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Abstract

Abrupt policy changes are often associated with multiple equilibria.
However, we show that changing policy instantly can be an optimal reac-
tion - even in a continuous environment. We employ a stylized model of
intertemporal optimization with endogenous exit where the optimization
horizon exceeds a possible regime change, and show that for this class of
problems viscosity solutions are typical, and indicate instant changes in
policy.

The most astonishing result is that the optimal policy is to ignore the
danger of a crisis until it is immediate and to then sharply change the
policy by fending o¤ the crisis.
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1 Introduction

Previous literature modelling �nancial crises and speculative attacks highlighted
particularly the aspects of speculators attacking a currency, but not incorpo-
rated the main role of the central bank adequately. In fact, setting the interest
rate in�uences the fundamentals and obviously the costs of speculators. Thus
the behavior of the central bank is not just a passive reaction due to speculative
pressure and is also more than sole signalling, it changes the state of the system.
If the central bank chooses to defend the regime by raising the interest rate, it

accepts that fundamentals degrade and furthermore accepts that the degrading
fundamentals aggravate the future attack and thus worsens its future position.
Hence the behavior of the central bank now is crucial for both the time path of
the economy and for the own future position. On the other side, the speculators
know, that attacking weakens the position of the central bank but also have
to consider the costs if the central bank decides to defend as a reaction on the
attack.
The trade-o¤ for the central bank is that one control in�uences the possi-

bilities to bene�t from the regime and the duration of the regime as well as
the probability to bear the costs of a regime change which occurs if the attack
strength exceeds the reserves of the central bank.
We apply an in�nite horizon intertemporal optimization framework where

the time horizon exceeds the duration of the regime. The time when the central
bank chooses to abandon the peg is determined endogenously. First, we describe
the general framework, where we introduce the objective function and the two
state processes, fundamentals and attack. Second, we o¤er a solution for a
simple case of the model where states are just linearly dependent on the interest
rate. Third, we describe an extended linear model with feedback, mean reversion
and herding e¤ects.

2 Model

There are two actors the central bank and speculators. The central bank max-
imizes utility:

U0 (�;A) =

Z T

0

e��tu (� (t)) dt+ e��T� (� (T )� c) (1)

where instantaneous utility u is derived from the state of the fundamentals
� (t) and discounted by factor �. The overall utility is the sum of the discounted
instantaneous utility up to the terminal time T , which denotes the time when
the central bank is forced to devalue, and the discounted terminal value of the
regime.1 The terminal time is endogenously de�ned by the state process. The
terminal value � is a function of the fundamentals at the terminal time less an
amount c representing the costs of the regime change. For the remainder of
the paper, we assume that the value � of the system after the regime change is
the value of a control and pressure free system converging to the steady state,

1For the given setup we �nd that limT!1 e��T � (� (T )� c) = 0, i.e. if the regime persists
forever, the second term vanishes.
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i.e. as if fundamentals would start to develop at � (T )� c and the central bank
would keep the interest rate on its steady state value �r.
The central bank tries to maximize the objective equation (1) through its

control variable the interest rate r (t) which is always non-negative r (t) � 0. The
optimization problem is subject to the state of the system which is summarized
by the state vector x:

_x =

� _� (t)
_A (t)

�
=

�
f (r (t) ; � (t))

g (r (t) ; � (t) ; A (t))

�
(2)

There are two state variables, the fundamentals � (t) and the strength of
the attack A (t). The �rst state variable � (t) enters the utility directly while
the second A (t) determines the terminal time T = inf ft : A (t) > Dg, i.e. the
�rst time when the strength of the attack exceeds a threshold D.2 The central
bank�s control thus yields two e¤ects: �rstly, it in�uences the fundamentals and
thus its potential to gain utility and secondly, it in�uences the terminal time at
which it is forced to switch the regime.
Let V (�;A) be the value function of this optimization problem, i.e. the total

utility of the central bank given it chooses an optimal control r�

V (�;A) = sup
r:[0;1)![0;1)

fU0 (�;A)g

= U0 (�;A) with
� _� (t)
_A (t)

