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Abstract This paper studies the efficiency of an econometric model where the 

volatility is modeled by a GARCH(1,1) process, and the innovations follow the 

Pearson type-IV distribution. The performance of the model is examined by in sample 

and out of sample testing, and the accuracy is explored by a variety of Value-at-Risk 

methods, the success/failure ratio, the Kupiec-LR test, the independence and 

conditional coverage tests of Christoffersen, the expected shortfall measures, and the 

dynamic quantile test of Engle and Manganelli. Overall, the proposed model is a valid 

and accurate model performing better than the skewed Student-t distribution, 

providing the financial analyst with a good candidate as an alternative distributional 

scheme. 
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1 Introduction 

In the last decades a variety of financial crises took place such as the worldwide 

market collapse in 1987, the Mexican crisis in 1995, the Asian and Russian financial 

crises in 1997-1998, the Orange County default, the Barings Bank, the dot.com 

bubble and Long Term Capital Management bankruptcy, and the financial crisis of 

2007-2009 which lead several banks to bankruptcy, with Lehman Brothers being the 

most noticeable case. Such financial uncertainty has increased the likelihood of 

financial institutions to suffer substantial losses as a result of their exposure to 

unpredictable market changes, and financial regulators as well as the supervisory 

committee of banks have favored quantitative risk techniques that can be used for the 

evaluation of the potential loss. 

Basle I Agreement, introduced in late 1980’s, was the first main vehicle in 

setting up the regulatory framework as a consequence of the aforementioned financial 

disasters that took place. The main point was the risk classification on assets, forcing 

the banks to provide sufficient capital adequacy against these assets, based on their 

respective risks. However, since in this framework banks were given an incentive to 

transfer risky assets of their balance sheets, and the fact that it was possible for banks 

to treat assets that were insured as government securities with zero risk, it turned out 

that this attempt had adverse effects, due to the fact that Basle I put a low risk weight 

on loans by banks to financial institutions. Attempting to remedy some of these 

problems created since the implementation of Basel I Agreement, Basel II was 

introduced in the 1990’s and put in full implementation in 2007. A central feature of 

the modified Basel II Accord was to allow banks to develop and use their own 



internal risk management models, under the condition that these models were “back 

tested” and “stress tested” under extreme circumstances. 

Value-at-Risk (VaR), defined as a certain amount lost on a portfolio of 

financial assets with a given probability over a fixed number of days, has become a 

standard tool used by financial analysts to measure market risk, because of its 

simplicity to quantify market risk by a single number. Since it has a probabilistic 

point of view, several approaches in estimating the profit and loss distribution 

function of portfolio returns have been developed in the last decades, and a substantial 

literature of empirical applications have emerged, providing an overall support of 

VaR as an appropriate measure of risk. Initially there was a focus on the left tail of the 

distribution which corresponds to negative returns, indicating the computation of VaR 

for a long trading position portfolio, but more recent approaches deal with modeling 

VaR for both the long and short trading position. 

A stylized fact in the literature is that stock returns for mature and emerging 

stock markets behave as martingale processes with leptokurtic distributions (Fama, 

1965; Mandelbrot, 1963), and conditionally heteroskedastic errors (Fielitz, 1971; 

Mandelbrot, 1967). According to De Grauwe (2009), the Basle Accords have failed to 

provide stability to the banking sector because the risks linked with universal banks 

are tail risks associated with bubbles and crises. From the probabilistic point of view, 

the precise prediction of the tail probability of an asset’s return is an important issue 

in VaR, because the extreme movements in the tail provide critical information on the 

data generation stochastic process. Although there is a variety of empirical models to 

account for the volatility clustering and conditional heteroskedasticity like, GARCH 

