of the forward rate,

and ut is the error term. It is key to our analysis to note that if there is a rational

bubble at time t, and it still remains at time t + n, the difference between the

future spot rate outcome and the current forward rate is the following

st+n − ft,n = xt+n +
(1 + r)nBt

πn
+ ϵt+n − Etxt+n − (1 + r)nBt − pt,n,

while the forward premium is

ft,n − st = Etxt+n − xt + (1 + r)nBt −Bt + pt,n.

Assuming that the fundamental process, xt, is itself not subject to a ‘peso’

process and that follows a random walk, then, under RE, the forecast error,

xt+n − Etxt+n = θt+n, is a moving average error of order n − 1. In this case,

the sample estimate of β1,n in (5), β̂1,n, is
6

β̂1,n =

−
T−n∑
t=1

p2t,n + (1 + r)n( 1
πn − 1)[(1 + r)n − 1)

T−n∑
t=1

B2
t

T−n∑
t=1

p2t,n + [(1 + r)n − 1]2
T−n∑
t=1

B2
t

. (6)

This expression suggests that the bubble term present in the price will increase

the size of the estimate of β̂1,n as long as the bubble is ongoing. For a suffi-

ciently large sample variance of the bubble term the coefficient will approach

the value
(1+r)n( 1

πn −1)

[(1+r)n−1] > 1. The presence of a risk premium does not affect

this result because its variance enters the numerator with a negative sign and

the denominator with a positive sign which would, if present, unambiguously

reduce the value of β̂1,n.

It is important to note that if the fundamental process, xt, is itself subject to

a ‘peso’ process over the sample period, and it is explosive or near explosive, then

the implications for the Fama regression can be identical and we are unable to

discriminate between a rational speculative bubble and explosive fundamentals

6We further assume that the covariance between pt,n, and Bt is zero, and also note that

Etθt+nBt = 0 due to RE assumption.
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with probabilistic regimes. This is an issue in hyperinflation periods because of

the probability of monetary reform. In the case of the German interwar hyper-

inflation, which we analyze in the next section, the possibility of an expected

structural change in the money supply process has been widely studied (see,

e.g., Flood and Garber, 1980, 1983; LaHaye, 1985) These studies suggest that

the probability of reform was near zero until mid August 1923. Consequently,

if we exclude data from mid August 1923, as has been common in other tests

of bubbles (see, e.g., Casella, 1989; Hooker, 2000), we should not bias the test

results.

2.2 Spot-Forward Regression

An alternative specification is to consider the regression either between the spot

rate, st, and the forward rate, ft,n, or between the future spot rate outcome,

st+n, and the forward rate. The slope of the former yields an inconclusive

result for the detection of the speculative bubble as we demonstrate in Appendix

A. However, the latter specification generates an unambiguous criterion as we

illustrate below. The EMH can be tested by regressing7 the future spot rate,

st+n, on the current forward rate, ft,n,

st+n = α+ β2,nft,n + ut+n. (7)

In the case of an ongoing bubble, st+n = xt+n + (1+r)n

πn Bt + ϵt+n, while the

forward rate remains ft,n = Et(st+n) + pt,n = Etxt+n + EtBt+n + pt,n = xt +

(1 + r)nBt + pt,n. The estimated coefficient is therefore

β̂2,n =

T−n∑
t=1

x2t +
(1+r)2n

πn

T−n∑
t=1

B2
t

T−n∑
t=1

x2t + (1 + r)2n
T−n∑
t=1

B2
t +

T−n∑
t=1

p2t,n

.

7In the absence of bubbles and risk premium the coefficient β in the spot-forward regression

will equal one regardless of the timing of the dependent variable, st or st+n.
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Under risk neutrality (or assuming that the sample variance of the risk premium

is much smaller than the one of Bt) the bubble process would bring the value

of β̂2,n above unity.8

One of the advantages of our method, and a difference with the unit root test

methodology, is that it allows the researcher to differentiate between explosive

spot (and forward) rates brought about by the process of fundamentals and

by the presence of rational bubbles, assuming the series of fundamentals is

available. Appendix B shows that, within this framework, the criteria used for

the coefficients β̂1,n and β̂2,n are not contaminated by the presence of explosive

fundamentals in the price process.