�
=

�
f (r� (t) ; � (t))

g (r� (t) ; � (t) ; A (t))

�
and

�
� (0)

A (0)

�
=

�
�S
AS

�
:

Intertemporal optimization theorems then imply that V yields the following
Bellman equation (Waelde 2008):

�V (�;A) = sup
r

�
u (�) +

dV (�;A)

dt

�
(3)

Since V is not continuously di¤erentiable at any feasible point, a more gen-
eral interpretation of this partial di¤erential equation is necessary. As we will
show below, the concept of viscosity solutions applies.

The motion of the fundamentals is in�uenced by the interest rate and by its
own level. In fact the motion of fundamentals is often represented by a mean-
reverting process (cf. Cox et al. (1985)), where a higher level of fundamentals
than the natural level �� leads to a move back to its natural level. The same
holds for the interest rate, where a rate lower than the natural level �r leads to
an increase in the fundamentals. If the central bank chooses an interest rate
that is higher than its natural level, fundamentals worsen.

_� = f (r (t) ; � (t)) = �f1 (r (t))� f2 (� (t)) (4)

@f1(:)
@r(t) > 0 is the interest rate elasticity of the fundamentals and@f2(:)@�(t) > 0

is the elasticity of the mean reversion, showing how strong the fundamentals

2Naturally, we restrict the initial state vector to be feasible, i.e. A (0) � D:

3



are forced back to their natural level. This means that there is a stabilizing
mechanism which turns bad fundamentals (below the natural level) to the better
and degrades good fundamentals (higher than the natural level). Obviously,
such a fundamentals process possesses a steady state (�; r) =

�
��; �r
�
if f1 (�r) =

f2
�
��
�
= 0.

The change in the attack strength depends on the costs r (t), the fundamen-
tals � (t) and on strategic complementarities, i.e. a herding e¤ect A (t). We treat
the attack strength as a reduced form equation of the global games mechanism
(Morris and Shin 1998).
The speculators take position against the currency if fundamentals are worse

than their natural level. They refrain from attacking when the interest rate is
higher than its natural level and greater strength in the attack induces more
speculators to participate in the attack, since the probability to succeed rises.

_A = g (r (t) ; � (t) ; A (t)) = �g1 (r (t))� g2 (� (t)) + g3 (A (t)) (5)

Where @g1(:)
@r(t) > 0 is the interest rate elasticity of the attack,

@g2(:)
@�(t) > 0 is the

fundamentals elasticity of the attack and @g3(:)
@A(t) > 0 is the elasticity of herding.

If we assume as above that g1 (�r) = g2
�
��
�
= g3 (0) = 0 then the system

(�; r; A) possesses a steady state at
�
��; �r; 0

�
, i.e. the fundamentals are in the

steady state and there is no speculative pressure.

3 Linear Version

As a �rst illustration, we set the fundamentals elasticities @f2(:)
@�(t) ,

@g2(:)
@�(t) and the

elasticity of herding @g3(:)
@A(t) equal to zero. The interest rate elasticities should be

linear coe¢ cients. Thus we set @f1(:)@r(t) = � and
@g1(:)
@r(t) = 
. With this modi�cation

we get as state vector: �
_�
_A

�
=

�
�� (r (t)� �r)
�
 (r (t)� �r)

�
With �; 
 > 0; and � being the interest rate elasticity of the fundamentals

and 
 being the interest rate elasticity of the attack. In this simple model, the
control of the central bank directly implies a perfect correlation of fundamentals
and attack, i.e. a low (high) interest rate increases (decreases) fundamentals as
well as strengthens (weakens) speculative pressure.
As a �rst step, we "guess" the optimal control r�, then show that the corre-

sponding value function satis�es the Bellman equation, and �nally take a closer
look at the Bellman equation at the border.
The optimal control r� depends on the state, and two cases have to be

analyzed separately: the interior A < D, where the attack is yet emergent, and
the border case A = D, where any further pressure would lead to a breakdown
of the regime.
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1. The interior case A < D