(Bollerslev, 1986), IGARCH (Engle & Bollerslev, 1986), EGARCH (Nelson, 1991), 

TARCH (Glosten et al., 1993), APARCH (Ding et al., 1993), FIGARCH (Baillie et 



al., 1996), FIGARCHC (Chung, 1999), FIEGARCH (Bollerslev & Mikkelsen, 1996), 

FIAPARCH (Tse, 1998), FIAPARCHC (Chung, 1999), HYGARCH (Davidson, 

2004), there are few options for the financial analyst regarding the probability density 

function (pdf) schemes that can be used. These include, the standard normal 

distribution (Engle, 1982), which does not account for fat-tails and it is symmetric, the 

Student-t distribution (Bollerslev, 1987), which is fat-tailed but symmetric, and the 

Generalized Error Distribution (GED), which is more flexible than the Student-t 

including both fat and thick tails, introduced by Subbotin (1923) and applied by 

Nelson (1991). However, taking in account that in the VaR framework both the long 

and short positions should be considered, Giot & Laurent (2003) have shown that 

models which rely on symmetric density distribution for the error term underperform, 

due to the fact that the pdf of asset returns is non-symmetric, and the use of the 

skewed Student-t distribution, in the sense of Fernandez & Steel (1998) has been 

implemented (Lambert & Laurent, 2000).  

The aim of this paper is to reconsider the Value-at-Risk where the volatility 

clustering and returns are modelled via a typical GARCH(1,1) model, and the 

innovations process follows the Pearson type-IV distribution. The model and the 

distribution are fitted to the data via maximization of the logarithm of the maximum 

likelihood estimator (mle). As a case study we consider the last 5000 returns of the 

Dow Jones Industrial Average (DJIA) up to 31-December-2010, including the recent 

2007-2009 financial crisis. We examine the in sample and out of sample efficiency of 

the model for both the long and short trading position, and VaR backtesting is 

performed by the success-failure ratio, the Kupiec Likelihood-ratio (LR) test, the 

Christoffersen independence and conditional coverage test, the expected shortfall with 

related measures, and the dynamic quantile test of Engle and Manganelli. The results, 



compared with the skewed Student-t distribution, in the sense of Fernandez & Steel 

(1998), indicate that the Pearson type-IV distribution improves the value of the mle 

and gives accurate VaR results. The remainder of the paper is organized as follows. 

Section 2 reviews the Pearson type-IV distribution, and discusses several 

computational issues. In Section 3 we present the financial markets data used and the 

econometric methodology followed. Section 4 reports on the VaR analysis, Section 5 

provide the in sample and out of sample procedure and VaR results and Section 6 

discusses the concluding remarks. 

     

2 The Pearson type-IV distribution and computational issues 

The Pearson system of distributions is a generalization of the differential 

equation, 
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leading to the Gaussian distribution which fits the observed mean (first cumulant) and 

the variance (second cumulant), to the differential equation, 
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Such an attempt indicated a way to construct probability distributions in which the 

skewness (standardized third cumulant) and kurtosis (standardized fourth cumulant) 

could be adjusted equally freely, in order to fit theoretical models to datasets that 

exhibited skewness. In a series of papers Pearson (1895, 1901, 1909, 1916) classified 

seven types of distributions, where depending on the values of the coefficients and the 



discriminant, acb 42  , the Pearson system provides most of the known distributions 

like, the Gaussian distribution (Pearson type-0), the Beta (Pearson type-I), the Gamma 

distribution (Pearson type-III), the Beta prime distribution (Pearson type-VI), and the 

Student-t distribution (Pearson type-VII), while some extra classes IX-XII are also 

discussed (Pearson, 1916). In the case where the discriminant is negative, after 

rearrangement of the terms in equation (3) we conclude on the Pearson type-IV 

distribution in its recent form in the literature (Nagahara, 1999) 
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In equation (4) the parameters are described as follows; 0a  is the scale 

parameter,   is the location parameter, 2/1m  controls the kurtosis,   the 

asymmetry of the distribution, and ),,( mak  is the normalization constant. The 

distribution is negatively skewed for 0  and positively skewed for 0  while for 

0  reduces to the Student’s t-distribution (Pearson type-VII) with m  degrees of 

freedom. Using the method of moments, the moments of the distribution can be 

calculated without the knowledge of the normalization constant ),,( mak  and fitting 