2.3 Hypothesis Testing with a Persistent Regressor

Regressions (5) and (7) might contain highly persistent even explosive variables

(under the alternative of bubbles) making standard regression analysis not valid

(see Cavanagh et al., 1995; Jansson and Moreira, 2006; Phillips and Magdali-

nos, 2008; Engsted and Nielsen, 2010). We follow Cavanagh et al. (1995) and

consider the following system that represents both the Fama and spot-forward

regressions9

yt+4 = µy + γxt + u1,t+4, (8)

xt+4 = µx + ρxt+3 + u2,t+4, (9)

where ut+4 = (u1,t+4, u2,t+4)
′ is a martingale difference sequence with finite 4th

moment and possibly non-zero correlation coefficient δ = corr(u1,t+4, u2,t+4).

Our goal is to construct a confidence interval for the slope coefficient, γ, so

as to test the null hypothesis of no bubbles, γ = 1, against the alternative of

8Within the regression in levels, the evidence would be suggestive of bubble if the coefficient

β̂2,n switches from one in a no-bubble period to above one in a bubble period. In the absence

of a bubble process, risk aversion implies β̂2,n below unity for small samples.
9We let xt follow an AR(1) process for illustration purposes. The results hold for higher

order AR processes.
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an ongoing bubble, γ > 1. In this setting, the asymptotic distribution of the

t-statistic for γ = 1 can be obtained by adopting a local-to-unity framework

where the autoregressive coefficient is modeled as being in a 1/T neighborhood

of unity, ρ = 1 + c/T , where c is a fixed constant, so that the regressor is

stationary when c < 0, has a unit root when c = 0, or is explosive when

c > 0. This distribution is non-standard and depends on the unknown degree

of persistence c and the correlation coefficient δ (see, e.g., Campbell and Yogo,

2006). Although δ can be consistently estimated,10 the nuisance parameter c

cannot, which creates difficulties in drawing statistical inference. We circumvent

this obstacle by adopting the Bonferroni test of Cavanagh et al. (1995).

The Bonferroni procedure consists of two steps. First, we estimate a 90%

confidence interval for c using the method of belts (see Stock, 1991).11 Second,

for each value of c in the estimated confidence interval, we construct a 90%

confidence interval for γ.12 The union of all the confidence intervals of the second

stage provides a confidence interval for γ that does not depend on c. Note that

because of the overlapping nature of the data in regression (8) the residuals u1

will exhibit serial correlation. Similarly to the long-horizon regression literature,

we employ Newey-West standard errors to deal with this overlap (see Torous

et al., 2004).

Before we proceed to the empirical analysis, we demonstrate the applicability

of the above method and the associated date-stamping strategy to simulated

data. Appendix C describes the simulation exercise and the results show the

way the t-statistic of regression (8) behaves according to our theoretical analysis.

10Torous et al. (2004) discuss alternative ways of estimating the long-run correlation coef-

ficient.
11Basically, the method of belts creates confidence intervals for c by inverting confidence

intervals for the ADF statistic.
12Because Bonferroni confidence intervals can be quite conservative we use the size-

adjustment suggested by Cavanagh et al. (1995).
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3 Empirical Analysis

We put together a new daily series of the Reichsmark/Dollar spot rate obtained

from The Commercial and Financial Chronicle (1925) for a period spanning the

German hyperinflation from 24th December 1921 to 11th August 1923. The size

of this novel dataset is larger from those used by previous studies that employ

weekly or monthly data and hence its examination can be more informative

regarding the statistical properties of the spot rate.

3.1 Unit Root Test Results

We investigate whether the spot rate displayed episodes of explosive behavior

by running a unit root test recently developed by Phillips et al. (2012), the

generalized sup ADF test (GSADF ), on the daily spot rate. The appealing

feature of the GSADF is that it has good power properties and is consistent

with multiple episodes of explosive behavior. We also employ an associated date-

stamping strategy which is based on a sequence of Backward sup ADF statistics

(BSADF ). Appendix D provides the reader with the definitions of the unit root

test statistics and a short summary of the date-stamping strategy.13

Figure 1 shows the sequence of BSADF test statistics for the 494 observa-

tions of daily data. The results indicate that the spot rate did in fact exhibit

explosive behavior since the estimated value for the GSADF test statistic (the

sup of the BSADF sequence) is 4.248 which is substantially larger than the

95% critical value of 2.340. The behavior of the series, however, is not stable

throughout the sample period. By comparing the BSADF sequence with the

corresponding 95% critical values, we observe two long periods of exuberance,

one between July 1922 and February 1923,14 and another one between June

13A detailed description is out of the scope of this paper and can be found in Phillips et al.