The Bellman equation reads (cf. Waelde (2008), ch. 6; Fleming and Soner
(2006), ch. 1.7):

�V (�;A) = sup
r

�
u (�) +

dV (�;A)

dt

�
(6)

= sup
r

�
u (�) +DV �

�
_�
_A

��
= sup

r
fu (�)� (V��+ VA
) (r � �r)g :

with � as the discount factor. Thus the argument in the supremum is
linear in r and the optimization problem (6) has a border solution r = 0,
if and only if:

V��+ VA
 > 0 (7)

As we show in appendix 6.1.1, this condition holds true.

2. The border case A = D

The value of leaving the regime � (� � c) is strictly lower than staying
within the system V (�;A = D) for all possible values of � (see appendix
6.1.2). Any further increase in A thus would lead to an in�nitely negative
slope of V and therefore must be avoided. The optimization problem thus
is to maximize � subject to dA

dt � 0. Since dA
dr > 0 and d�

dr > 0, i.e. any
control increasing � also increases A, the optimal solution is to not let A
decrease and therefore

r� = �r;
dA

dt
= 0;

d�

dt
= 0 (8)

Summarizing, the optimal control is

r� (�;A) =

�
0 if A < D
�r else

:

We derive the following intuition, starting at an arbitrary point, where the
strength of the attack is less than the reserves A < D. To improve utility (1) the
central bank maximizes the fundamentals. Therefore the central bank sets the
interest rate to zero,3 which implies that the fundamentals increase depending
on their initial value �S , the interest rate elasticity �, the natural interest rate �r
and obviously the elapsed time t. Thus we get as time path of the fundamentals:

� (t) = �S +

Z t

0

��rd� = �S + ��rt (9)

Setting the interest rate to zero also implies that attacking is very cheap, so
as the fundamentals improve also the attack strength grows. Depending also on
the initial value of the attack AS , the respective interest rate elasticity 
, the

3As noted earlier we, require the interest rate to be non-negative. Obviously without this
conditon the optimal interest rate would be minus in�nity.
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natural interest rate �r and the elapsed time t. Which implies as time path for
the attack:

A (t) = AS +

Z t

0


�rd� = AS + 
�rt (10)

The optimal policy of the central bank to set the interest rate to zero is
accompanied by a growing strength of the attack, which means that to keep
the exchange rate peg the central bank has to intervene in the currency market,
i.e. to sell foreign currency, thus depleting reserves. Since a devaluation would
mean a decrease in the argument of the utility function by c, the central bank
starts to defend the peg additionally through raising the interest rate in the
instant before the reserves are exhausted. The time when the central bank
raises interest rates to stop speculation but does not yet devalue is thus denoted
by �T and is called defense time. �T is reached when strength of the attack equals
reserves A

�
�T
�
= D. Inserting (10) gives:

�T =
D �AS

�r

(11)

The defense time is reached earlier the lower reserves D, the higher the
initial attack level AS , the interest rate elasticity of the attack 
 and the natural
interest rate �r are.
When the central bank applies a restrictive monetary policy, both the spec-

ulative pressure and the fundamentals stop growing. Therefore we get the fol-
lowing time paths given the optimal control r�

A (t) =

�
AS + 
�rt if t < �T

D else

� (t) =

�
�S + ��rt if t < �T
�S + ��r �T else

For simplicity we assume exponential utility u (�) = � exp (���) and calcu-
late the value function:4

V = U0 (r
�) =

= �
Z �T

0

exp (��t) exp (�� (�S + ��rt)) dt

�
Z 1

�T

exp (��t) exp
�
��
�
�S + ��r �T

��
dt

= �exp (���)
�+ ���r

�
���r

�
exp

�
� (�+ ���r) �T

�
+ 1

�
We can now show that this value function indeed solves the Bellman equa-

tion (6) of this problem.5 Rearranging and deriving with respect to the state
variables � and A delivers the costate variables V� and VA.