to the Pearson type-IV distribution can be obtained by computing the first four 

moments of the data. The mean and the variance of the distribution which are of 

interest are given by, 
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The method of moments has been applied in financial time series by Bhattacharyya et 

al. (2008), Brännäs & Nordman (2003), Premaratne & Bera (2005), and a review is 



provided by Magdalinos & Mitsopoulos (2007). Since the variable domain of the 

Pearson type-IV distribution is ),(  , Chen (2008) proposed a lognormal sum 

approximation using a variant of the Pearson distribution to account for the ),0(   

domain. Ashton & Tippett (2006), derived the Pearson type-IV distribution from a 

stochastic differential equation with standard Markov properties, and they commented 

on the distributional properties on selected time series. Grigoletto & Lisi (2009, 

2011), incorporated constant and dynamic conditional skewness and kurtosis into a 

GARCH-type structure with the Pearson type-IV distribution, and they performed in 

and out of sample VaR with the Kupiec and Christoffersen tests.” 

Due to the mathematical difficulty, computational issues, and the fact that the 

information regarding this distribution is scattered in the literature, the system has not 

yet attracted attention in the econometric literature, since to keep the ARCH tradition 

it is important to express the density in terms of the mean and of the variance, in order 

to acquire a distribution with zero mean and unit variance, as well as, a possible 

closed form solution for the cumulative distribution function (cdf). 

The normalization constant according to Nagahara (1999, 2004, 2007) is given 

by,  
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where a complex Gamma function )(  is introduced. Nagahara (1999) suggested that 

the square of the absolute value of the ratio of the Gamma functions can be calculated 

as, 
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however, Heinrich (2004) argued that equation (8) is in practice too computational 

time-intensive to be used for large 2/v , even when only moderate precision is 

required, and noticed that, 
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at the cost of using a complex Gauss hypergeometric function (Ghf) );;,(12 zcbaF , 

available in only a couple of industry software, where the specific calculation for 

several reasons is very slow. The Ghf is defined as, 
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where )(/)()( aaka k   is the Pochhammer symbol which, in contrast to the 

conventions used in combinatorics (Olver, 1999), in the theory of special functions 

and in particular the hypergeometric function )()( n

n xx   representing not the falling 

factorial but the rising factorial. The Ghf converges absolutely inside the unit circle 

1z , while for 1z  as in equation (9), converges if 0)Re(  bac  which holds 

since 0)Re( m  by definition. 

 The cdf needed for the calculation of the constants at the confidence intervals, 

was recently calculated by Heinrich (2004), 


























 









 





a

x
i

mimF
a

x
i

m

a
xpxP






1

2
;2;2/,1

12
)()( 12              (11) 

where )(xp  is the pdf given in equation (4), and a computational cost again of a 

complex Ghf. Although the cdf appears to be complex due to the complex entries in 

equation (11), the result is real since there is a small imaginary part of the order 

)10( 16O , due to the series representation and calculation of the Ghf, which is usually 



set to zero, or taking only the real part in equation (11). As mentioned formerly the 

Ghf converges absolutely inside the unit circle 1z , where if  
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The corresponding hypergeometric is absolutely convergent if 3ax   . Since 

there is a branch cut associated with the singularity at 1z , which is chosen by 

convention to lie along the real axis with 1)Re( z , in the case of 3ax    there 

is an interference with the branch cut and the simplest way is to apply an identity 

transformation, ),,,|(1),,,|( vmaxPvmaxP   . For the calculation of the 

constants at the confidence intervals for the long position the equation (11) is 

sufficient. For the case where 3|| ax  , which corresponds to the calculation of 

the constants at the confidence intervals for the short position, one can transform 

zz /1  and apply a linear transformation (Abramowitz and Stegun, 1974), 
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therefore, equation (13) becomes (Heinrich, 2004) 
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where, as formerly stated, the result is real with a small imaginary part of the order 

)10( 16O  



 

3 Econometric modeling 

 

3.1. The data 

If the value of an asset has been recorded for a sufficient time, a common way 

to analyze the time evolution of the returns is successive differences of the natural 

logarithm of price tP , 100)/ln( 1  ttt PPr . As a case study we consider the last 5000 

returns of the Dow Jones Industrial Average (DJIA) up to 31-December-2010. 