(2011) and Phillips et al. (2012).
14July 1922 is also the time when the forward premium went to a discount rather than a

premium for the first time since 1921 in the weekly data of Einzig (1937). This is prior to
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1923 and the end of the sample.15
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Figure 1: The Phillips et al. (2012) test for a unit root in the daily spot RM/$.

The figure displays the sequence of BSADF statistics (red line). The blue line

shows upper critical values obtained from 2,000 Monte Carlo simulations.

The caveat of the above empirical analysis in testing for rational bubbles is

that the spot (and forward) rates do contain both the fundamentals and the

rational bubble terms, were the latter present in the process. In the absence of

data for the fundamentals, any evidence of exuberance in the spot rate would

be ambiguous about its cause and, hence, inconclusive regarding the occurrence

of bubble episodes. This is especially true in the case of a hyperinflation period,

the date at which agents are assumed in the extant literature to began anticipating monetary

reform.
15The time interval in between those two periods, i.e., February-June 1923 coincides with

an attempt from the Reichsbank to stabilize the exchange, see Graham (1930, p.86) “The

intervention of the Reichsbank did, in fact, not only keep the mark from falling farther at this

time but, within a fortnight, had multiplied its exchange value two and a half times...[ ] For

two months and a half the bank kept up the unequal struggle and maintained stability in the

exchange value.”
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where explosive fundamentals should not be ruled out a priori.16 The periods

identified as explosive in the spot rate therefore represent a necessary but not

a sufficient condition for the presence of rational bubbles. Consequently, the

number of “bubble” episodes identified by unit root tests is expected to be larger

than or equal to the number of “bubble” episodes identified by our method.

Unfortunately, due to the fact that the forward rate is not available at the

daily frequency our method cannot be applied on the dataset used for unit root

testing. Instead we employ 86 weekly spot and forward exchange rates for the

RM/$ taken from Einzig (1937) for same time period.17

3.2 Fama and Spot-Forward Regression Results

We use a rolling window of 36 observations to estimate the Fama and spot-

forward regressions.18 Figures 2 and 3 display the time evolution of the Newey-

West t-statistics corresponding to the null hypotheses of no bubbles together

with their corresponding right-tail critical values obtained from the Bonferroni

procedure.

The Fama and spot-forward regression t-statistics exhibit a similar pattern.

The Fama results suggest that the RM/$ exhibited rational exuberance between

September and November 1922 while the spot-forward results identify such pe-

riod slightly earlier. Similarly to the unit root test results, the t-statistics in-

16This would be consistent with the fact that there were periods of time where fundamentals

exhibited explosive behavior but speculative bubbles were absent. This point is made by

Bresciani-Turroni (1937, p.90) in his comprehensive review of the depreciation of the mark

between 1919 and 1923. “This depreciation, however, could not go beyond certain limits if

the quantity of marks had not been increased.”
17The convention to change to a four week horizon for the forward rate occurred on the

24th December 1921, hence the start of our sample.
18Prior to estimating rolling regressions, we have run a unit root test on the Fama and

Future Spot-Forward regression residual series. The null hypothesis of a unit root is rejected

for both series at the 5% significance level. Note also that adopting a recursive rather than a

rolling regression framework yields qualitatively similar results.
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Figure 2: Rolling RM/$ Fama regressions. The figure displays the sequence

of Newey-West t-statistics (blue line) corresponding to the null hypothesis that

the slope coefficient in regression (5) is unity (no bubble) based on subsamples

of 36 weeks. The red line represents upper critical values obtained using the

Bonferroni method described in the text.
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Figure 3: Rolling RM/$ spot-forward regressions. The figure displays the se-

quence of Newey-West t-statistics (blue line) corresponding to the null hypoth-

esis that the slope coefficient in regression (7) is unity (no bubble) based on

subsamples of 36 weeks. The red line represents upper critical values obtained

using the Bonferroni method described in the text.
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crease again towards the end of the sample period but fail to exceed the critical

value sequence by a small margin. These two time periods have been previously

identified as consistent with strong speculative movements of the currency and

deviations from fundamentals in historical reviews of the hyperinflation in Ger-

many. Bresciani-Turroni (1937, p.102) mentions them as examples of episodes

of speculation due to the quick rise and subsequent fall of the exchange rate,19

while Graham (1930) singles out the first period as representative of the ‘flight

from the mark’.20 Further historical evidence of the misalignment of the cur-

rency is provided by Graham (1930, p.119). The period previously identified as

containing a rational bubble (around November 1922) coincides with the peak

deviation of the mark from its purchasing power parity for the whole sample.