V� = ��V; VA =
1


�r
((�+ ���r)V + exp (���))

4Detailed calculations are shown in the appendix 6.1.1.
5 Inserting in the Bellman equation shows easily that the solution is feasible.
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Inserting into (7) and using the value function gives

V��+ VA
 =
���r

�+ ���r
exp (���)

�
1 + exp

�
� �T (�+ �
�r)

��
> 0

which is obviously positive. We conclude that for the interior case A < D;
the Bellman equation

�V (�;A) = sup
r
fu (�)� (V��+ VA
) (r � �r)g (12)

has an argument which is linear in r (t) with negative slope and thus the
solution to the optimization problem (6) is the minimal r, i.e. r (t) = 0.
To look at the border case A = D we utilize the Hamiltonian notation of

the problem as used in (Fleming and Soner 2006, cf. ch. 2, lemma 8.1) and
de�ne the subsolutions D�V and supersolutions D+V accordingly. A value
function belonging to both D�V and D+V is called a viscosity solution. The
following Corollary helps to keep the notation simple. For in�nite horizon time-
homogeneous optimization problems with discounted utility the value function
takes the form V (t; x) = exp (��t)V (x) where � is the discount factor and x
the state variable (Fleming and Soner 2006, ch. I.7).

Corollary 1 : For in�nite horizon time-homogeneous optimization problems
with discounted utility each feasible value function is continuously di¤erentiable
with respect to the time variable t. Thus @

@tV (t; x) enters each element in D
�V

and D+V and it is su¢ cient to de�ne D�V and D+V without the time di¤er-
ential.

We now de�ne the subsolutions D�V and supersolutions D+V .

D+V (�;A) =8><>:(p; q) 2 R2 : lim sup
(y;a)!(�;A)

a�D

V (y; a)� V (�;A)� p (y � �)� q (a�A)
k(y; a)� (�;A)k � 0

9>=>;
(13)

D�V (�;A) =8<:(p; q) 2 R2 : lim inf
(y;a)!(�;A)

a�D

V (y; a)� V (�;A)� p (y � �)� q (a�A)
k(y; a)� (�;A)k � 0

9=;
(14)

Since V (�;A) is continuously di¤erentiable in all feasible states, we have
D+V (�;A) = D�V (�;A) = (V� (�;A) ; VA (�;A)) which solve the Bellman
equation. In addition to this standard de�nition we also de�ne the sub- and
supersolutions from the outside of the feasible states, i.e. the region of states in
which the regime ends. We will apply this to the Bellman equation to include
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controls which might end the regime.

D+
outV (�;D) =8><>:(p; q) 2 R2 : lim sup

(y;a)!(�;D)
a>D

V (y; a)� V (�;D)� p (y � �)� q (a�D)
k(y; a)� (�;A)k � 0

9>=>;
(15)

D�
outV (�;D) =8<:(p; q) 2 R2 : lim inf

(y;a)!(�;D)
a>D

V (y; a)� V (�;D)� p (y � �)� q (a�D)
k(y; a)� (�;A)k � 0

9=;
(16)

Since the value after the regime change � (� � c) = V (�; a) is strictly smaller
than the value of remaining in the regime V (�;D) ; we have D+

outV (�;D) =�
(p; q) 2 R2 : lim supR2

	
= (1;1) andD�

outV (�;D) =
�
(p; q) 2 R2 : lim inf ;

	
=

(�1;�1) : We know that for all (p; q) 2 D+
outV (�;D) we have �V (�;A) �

supr<�r fu (�)� (p�+ q
) (r � �r)g and for all (p; q) 2 D�
outV (�;D) we have

�V (�;A) � supr<�r fu (�)� (p�+ q
) (r � �r)g : The optimal control and the
border, i.e. A = D, thus must satisfy the following viscosity formalization of
the Bellman equation6

�V (�;A) � u (�)� sup
r<�r

f(pout�+ qout
) (r � �r)g I (r < �r)

� sup
r��r

f(p�+ q
) (r � �r)g I (r � �r)

for (pout; qout) 2 D+
outV (�;D) and (p; q) 2 D+V (�;D)