 

3.2. The model 

We consider a univariate time series GARCH(1,1) model where the 

innovations follow a Pearson type-IV distribution,  
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Replacing the tail coefficient of the Pearson type-IV equations to a Student-like 

version by, 2/)1(  mm  for algorithmic and fast convergence issues of the Gamma 

functions, using equations (5) and (6) the log-likelihood for the proposed model is as 

follows, 


















N

t

tttPIV zvz
m

CNL
1

122 )ˆˆ(tan))ˆˆ(1ln(
2

1
)ln(

2

1
ln              (17) 

where, 

 
2/)1((

2/2/)1(
ln

2

1
)ln(

2

1

2
lnˆln

2

1

2

1
ln





















 


m

ivmmm
C              (18) 

1
ˆ




m

v
                     (19) 


















2

2

)1(
1

2

1
ˆ

m

v

m
 .                  (20) 

The squared ratio of the complex Gamma function in equation (16) was calculated by 

transcribing the C++ source code (Heinrich, 2004) to Matalb®. Within an error of the 

order )10( 10O , instead of using equations (11) and (14) with the cost of the complex 

Ghf, the constants at the confidence intervals can be also computed, to speed up 

computational time, using an adaptive quadrature (Shampine, 2008) based on a 

Gauss-Kronrod pair (15
th

 and 7
th

 order formulas), via numerical integration of the 

normalized pdf, 
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The algorithmic recurrence in equation (16) uses the sample mean of squared 

residuals to start recursion, and for the numerical optimization, the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) method for the inverse Hessian update is used. The 

optimization results for the in sample case, the constant in mean  , the constant in 

variance  , the ARCH term  , the GARCH term  , the persistence of the model 

(   ), the tail coefficient m , the asymmetry coefficient  , the associated t-

statistics in the parentheses1, and the value of the mle,  are shown in Table 1, for the 

Pearson type-IV and the skewed Student-t distributions. The Pearson type-IV 

distribution appears to describe better the assets return distribution leading to an 

improved value of the mle. 

 

4. Value-at-Risk models 

                                                             
1 The t-statistics values for both distributions indicate the standard error, calculated by computing the 

Hessian of the Lagrangian for the unconstrained optimization at the optimal vector solution of the 

coefficients. It is in general larger than the robust standard error however, the impact and the 

proportions of the fitted parameters is retained. 



Having estimated the unknown parameters of the model, the VaR for the a -percentile 

of the assumed distribution can be calculated straightforward using the equation  

 )()( 1 aFaVaR   (Tang & Shieh, 2006) which under the Pearson type-IV 

distribution for the long and short position is, 
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whereat (.)1F , the inverse of the cumulative distribution function at the specific 

confidence level is understood. Each time an observation exceeds the VaR border it is 

called a VaR violation, or VaR breech, or VaR break. Verifying the accuracy of risk 

models used in setting the market risk capital requirements demands backtesting 

(Diamantis et al., 2011; Drakos et al. 2010; McMillan & Kambouroudis, 2009), and 

over the last decade a variety of tests have been proposed that can be used to 

investigate the fundamental properties of a proposed VaR model. The accuracy of 

these VaR estimates is of concern to both financial institutions and their regulators. 

As noted by Diebold & Lopez (1996), it is unlikely that forecasts from a model will 

exhibit all the properties of accurate forecasts. Thus, evaluating VaR estimates solely 

upon whether a specified property is present may yield only limited information 

regarding their accuracy (Huang & Lin, 2004). In this work we consider five accuracy 

measures; the success-failure ratio, the Kupiec LR-test, the Christoffersen 

independence and conditional coverage tests, the expected shortfall with related 

measures, and the dynamic quantile test of Engle and Manganelli. 