This divergence between the internal value of the RM and its exchange value

was also the largest of all European countries at the time.

4 Conclusions

The fact that a rational speculative bubble, which is part of the asset price, is

also present in the forward rate has implications for EMH tests. We propose

a method of bubble detection in the foreign exchange market that is based on

the value of the slope coefficient of the Fama and spot-forward regressions. The

method is valid for a variety of different data generating processes for funda-

mentals, including explosive behavior, and provides a date-stamping strategy.

19Bresciani-Turroni (1937, p.102) “For some time it was foreign speculation which provoked

the great fluctuations of the exchanges...[ ] By August 1922 the dollar rate had risen beyond

1,900 marks; but a violent reaction set in and the dollar fell to little more than 1,200 marks.

On November 1st 1922, it was quoted at 4,465 marks; November 7th, 8,068; two days later,

6,711; November 21st, 6,791; and on November 28th, 8,480...[ ] Towards the middle of August

1923 the dollar rate rose giddily to 1, 2, 3, and 5 million marks; later falling suddenly to 3

millions.”
20Graham (1930, p.50) “The greatest effect exerted by speculators in exchange is ordinarily

supposed to have occurred after the middle of 1922...”
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We examine the Reichsmark/Dollar exchange rate from the end of 1921 until

mid 1923, where the probability of monetary reform is thought to be negligible,

and identify the period associated with the presence of rational bubbles.
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Appendix A. Spot-forward regression

An alternative EMH test is to regress the spot rate on the forward rate, both

at time t

st = α+ β3,nft,n + ut,

under RE and absence of peso problems in the fundamental process xt the

estimate of the slope of the forward rate is

β̂3,n =

T−n∑
t=1

x2t + (1 + r)n
T−n∑
t=1

B2
t

T−n∑
t=1

x2t + (1 + r)2n
T−n∑
t=1

B2
t +

T−n∑
t=1

p2t,n

.

This suggests a coefficient lower than unity (β̂3,n < 1) even under risk neutrality.

Another feature of this coefficient is that given that r > 0, β3,n < β3,n−i for all

i ≥ 0. However, under risk aversion, the variance of the risk premium would also

bring the coefficient of β3,n below unity in small samples even in the absence of

bubbles, and therefore, this test is not as conclusive as the ones employing the

future spot rate outcome (st+n) or the Fama regression framework.

Appendix B. Explosive Fundamentals

Let us consider the case that the fundamentals follow an explosive process,

such that xt = (1 + k)xt−1 + θt, with k > 0. In this case, st+n = xt+n + εt+n =

(1+ k)nxt +
∑n

i=1 θt+i, while the forward rate remains ft,n = Et(st+n)+ pt,n =

Etxt+n + pt,n = (1+ k)nxt + pt,n. The slope of the EMH regression in this case

will be the following,

st+n = α+ β4,nft,n + ut.

β̂4,n =

(1 + k)2n
T−n∑
t=1

x2t

(1 + k)2n
T−n∑
t=1

x2t +
T−n∑
t=1

p2t,n

.

Assuming RE, absence of peso problems in the fundamentals, and risk neu-

trality, the value of β̂4,n will remain at 1, while small sample estimates could
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yield an estimate below unity under risk aversion. The regression in levels of

contemporaneous spot and forward rate would not yield either a value above

unity in the absence of rational bubbles,

st = α+ β5,nft,n + ut.

β̂5,n =

(1 + k)n
T−n∑
t=1

x2t

(1 + k)2n
T−n∑
t=1

x2t +
T−n∑
t=1

p2t,n

< 1

Consequently the sample estimate will be lower than unity even assuming risk

neutrality. The main point is that explosive fundamentals would not bring the

coefficient above unity in any of the two regressions in levels, contemporaneous

or lead spot rate.

Likewise, within the Fama regression framework explosive fundamentals do

not imply a value of β̂1,n above zero. In this case the value of the slope coefficient

in the Fama regression (5) is

β̂6,n =

−
T−n∑
t=1

p2t,n

T−n∑
t=1

p2t,n + [(1 + k)n − 1]2
T−n∑
t=1

x2t

.