�V (�;A) � u (�)� sup
r<�r

f(pout�+ qout
) (r � �r)g I (r < �r)

� sup
r��r

f(p�+ q
) (r � �r)g I (r � �r)

for (pout; qout) 2 D+
outV (�;D) and (p; q) 2 D+V (�;D)

The only control r that ful�lls both conditions is r (t) � �r. Any r (t) < �r
would violate both conditions.
Intuitively, any further increase in A leads to an in�nitely negative slope of V

and therefore must be avoided. The optimization problem thus is to maximize
� subject to dA

dt � 0. Since dA
dr > 0 and d�

dr > 0, i.e. any control increasing �
also increases A, the optimal solution is to not let A decrease and therefore

r = �r;
dA

dt
= 0;

d�

dt
= 0: (17)

This solution is a viscosity solution, i.e. the natural extension of the solution
concept for the Bellman equation (6). It is well known that value functions in
general are not continuously di¤erentiable in any feasible state7 and thus for

6Here I (x) is the indicator function with value 1 if x is true and 0 else. By abuse of
notation we assume 1 � 0 = 0:

7 In fact, the value function is di¤erentiable only at regular points.
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these points the classical solutions do not apply. Viscosity solutions do apply
also in many cases, where the value function is not continuously di¤erentiable
but necessarily coincides with the standard solution otherwise. This means,
that we could have restricted our analysis to the approach used for the border
case A = D. However, for reasons of clarity and intuition we �rst, showed the
classical approach and then the viscosity approach.

The viscosity solution implies that optimal policy is to maximize the instan-
taneous utility and to not care about its fragility, i.e. the rising speculative
pressure. The fragility is recognized but not accounted for in the decision about
optimal the interest rate until the immediate danger of a crash emerges. In that
opting out is associated with costs, the decision maker raises the interest rate to
fend o¤ the attack. Thereby it is necessary that costs exist no matter how big
they are. Thus it could also be private costs, which would arise with a break-
down of the regime, that prompt the decision maker to raise interest rates. In
a more elaborate model, there also exists the possibility that the policy maker
abandons the option to defend or that he decides to exit the regime after some
time.

4 Extended Linear Version

Now we consider the case when f2 (:), g2 (:) and g3 (:) are also linear functions.
We will further use the coe¢ cients � and 
 and de�ne @f2(:)

@�(t) = �,
@g2(:)
@�(t) = � and

@g3(:)
@A(t) = ".

8 So the state vector now is:�
_�
_A

�
=

�
�� (r (t)� �r)� �

�
� (t)� ��

�
�
 (r (t)� �r)� �

�
� (t)� ��

�
+ " (A (t))

�
The Bellman equation has the same form as in (6), but with a di¤erent

derivation of the value function with respect to time

�V (�;A) = sup
r

�
u (�) +

dV (�;A)

dt

�
(18)

= sup
r
fu (�)� (V��+ VA
) (r � �r)

� V�� (� (t))� VA (� (� (t))� " (A (t))) g: (19)

Since both interest rate elasticities � and 
 are still linear, the optimal strategy
for the central bank remains a border solution.
The di¤erence to the simple model is that the attack not only increases due

to a low interest rate but also due to herding (") and bad fundamentals (�). This
creates a far richer set of policy options, trade-o¤s and realistic settings. E.g. a
zero interest rate policy not necessarily leads to an attack. It might be possible
that the herding e¤ect and the interest rate e¤ect are outweighed through the
e¤ect of good fundamentals, implying speculators refrain from attacking, _A � 0.
In addition we restrict the set of feasible controls to controls leading only to

non-negative attack strengths, i.e. 0 � A � D.

8Where � and � are the mean-reversion elasticities of the fundamentals and of the attack
and " is the elasticity of herding.
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4.1 Model Dynamics and Optimal Behavior

For a better understanding of the policy options of the central bank we draw
the dynamics of the model in the state space (A; �) of the system for the zero-
interest-rate policy (cf. �gure 1).