 

4.1. Success – Failure ratio  

A typical way to examine a VaR model is to count the number of VaR violations 

when portfolio losses exceed the VaR estimates. An accurate VaR approach produces 



a number of VaR breaks as close as possible to the number of VaR breaks specified 

by the confidence level. If the number of violations is more than the selected 

confidence level would indicate then the model underestimates the risk. On the other 

hand, if the number of violations is less, then the model overestimates the risk. The 

test is conducted as Tx / , where T  is the total number of observations, and x  is the 

number of violations for the specific confidence level.  

 

4.2. Kupiec LR test 

However, it is rarely the case that the exact amount suggested by the confidence level 

is observed therefore, it comes down to whether the number of violations is 

reasonable or not before a model is accepted or rejected. The most widely known test 

based on failure rates is the Proportion of Failures (POF) by Kupiec (1995). 

Measuring whether the number of violations is consistent with the confidence level, 

under null hypothesis that the model is correct the number of violations follows the 

binomial distribution. The Kupiec test (unconditional coverage) is best conducted as a 

likelihood-ratio (LR) test where the test statistics takes the form, 
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where, T  is the total number of observations, x  is the number of violations, and p  is 

the specified confidence level. Under the null hypothesis that the model is correct, 

POFLR  is asymptotically 2  distributed with one degree of freedom. If the value of 

the POFLR -statistic exceeds the critical value of the 2  distribution, the null 

hypothesis is rejected and the model is considered to be inaccurate. Therefore, the risk 



model is rejected if it generates too many or too few violations; however, based on 

that assumption a model that generates dependent exceptions can be also accepted as 

accurate. 

 

4.3. Christoffersen independence, and conditional coverage tests 

In order to check whether the exceptions are spread evenly over time or they form 

clustering, the Christoffersen (1998) interval forecast test (conditional coverage) is 

used. This Markov test examines whether or not the likelihood of a VaR violation 

depends on whether or not a VaR violation occurred on the previous day. If the VaR 

measure accurately reflects the underlying risk then the chance of violating today’s 

VaR should be independent of whether or not yesterday’s VaR was violated. 

Assigning an indicator that takes the value 1 if VaR is exceeded and 0 otherwise, 

occurs  violationno if

occurs  violationif
    

0

1





tI  

and defining ijn  the number of days where the condition j  occurred assuming that 

condition i  occurred the previous day, the results can be displayed in a contingency 

22  table. Letting i  represent a probability of observing a violation conditional on 

state i  on the previous day, )/( 0100010 nnn  , )/( 1110111 nnn  , and 

)/()( 111001001101 nnnnnn  , the violation independence under the null 

hypothesis should state that 10   . The relevant test statistics for independence of 

violations is a likelihood ratio, 
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and is asymptotically 2  distributed with one degree of freedom. In the case where 

011 n , indicating no violation clustering, either due to few observations or rather 

high confidence levels, the test is conducted as (Christoffersen, 2004), 

0100

00 )1(
nn

indLR                     (26) 

which discards as a result the NaN’s (not a number) that appear in several works in 

the literature. 

Joining the two criteria, the Kupiec test and the Christoffersen independence test, the 

Christoffersen conditional coverage (CC) is achieved. The test statistics for 

conditional coverage is asymptotically 2  distributed with two degrees of freedom, 

)2(~ 2indPOFCC LRLRLR                   (27) 

 

4.4. Expected shortfall and tail measures 

In the sense of Artzner, Delbaen, Eber, and Heath (1997, 1999), VaR is not 

considered as a coherent measure of risk since, in the properties a coherent measure 

functional must satisfy on an appropriate probabilistic space, the sub-additivity 

property does not hold for all cases. Specific portfolios can be constructed where the 

risk of a portfolio with two assets can be greater than the sum of the individual risks 

therefore, violating sub-additivity and in general the diversification principle. 

