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Abstract
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1 Introduction

It is a well documented empirical fact that economic growth is associated with sig-

nificant shifts in the sectoral output, employment and consumption structure (see

e.g. Kuznets (1957) and Kongsamut, Rebelo and Xie (2001)). This phenomenon

is summarized under the term “structural change”. As an example, figure 1 shows

the relative decline of the goods sector (or the rise of the service sector) in the U.S.

after World War II. On a logarithmized scale the evolution of the expenditure share

devoted to goods is well approximated by a linear downward sloping trend.1 The

slope of this linear fit is −0.0103, which suggests that the expenditure share devoted

to goods decreases (on average) at a constant annualized rate of one percent.

The nonbalanced nature of growth is displayed in prices too. Figure 2 plots the evo-

lution of the relative consumer price between goods and services on a logarithmized

scale. With some exceptions, as the first and second oil crisis in 1973 and 1979, the

series is fairly good approximated by a linear downward sloping curve (see dashed

line). The estimated slope coefficient of the fitted line is −0.0160, which suggests

that the relative price of goods has on average been decreasing at a constant annu-

alized rate of -1.6 percent.

Beyond the nonbalanced characteristics at the sectoral level, aggregate variables

present a balanced picture of growth. Actually, the post-war U.S. often serves as

a prime example of balanced growth on the aggregate. Balanced growth is best

summarized by the Kaldor facts. These stylized facts state that the growth rate

of real per-capita output, the real interest rate, the capital-output ratio and the

labor income share are constant over time (see Kaldor (1961)). As a consequence,

comprehensive models of structural change should also replicate the Kaldor facts.

To the best of my knowledge there exist two papers, which reconcile structural

change, relative prices dynamics and the Kaldor facts in a growth model with en-

dogenous savings: Ngai and Pissarides (2007) and Acemoglu and Guerrieri (2008).2

1Personal consumption expenditures account for about 70% of total output. In output, the

same structural change can be observed. See Buera and Kaboski (2009b) who emphasize, that the

rise of the service economy in terms of value added shares has in the U.S. mainly been driven by

consumption.
2Changes in relative prices affect the expenditure structure whenever the elasticity of substitu-

tion across sector is unequal to unity. This mechanism of structural change goes back to Baumol

(1967), who emphasizes total factor productivity (TFP) growth differences as a source of relative
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Figure 1: Expenditure share of goods.
Notes: The figure plots the share of personal consumption expenditures devoted to goods in the U.S. on a logarithmized scale. The

dashed line represents the predicted values obtained by regressing the logarithmized expenditure share on time and a constant. The

estimated slope coefficient and its standard error are −0.0103 and 0.00015, respectively. The simple regression attains an R2 of 0.986.

Source: BEA, NIPA table 1.1.5.



4

3

2.5

2

1.5

1

1950 1960 1970 1980 1990 2000 2010
year

Figure 2: Relative price between goods and services.
Notes: The figure plots the relative consumer price between goods and services on a logarithmized scale. The dashed line represents

the predicted values obtained by regressing the logarithmized relative price on a constant and time. The estimated slope coefficient

and its standard error are −0.016 and 0.00038, respectively. The simple regression attains an R2 of 0.966. Source: BEA, NIPA table

1.1.4.
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Both theoretical models feature a constant elasticity of substitution across sectors.

However, in the U.S., the relative expenditure share of goods has declined at a faster

rate than the relative price of goods. Hence, with relative price effects alone, theories

with a constant elasticity of substitution cannot replicate the observed structural

change.3

Acemoglu and Guerrieri (2008) emphasize that income effects are an “undoubtly im-

portant” determinant of structural change. Nevertheless, both Ngai and Pissarides

(2007) and Acemoglu and Guerrieri (2008) abstract from non-homotheticity of pref-

erences.4 Empirically, there is clear evidence for an income effect. Figure 3 plots

the expenditure shares devoted to goods for the different pre-tax income quintiles.

Rich households exhibit a significantly lower expenditure share of goods then poor

households.5 Moreover, the expenditure share of all income quintiles displays the

same downward sloping trend as the aggregate data (see dashed line).