Appendix C. Simulation Exercise for Regression Anal-

ysis

For the simulation exercise, we let the fundamental process xt follow a drift-

less random walk, xt = xt−1 + θt with θt ∼ N(0, 100). The parameters of the

bubbles process (4) π and r are set equal to 0.65 and 0.005, respectively, and

we let the error term ϵt follow a normal distribution with mean 0 and variance

0.25. By using a random number generator, we simulate a single realization of

90 observations for the spot and forward rate series with a bubble occurring

around the middle of the sample period, from t = 51 to t = 68. This sample

size is equal to the weekly dataset used in the empirical analysis.
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Figure 4: Rolling Fama regressions on simulated data. The figure displays

the sequence of Newey-West t-statistics (blue line) corresponding to the null

hypothesis that the slope coefficient in regression (5) is unity (no bubble) based

on subsamples of 36 weeks. The red line represents upper critical values obtained

using the Bonferroni method described in the text and the shaded area shows

the bubble period.
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Figure 5: Rolling spot-forward regressions on simulated data. The figure dis-

plays the sequence of Newey-West t-statistics (blue line) corresponding to the

null hypothesis that the slope coefficient in regression (7) is unity (no bubble)

based on subsamples of 36 weeks. The red line represents upper critical values

obtained using the Bonferroni method described in the text and the shaded area

shows the bubble period.
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Figures 4 and 5 display t-statistics corresponding to the null hypotheses that

the slope coefficients in the Fama and spot-forward regressions are equal to one

(the null hypotheses of no bubble). These test statistics are computed by using a

rolling window of 36 observations. The red lines in the figures depict 90% critical

value sequences, while, the shaded area specifies the bubble period. We observe

that, in accordance with the theoretical analysis, once the bubble starts the

estimated test statistics gradually increase and eventually exceed their critical

values rejecting the null hypothesis of no-bubble. While, when the bubble bursts

the statistics fall below the critical bound almost instantaneously.

Appendix D. Testing for Explosive Behavior

Consider the following Augmented Dickey-Fuller (ADF ) regression equation

∆yt = ar1,r2 + βr1,r2yt−1 +
k∑
i

ψi
r1,r2∆yt−i + ϵt, (10)

where ϵt
iid∼ N(0, σ2

r1,r2), and r1 and r2 denote fractions of the total sample size

that specify the start and the end of the (sub)sample period. We are interested

in testing the null hypothesis of a unit root, H0 : β = 0, against the alternative

of explosive behavior in yt, H1 : β > 0. Let ADF r2
r1 denote the test statistic

corresponding to this null hypothesis. The standard ADF statistic corresponds

to r1 = 0 and r2 = 1 and is denoted by ADF 1
0 . Although widely employed, the

standard ADF test has extremely low power in detecting periodically collapsing

bubbles (see Evans, 1991).

Phillips et al. (2011) propose a recursive unit root test which is based on

the estimation of the ADF regression on a forward expanding sample. The sup

ADF (SADF ) test is defined by

SADF (r0) = sup
r2∈[r0,1]

ADF r2
0 ,

where r0 is the minimum window size, and performs well when there is a single

bubble episode.
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Phillips et al. (2012) extend their previous work to derive a unit root test,

the Generalized SADF (GSADF ), that is more powerful than the SADF and

is consistent with multiple bubbles. The test and the associated date-stamping

strategy are based on a Backward sup ADF (BSADF ) statistic given by

BSADFr2(r0) = sup
r1∈[0,r2−r0]

ADF r2
r1 .

The Generalized SADF statistic is computed as the sup of the BSADF

GSADF (r0) = sup
r2∈[r0,1]

BADFr2(r0).

Note that the GSADF , contrary to the SADF , allows both the start and end

dates to change for the computation of the test statistic.

The procedure of Phillips et al. (2012) consists, first, of testing for a unit

root by comparing the GSADF (r0) to the 1 − α critical value, where α is the

nominal significance level. If the null hypothesis is rejected then periods of

explosive behavior can be identified when the BSADF statistic is greater from

the finite-sample critical value of the SADF . Because the distributions of both

the SADF (r0) and GSADF (r0) are non-standard critical values have to be

obtained through Monte Carlo simulations.
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