Expected shortfall is a coherent measure of risk and it is defined as the expected value 

of the losses conditional on the loss being larger than the VaR. One expected shortfall 

measure associated with a confidence level p1  denoted as p , is the Tail 

Conditional Expectation (TCE) of a loss given that the loss is larger than p , that is: 

)|( pttp YYE                      (28) 



Hendricks (1996) indicates that two measures can be constructed, the ESF1 which is 

the expected value of loss exceeding the VaR level, and ESF2 which is the expected 

value of loss exceeding the VaR level, divided by the associated VaR values. 

 

4.5. Dynamic quantile test of Engle-Manganelli 

Engle & Manganelli (1999; 2004) suggest using a linear regression model linking 

current violations to past violations so as to test the conditional efficiency hypothesis. 

Let aaIaHit t  )()(  be the demeaned process on a  associated to )(aIt : 
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Considering the following regression model, 
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where t  is an i.i.d. process and where (.)g  is a function of past violations and of 

variables ktz  , from the available information set 1t . Whatever the chosen 

specification, the null hypothesis test of conditional efficiency corresponds to testing 

the joint nullity of coefficients, k , k , and of constant  : 

0:0  kkH  , Kk ,...,1  

Therefore, the current VaR violations are uncorrelated to past violations since 

0 kk   (consequence of the independence hypothesis), whereas the 

unconditional coverage hypothesis is verified when 0 . The Wald statistics, noted 

CCDQ , in association with the test of conditional efficiency hypothesis then verifies, 
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5. In sample and out of sample procedure and VaR results 

We examine the validity and accuracy of the econometric model by performing the 

aforementioned statistical test and the results are compared to the skewed Student-t 

distribution2. As rule of thumb, we consider a result to be better if there is a change at 

the second decimal place. A better result is indicated with bold fonts at the tables, an 

equal result, meaning that the results are equal or there is a change beyond the second 

decimal point, is indicated in italics fonts, and a worst result is indicated in regular 

fonts.  

 

5.1. In sample VaR results 

We use the estimation results to compute the one-step-ahead VaR for the long and 

short trading position for several confidence levels which range from 5% to 0.1%. 

The results are shown in Table (2) which includes the success/failure ratio, the Kupiec 

likelihood ratio and p-value, the Christoffersen independence (unconditional 

coverage) likelihood ratio and p-value, the Christoffersen joint test (conditional 

coverage) likelihood ratio and p-value, the expected shortfall measures ESF1 and 

ESF2, and the statistics and p-value for the dynamic quantile test. 

 

5.2. Out of sample VaR results 

The testing methodology in the previous subsection is equivalent to back-testing the 

model on the estimation sample. In the literature, it is argued that this should be 

favorable to the tested model and out-of-sample forecasts, where the model is 

                                                             
2 The numerical computation for the optimization, the success-failure ratio, the Christoffersen 

independence and conditional coverage tests, and the Expected Shortfall has been performed with 

source code with the Matlab® computing language. The DQ-test by Engle-Manganelli computation has 

been performed with source code in the OxMetrics® programming environment using the native 

routines. The aforementioned tests with the skewed Student-t distribution have been performed with 

OxMetrics® software (Doornik, 2009; Laurent, 2009; Laurent & Peters, 2002). 



estimated on the known returns and the VaR forecast is made for some period 

];1[ htt  , where h is the time horizon of the forecasts. In our implementation the 

testing procedure for the long and short VaR assumes 1h  day, and we use the 

approach described in Giot & Laurent (2003). The first estimation sample is the 

complete sample for which the data is available less the last five years. The predicted 

one-day-ahead VaR (both for long and short positions) is then compared with the 

observed return and both results are recorded for later assessment using the statistical 

tests. At the i -th iteration where i  runs from 2 to 2525   (five years of data), the 

estimation sample is augmented to include one more day and the VaR are forecasted 

and recorded. Whenever i  is a multiple of 50 the model is re-estimated to update the 

Pearson type-IV GARCH parameters. Therefore, the model parameters are updated 

every 50 trading days and a “stability window” of 50 days for the parameters is 

assumed. The procedure is iterated until all days (less the last one) have been included 

in the estimation sample. Corresponding failure rates are then computed by comparing 

the long and short forecasted 1tVaR  with the observed return 1ty  for all days in the 

five years period. Using the aforementioned in sample statistical tests for the out of 

sample VaR the results are shown in Table (3). 