With non-unitary expenditure elasticities of demand, increases in real per-capita ex-

penditure levels (due to growth) affect the sectoral expenditure shares.6 Kongsamut,

Rebelo and Xie (2001) and Foellmi and Zweimueller (2008) reconcile non-homothetic

preferences and the Kaldor facts in an otherwise standard growth model with in-

tertemporal optimization. However, in order to obtain balanced aggregate growth,

price changes. In Acemoglu and Guerrieri (2008), capital deepening and sectoral factor intensity

differences is another driver of the relative price dynamic.
3This has already been pointed out by Buera and Kaboski (2009a).
4Acemoglu and Guerrieri (2008) conclude: “It would be particularly useful to combine the

mechanism proposed in this paper with nonhomothetic preferences and estimate a structural ver-

sion of the model with multiple sectors using data from the U.S. or the OECD.”(Acemoglu and

Guerrieri (2008), p. 493).
5An exception is the first income quintile, especially in the eighties, which can be explained by

systematic differences in the household composition (see the regressions in section 3 which include

additional controls).
6This mechanism of structural change is consistent with Engel’s law, which is regarded as

one of the most robust empirical regularities in economics (see Engel (1857), Houthakker (1957),

Houthakker and Taylor (1970) and Browning (2008)). As a consequence, many models of structural

change rely on income effects. See e.g. Matsuyama (1992), Echevarria (1997), Laitner (2000),

Kongsamut, Rebelo and Xie (2001), Caselli and Coleman (2001) and Gollin, Parente and Rogerson

(2002) which use quasi-homothetic intratemporal preferences or Falkinger (1990), Falkinger (1994),

Zweimueller (2000), Matsuyama (2002), Foellmi and Zweimueller (2008) and Buera and Kaboski

(2009b), which generate non-homotheticity by a hierarchy of needs.
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Figure 3: Cross-sectional variation in expenditure shares
Notes: The figure plots the expenditure share devoted to goods for each pre-tax income quintile of the U.S. on a logarithmized scale.

The following expenditure categories are considered as services: food away from home; shelter; utilities, fuels, and public services;

personal services; postage and stationery; other apparel products and services; other vehicle expenses; public transportation; health

insurance; medical services; fees and admissions; other entertainment supplies, equipment, and services; personal care products and

services; education; cash contributions; personal insurance and pensions. The remaining categories are considered as goods. Source:

Consumer Expenditure Survey. The red dashed line is the same aggregate series as in figure 1.



7

both theories have to exclude relative price effects.7 Hence, as pointed out by Buera

and Kaboski (2009a), none of the existing growth models with endogenous savings

and balanced growth, allows us to discuss both forces of structural change - relative

price and income effects.

The contributions of this paper are as follows: First, it presents a neoclassical growth

theory with intertemporal optimization, which reconciles the Kaldor facts with struc-

tural change simultaneously determined by relative price and income effects. Sec-

ond, it shows that the theory can replicate within a unified framework the shape

and magnitude of structural change and relative price dynamic identified in figure 1

and 2. Moreover, the model is consistent with cross-sectional expenditure structure

differences and the parallel evolution of logarithmized expenditure shares of different

income groups, depicted in figure 3. Finally, a structural estimation allows us to

decompose the structural change into an income and substitution effect.8

The paper consists of four sections: Section 2 presents the theoretical growth model.

In section 3 an estimation of the relative importance of income and substitution ef-

fects as determinants of structural change is carried out. Finally, section 4 concludes.

2 Theoretical model

There is a unit interval of households indexed by i ∈ [0, 1]. Each household consists

of N(t) identical members, where N(t) grows at an exogenous rate n ≥ 0. N(0)

is normalized to one, so we have N(t) = exp[nt]. Each member of household i is

endowed with li ∈ (l̄,∞), l̄ > 0, units of labor and ai(0) ∈ [0,∞) units of initial

wealth. These per-capita factor endowments can differ across households. Labor is

supplied inelastically at every instant of time. Consequently, the aggregate labor