Figure 1: Dynamics of the Model

The zero-motion-lines _� = 0 and _A = 0 as well as the directional arrows
are drawn for a zero interest rate policy. In case of A = 0 and A = D the
interest rate, as in the simple model, is set to o¤set a change in the attack, i.e.

r = inf
n
r : _A = 0

o
, leading to convergence to the equilibria � and �. Left to

the zero-motion-line of � the mean-reversion leads to increasing fundamentals
where right to the zero-motion-line we get decreasing fundamentals. Left to the
zero-motion-line of A, fundamentals are relatively bad and thus lead to higher
speculative pressure. The herding e¤ect implies that higher attack levels ceteris
paribus allow higher fundamentals to still increase the attack. Right to the
zero-motion-line of A, fundamentals are high enough to outweigh the herding
e¤ect leading to decreasing speculative pressure.
Three regions with di¤erent policy options emerge. First, with A = 0 the

central bank either sets r = 0, which boosts A and � or sets r = inf
n
r : _A = 0

o
,

preserving the attack free state, with the system converging to �.
Second, with 0 < A < D the central bank could also apply a zero interest

rate policy with fundamentals and speculative pressure growing. In contrast to
the simple case, the alternative is to massively raise the interest rate to o¤set
the attack completely and then subsequently stabilize the system in an attack
free state (i.e. A = 0). We model this policy by setting the interest rate r !1
for t ! 0. If we let r ! 1 all other terms cancel out and � decreases by
�

D, which is the relative slope of � and A.

9 Thus we get a jump in the state

9Putting aside mathematical rigor for a moment, we �nd that:
��
�

A

�
=

_�

_A
=

�� (r (t)� �r)� �
�
� (t)� ��

�
�
 (r (t)� �r)� �

�
� (t)� ��

�
+ " (A (t))

!
r!1

�




The intuition behind this result is that if the interest rate grows beyond bound all other e¤ects
including the feedback e¤ect of A and � become irrelevant and only the ratio of the interest
elasticities remains relevant.
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variables from (�S ;AS) to
�
�S � �


D; 0
�
, i.e. defending the attack entails a loss

in the fundamentals. After the jump the central bank sets the interest rate so
that another attack won�t start, causing convergence to �.
Third, at the upper boundary where A = D, the central bank has the three

following options. It can opt-out, stay at the boundary with speculative pressure
A = D, and also go back as in the previous case with r !1 till A = 0. (1) If the
central bank opts out, it has to bear costs c of the regime change (e.g. damaged
reputation). The opt-out is optimal if fundamentals are su¢ ciently strong, i.e.
� > �c, since convergence to the bad equilibrium �� would cause higher welfare
losses than to immediately opt-out (see 6.2.2).10 (2) The option to preserve the
speculative pressure A = D in order to neither harm fundamentals more than
necessary nor carry the opt-out costs, is comparable but di¤erent from the calm
option in the �rst case. Here, again the interest rate r is set to match _A = 0, but
the high value of A implies strong herding e¤ects which require higher interest
rates to o¤set this additional pressure. Therefore � < �, i.e. the zero attack
equilibrium � is better than the attack equilibrium �. (3) Whether the central
bank sets the interest rate to jump to the pressure free state (A = 0) depends on
the relationship of time preference rate � and herd e¤ect ". If � > ", high current
values of � are preferred over lower values of � in the future, implying that a
jump is not optimal, since it would cause an immediate loss in fundamentals
(for a derivation see 6.2.3).
The derivation of the Bellman equation as direct derivation of the partial

di¤erential equation has to be done to show in which states (�S ; AS) with 0 <
AS < D the zero interest rate policy and accordingly the "jump"-policy would
be optimal.