 

6. Discussion and Conclusions 

In this work we have presented the implementation of an econometric model where 

the volatility clustering is modeled by a GARCH(1,1) process and the innovations 

follow a Pearson type-IV distribution. The model was tested in-sample and out-of-

sample and the accuracy was examined by a variety of statistical tests, the 

success/failure ratio, the Kupiec-LR test, the two Christoffersen tests accounting for 



independence and conditional coverage, the ESF1 and ESF2 measures, and the 

Dynamic Quantile test of Engle and Manganelli. The main findings are: 

(I) The Pearson type-IV distribution improves the maximum likelihood estimator in 

all cases we have studied, compared with the skewed Student-t distribution, for 

both the in-sample (Stavroyiannis, 2011) and out-of sample cases. This indicates 

that it approaches better the skewness and leptokurtosis of the pdf of financial 

assets returns and therefore, the underlying associated data generation process. 

Another issue is that, in contrast to the skewed Student-t distribution which is an 

artifact distribution, the Pearson type-IV distribution describes the whole pdf 

using one function resulting from a solid differential equation, capable of 

transforming, according to the conditions, to the most common distributional 

schemes. 

(II) The Pearson type-IV distribution appears to perform better than the skewed 

Student-t at the Kupiec –LR test and the joint test of Christoffersen. However due 

to the small number of out of sample observations, it is difficult to judge the 

unconditional Christoffersen test at high confidence levels, therefore the joint test 

has been left out of the comparison. In the Expected Shortfall measures and the 

DQ-test cases, the proposed model performs very well for the out of sample case 

as shown in Table 3. 

In conclusion, the VaR and statistical tests results indicate that the model is accurate, 

within the general financial risk modeling perspective, and it provides the financial 

analyst with an additional distributional scheme to be used in econometric modeling.  
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Table 1: Pearson-IV GARCH model (Optimization results). 

 Pearson IV Skewed Student 
  0.0499 0.0521    
 (4.489) (4.683) 

  0.0071 0.0071   

 (3.573) (3.563) 

  0.0665 0.0665   

 (8.568) (8.466) 

  0.9279 0.9280   

 (114.2) (113.1) 

m  7.6832 7.4255     

 (9.439) (9.869) 

  0.8819 -0.0620    

 (3.229) (-3.233) 

   0.9944 0.9945 

mle -6577.8 -6580.3   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: In sample results 

 

SHORT POSITION 

Quantile 
Success 

ratio 

LR 

Kupiec 

p-value 

Kupiec 

LR 

independence 

p-value 

independence 

LR 

conditional 

p-value 

conditional 
ESF1 ESF2 

DQ 

statistics 

DQ 

p-value 

0.95000 0.94840 0.26679 0.60549 3.96082 0.04657 4.22762 0.12078 2.0981 1.2708 10.543 0.10357 

0.97500 0.97680 0.68074 0.40933 0.03573 0.85008 0.71647 0.69891 2.5376 1.2120 3.3847 0.75923 

0.99000 0.99240 3.17187 0.07492 0.00000 1.00000 3.17187 0.20476 3.3969 1.1576 8.2979 0.21708 

0.99500 0.99640 2.18370 0.13948 0.00000 1.00000 2.18370 0.33560 3.6705 1.1092 3.0639 0.80078 

0.99750 0.99900 5.84837 0.01559 0.00000 1.00000 5.84837 0.05371 3.2126 1.0859 11.287 0.079914 