7In Kongsamut, Rebelo and Xie (2001) consistency with the Kaldor facts relies on a widely

criticized knife-edge condition, which ties together preference and technology parameters and im-

plies constant relative prices. Foellmi and Zweimueller (2008) have to assume that technological

differences (which translate into a relative price dynamic) are uncorrelated with the hierarchical

position of a good (and its sectoral classification). As figure 2 shows, stationarity of the relative

good price is not supported by the data.
8See also the recent empirical works by Buera and Kaboski (2009a) and Herrendorf, Rogerson

and Valentinyi (2009), which estimate for the U.S. the relative contribution of income and substi-

tution effects to the structural change. In contrast to these two papers, the structural estimation

of this work is based on a general equilibrium model which is consistent with the Kaldor facts.
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supply L(t) ≡ N(t)
∫ 1

0
li di, grows at constant rate n.

2.1 Preferences

All households have the following additively separable representation of intertem-

poral preferences

Ui(0) =

∫

∞

0

exp [−(ρ− n)t]V (P1(t), P2(t), ei(t)) dt, (1)

where ρ ∈ (n,∞) is the rate of time preference and V (P1(t), P2(t), ei(t)) is an indi-

rect instantaneous utility function of each household member. This instantaneous

utility function is specified over the prices of the two consumption goods, P1(t) and

P2(t), and the nominal per-capita expenditure level of household i, ei(t). Hence-

forth, the first consumption good is called “good” whereas the second consumption

good is “service”. The indirect instantaneous utility function takes the following

form

V (P1(t), P2(t), ei(t)) =
1

ǫ

[

ei(t)

P2(t)

]ǫ

−
β

γ

[

P1(t)

P2(t)

]γ

−
1

ǫ
+

β

γ
, (2)

where 0 ≤ ǫ ≤ γ < 1 and β, γ > 0.9 This intratemporal utility function falls into

the class of “price independent generalized linearity” (PIGL) preferences defined by

Muellbauer (1975) and Muellbauer (1976). PIGL preferences are more general than

Gorman preferences. Nevertheless, PIGL preferences avoid an aggregation prob-

lem. Aggregate expenditure shares coincide with those of a household with a rep-

resentative expenditure level (the representative household in Muellbauer’s sense).

Moreover, PIGL preferences ensure that this representative expenditure level is in-

dependent of prices. Because Engel curves are patently non-linear, PIGL preferences

have explicitly an empirical justification and were widely used in expenditure system

estimations (see e.g. the “Quadratic Expenditure System” (QES) by Howe, Pollak

9For ǫ = 0 we get the limit case with V (·) = log
[

ei(t)
P2(t)

]

− β
γ

[

P1(t)
P2(t)

]γ

+ β
γ
and with γ = ǫ = 0 we

would obtain Cobb-Douglas preferences with V (·) = log
[

ei(t)
P1(t)βP2(t)1−β

]

. As another special case,

with β = 0, we would have only one consumption sector and CRRA preferences. But clearly, with

only one consumption sector or with constant expenditure shares (i.e. Cobb-Douglas preferences),

structural change cannot be discussed. Therefore, these two cases are excluded by the parametric

restriction β, γ > 0. Nevertheless, it is remarkable that these two prevalent cases are special

instances of (2).
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and Wales (1979) or the “Almost Ideal Demand System” (AIDS) by Deaton and

Muellbauer (1980)).10

Lemma 1 shows that function (2) satisfies the standard properties of a utility func-

tion.

Lemma 1. Function (2),

(i) is a valid indirect utility specification that represents a preference relation de-

fined over goods and services if and only if

ei(t)
ǫ ≥

[

1− ǫ

1− γ

]

βP1(t)
γP2(t)

ǫ−γ, (3)

(ii) is increasing and strictly concave in ei(t).

Proof. See appendix A.

Henceforth, I assume that condition (3) is fulfilled. Later, two conditions in terms

of exogenous parameters are stated, which jointly ensure condition (3) for all indi-

viduals, at each date. Strict concavity of the intratemporal utility function will be a

necessary condition for intertemporal optimization, which will be addressed below.

The characteristics of the intratemporal preferences are best discussed in terms of

the associated expenditure system. We have the following lemma.