5 Conclusion

We applied an in�nite horizon intertemporal optimization model with endoge-
nous exit on a simple speculative attack framework. The central bank sets the
interest rate which in�uences both fundamentals and attack strength. Hence
with one variable the central bank enhances fundamentals but also boosts spec-
ulative pressure. The central bank�s role is beyond solely responding to specu-
lative pressure or signalling, thereby incorporating possible changes through a
depreciation.
The model�s degree of abstraction is high to support a broad range of ap-

plications, amongst others debt crises (e.g. Greece), bank runs, investment
projects, renewable resources or dictatorships.
We show that optimal policy is to set controls in a way that allows to ex-

tract maximum bene�ts from the system by ignoring the danger of a crisis and
thriving up crisis pressure until the breakdown is immediate and then to sharply
change the policy by fending it o¤. In doing so a central bank avoids costs as-
sociated with a regime change. Notably regardless, how small these costs are,
defending is optimal. In the more general approach, after a certain time under
pressure - which depends inter alii on the opt-out costs - it becomes optimal

10The same holds if the decision is between "jump and converge to good equilibrium" and
"opt out". Where the relative location depends on the values of " and �.
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to leave the regime. Hence this easy and stylized model delivers a very good
theoretical basis that sudden policy changes are indeed optimal.
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6 Appendix

6.1 Linear Version

6.1.1 Value Function

Through integrating and rearranging we show that the value function is always
negative:

V = sup
r
(U0)

= �
Z �T

0

exp (��t) exp (�� (� + ��rt)) dt�
Z 1

�T

exp (��t) exp
�
��
�
� + ��r �T

��
dt

= �
Z �T

0

exp (��t� � (� + a�rt)) dt� exp
�
��
�
� + ��r �T

�� Z 1

�T

exp (��t) dt

=

�
exp (��t� � (� + ��rt))

�+ ���r

� �T
0

� exp
�
��
�
� + ��r �T

�� �
�exp (��t)

�

�1
�T

=
exp

�
�� �T � �

�
� + ��r �T

��
�+ ���r

� exp (���)
�+ ���r

� 1

�
exp

�
�� �T � �

�
� + ��r �T

��
=
exp

�
�� �T � �

�
� + ��r �T

��
�+ ���r

� exp (���)
�+ ���r

�
exp

�
�� �T � �

�
� + ��r �T

�� �
1 + 1

����r
�

�
�
1 + 1

����r
�

=
� exp

�
�� �T � �

�
� + ��r �T

��
1
����r � exp (���)

�+ �a�r

= �exp (���)
�+ ���r

�
���r

�
exp

�
� (�+ ���r) �T

�
+ 1

�
< 0.

The partial derivative of V with respect to � is

d

d�

�
�exp (���)
�+ ���r

�
���r

�
exp

�
� (�+ ���r) �T

�
+ 1

��
= ��V ,

which is always positive.

The partial derivative of V with respect to A is

d

dA

�
�exp (���)
�+ ���r

�
���r

�
exp

�
� (�+ ���r) �T

�
+ 1

��
= �exp (���)

�+ ���r

���r

�

�
�� (�+ ���r)

��r
exp

�
� �T (�+ ���r)

��
= ���

��
exp

�
� �T (�+ ���r)� ��

�
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which is always negative.11 The partial derivative can also be written as

=
�+ ���r

��r

�
V +

exp (���)
�+ ���r

�
=
1

��r
((�+ ���r)V + exp (���)) .

Using (7) we proof that an exterior solution exists through:

V��+ VA� > 0

V��+ VA� = ��V �+
1

��r
((�+ ���r)V + exp (���))�

= ��V �+ 1
�r
�V + ��V +

1

�r
exp (���)

=
1

�r
(�V + exp (���)) ,

thus
�V + exp (���) > 0.

Inserting for V gives

�

�
�exp (���)
�+ ���r

�
���r

�
exp

�
� (�+ ���r) �T

�
+ 1

��
+ exp (���) > 0

� 1

�+ ���r

�
���r exp

�
� (�+ ���r) �T

�
+ �
�
+ 1 > 0

1

�+ ���r

�
���r exp

�
� (�+ ���r) �T

�
+ �
�
< 1

���r exp
�
� (�+ ���r) �T

�
+ � < �+ ���r

exp
�
� (�+ ���r) �T

�
< 1

� (�+ ���r) �T < 0,

which is true, since �T � 0.