0.99900 0.99980 4.78433 0.02872 0.00007 0.99315 4.78440 0.09143 2.9581 1.0531 16.004 0.013731 

LONG POSITION 

Quantile 
Failure 

ratio 

LR 

Kupiec 

p-value 

Kupiec 

LR 

independence 

p-value 

independence 

LR 

conditional 

p-value 

conditional 
ESF1 ESF2 

DQ 

statistics 

DQ 

p-value 

0.05000 0.05140 0.20452 0.65110 1.75092 0.18576 1.95544 0.37617 -2.2340 1.4314 6.6047 0.35895 

0.02500 0.02760 1.34212 0.24666 0.35984 0.54859 1.70197 0.42699 -2.5981 1.3354 6.8908 0.33107 

0.01000 0.01020 0.02007 0.88734 0.00000 1.00000 0.02007 0.99002 -3.0746 1.3441 2.4224 0.87705 

0.00500 0.00600 0.94432 0.33117 0.00000 1.00000 0.94432 0.62365 -3.5755 1.3108 5.3627 0.49820 

0.00250 0.00300 0.47090 0.22716 0.00000 1.00000 1.45854 0.48226 -3.9711 1.2819 17.072 0.00902 

0.00100 0.00120 0.18806 0.66454 0.00000 1.00000 0.18806 0.91026 -5.2067 1.3966 0.20317 0.99984 

 

 

 

 

 

 



Table 3: Out of sample results 

 

SHORT POSITION 

Quantile 
Success 

ratio 

LR 

Kupiec 

p-value 

Kupiec 

LR 

independence 

p-value 

independence 

LR 

conditional 

p-value 

conditional 
ESF1 ESF2 

DQ 

statistics 

DQ 

p-value 

0.95000 0.95079 0.016793 0.89689 0.00000 1.00000 0.01679 0.99164 2.6132 1.3004 7.3720 0.28781 

0.97500 0.97540 0.0081823 0.92792 0.00000 1.00000 0.00818 0.99592 3.1397 1.2301 3.3732 0.76076 

0.99000 0.99048 0.029325 0.86403 0.00000 1.00000 0.02932 0.98544 4.5295 1.1735 7.4767 0.27900 

0.99500 0.99444 0.075438 0.78358 0.00000 1.00000 0.07544 0.96298 4.3124 1.0955 0.27243 0.99962 

0.99750 0.99921 2.0089 0.15638 0.00029 0.98635 2.00916 0.36620 10.508 1.0585 4.6302 0.59203 

0.99900 1.00000 NaN 0.00000 1.00000 0.31731 NaN NaN NaN NaN 3.8e+30 0.00000 

LONG POSITION 

Quantile 
Failure 

ratio 

LR 

Kupiec 

p-value 

Kupiec 

LR 

independence 

p-value 

independence 

LR 

conditional 

p-value 

conditional 
ESF1 ESF2 

DQ 

statistics 

DQ 

p-value 

0.05000 0.064286 4.9850 0.025568 0.0099013 0.92074 4.99488 0.08230 -2.6363 1.4200 14.700 0.022725 

0.02500 0.034921 4.5374 0.033162 0.2286530 0.63252 4.76606 0.09227 -2.8820 1.3206 15.153 0.019097 

0.01000 0.015079 2.8411 0.091882 0.0000000 1.00000 2.84109 0.24158 -3.1611 1.2384 5.1491 0.52484 

0.00500 0.0063492 0.42458 0.51466 0.0000000 1.00000 0.42458 0.80873 -3.5139 1.2558 0.62868 0.99590 

0.00250 0.0015873 0.48403 0.48660 0.0000003 0.99953 0.48403 0.78504 -2.6644 1.5235 0.67846 0.99494 

0.00100 0.00079365 0.057830 0.80996 0.0002925 0.98635 0.05812 0.97136 -3.3488 1.7123 0.071665 0.99999 

 