6.1.2 Comparison of Values

For t > �T the central bank sets r = �r, which implies that � (t) is constant, i.e.
_� = 0 and thus � (t) = �S . For � (� � c) we write:

� (� � c) =

Z 1

0

exp (���)u (� � c) dt

= u (� � c) 1
�

= �1
�
exp (�� (� � c)) (20)

11 d �T
dA

= � 1
��r
.
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In comparison V at point A = D equals:

V (�;A = D) = �exp (���)
�+ ���r

�
���r

�
exp (0) + 1

�
= �exp (���)

�+ ���r

�
���r + �

�

�
= �exp (���)

�
(21)

If we compare equations (20) and (21), we see that indeed V (�;A = D) is
higher and thus, defending the regime at the corner is optimal.

6.2 Extended Linear Version

6.2.1 Solutions of the Di¤erential Equations

For the time path of � ,we get if r = 0

�t =

�
�S � �� �

�

�
�r

�
exp (��t) + �� + �

�
�r

if A = D

�t =

�
�S � �� �

�"D

�� � �


�
exp

��
��



� �

�
t

�
+ �� +

�"D

�� � �


and if A = 0

�t =
�
�S � ��

�
exp

��
��



� �

�
t

�
+ ��

with �S being the initial point of �.

6.2.2 Comparison of Values: Opt out?

Annotation: For simplicity, we assume that utility in the extended version is
described by the identity function, i.e. u (�) = �.
We opt out, if the value of convergence to the bad equilibrium is smaller

than the value of immediately opting out:

V ("opt out") > V ("converge to bad equilibrium")

R1
0
exp (��t) (�S � c) dt >Z 1

0

exp (��t)
��
�S � �� �

�"D

�� � �


�
exp

��
��



� �

�
t

�
+ �� +

�"D

�� � �


�
dt
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1

�
(�S � c) > � 1

��

 � � � �

�
�S � �� �

�"D

�� � �


�
+
1

�

�
�� +

�"D

�� � �


�
�S � c > �� +

�"D

�� � �
 �
�

��

 � � � �

�
�S � �� �

�"D

�� � �


�

�S

 
1 +

�
��

 � � � �

!
> ��

 
1 +

�
��

 � � � �

!
+

�"D

�� � �


 
1 +

�
��

 � � � �

!
+ c

�S

�
�� � �


�� � �
 � 
�

�
> ��

�
�� � �


�� � �
 � 
�

�
+

�"D

�� � �


�
�� � �


�� � �
 � 
�

�
+ c

with
�� � �


�� � �
 � 
� > 0

�S > �� +
�"D

�� � �
 + c
�� � �
 � 
�
�� � �


The comparison with convergence to the good equilibrium gives:

V ("opt out" ) > V ("jump and converge to good equilibrium")

�S > �� +
��D

�� � �
 + c
�� � �
 � 
�
�� � �


6.2.3 Comparison of Values: Fend of attack?

The attack is fend o¤ completely, if the value of convergence to the bad equi-
librium is smaller than the value of convergence to the good equilibrium after a
jump:

V ("converge to bad equilibrium") < V ("jump and converge to good equilibrium")

Z 1

0

exp (��t)
��
�S � �� �

�"D

�� � �


�
exp

��
��



� �

�
t

�
+ �� +

�"D

�� � �


�
dt

<

Z 1

0

exp (��t)
��
�S �

�



D � ��

�
exp

��
��



� �

�
t

�
+ ��

�
dt

� 1
��

 � � � �

�
�S � �� �

�"D

�� � �


�
+
1

�

�
�� +

�"D

�� � �


�
< � 1

��

 � � � �

�
�S �

�



D � ��

�
+
1

�
��

�
�� (�� � �
)� 
��S + �"D

� (�
 � �� + 
�) < �
�� (�� � �
)� 
��S + ��D

� (�
 � �� + 
�)
" > �
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