Lemma 2. At each point in time, intratemporal preferences imply the following

expenditure system

xi
1(t) = β

ei(t)

P1(t)

[

P2(t)

ei(t)

]ǫ [
P1(t)

P2(t)

]γ

, (4)

10The most general indirect form of PIGL preferences can be written as (see Muellbauer (1976))

V (P, e) =

[

e

b(P )

]ϑ

−

[

a(P )

b(P )

]ϑ

,

where ϑ > 0. e is the expenditure level, P is the price vector and a(P ) and b(P ) are linearly

homogeneous functions. For a discussion of PIGL preferences in neoclassical growth theory see

Boppart (2011). The functional form (2) is chosen, because it can jointly explain the constancy of

the growth rates of the expenditure share devoted to goods (see figure 1), the relative price (see

figure 2) and the expenditure level (one of the Kaldor facts). Moreover, the model is parsimonious.

The two parameters, ǫ and γ, pin down separately, the expenditure elasticity of demand of goods

and the asymptotic elasticity of substitution across sectors.
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and

xi
2(t) =

ei(t)

P2(t)

[

1− β

[

P2(t)

ei(t)

]ǫ [
P1(t)

P2(t)

]γ]

, (5)

where xi
j(t), j = 1, 2, is household i’s per-capita consumption of goods/services at

date t.

Proof. The derivation of the demand system is just an application of Roy’s identity.

ei(t)

xi1(t), x
i
2(t)

xi
1(t)

xi
2(t)

Figure 4: Engel curves

ei(t)

1

si1(t), s
i
2(t)

si1(t)

si2(t)

Figure 5: Expenditure shares

Notes: As indicated by the dashed sections, preferences are only well defined, if condition (3) holds (i.e. ei(t) exceeds a certain

threshold).

The expenditure system reveals, that the demand for goods, xi
1(t), is an exponential

function of order 1−ǫ of the per-capita expenditure level. Moreover, the expenditure

shares devoted to the two consumption sectors, sij(t); j = 1, 2, can be expressed as

si1(t) = β

[

P2(t)

ei(t)

]ǫ [
P1(t)

P2(t)

]γ

and si2(t) = 1− β

[

P2(t)

ei(t)

]ǫ [
P1(t)

P2(t)

]γ

. (6)

For ǫ > 0, figure 4 and 5 plot the Engel curves and the sectoral expenditure shares

as a function of the per-capita expenditure level. In general, as the non-linear Engel

curves reveal, preferences are non-homothetic and even do not fall into the Gorman

class.

The elasticity of substitution across sectors and the expenditure elasticities of de-

mand control the magnitude and direction of the income and substitution effects on

expenditure shares. Growing real per-capita expenditure levels imply - according to
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the income effect - an increasing expenditure share of the sector, whose expenditure

elasticity of demand strictly exceeds unity. Besides, if the elasticity of substitution

is strictly less than unity, according to the substitution effect, the sector which ex-

periences a relative price increase, gains in terms of expenditure shares. The next

lemma characterizes these two elasticities.

Lemma 3. The intratemporal preferences, (2), imply that

(i) the elasticity of substitution between goods and services,

σi(t) = 1− γ −
β
[

P1(t)
P2(t)

]γ

[

e(·)
P2(t)

]ǫ

− β
[

P1(t)
P2(t)

]γ [γ − ǫ] , (7)

is strictly less than unity (for all households at each date).

(ii) with ǫ > 0, the expenditure elasticity of demand is positive, but strictly smaller

than one for goods and larger than one for services.

(iii) with ǫ = 0 we have homothetic preferences (expenditure elasticities of both

sectors are equal to unity).

Proof. See appendix A.

Several things are worth noting: First, the restrictions on the preference parameters

ǫ and γ are such that the elasticity of substitution is strictly less than unity.11 In the

literature there seems to be a consensus that this is the empirically relevant case.12

This notion is also confirmed by the structural estimation of section 3.

Second, in general, the elasticity of substitution varies over time and across house-

holds. Nevertheless, there is a special case with γ = ǫ, in which the elasticity of

substitution is constant for all households at each date.

11The utility function (2) could also generate cases where the elasticity of substitution is strictly

larger than one. But these cases where excluded right away by the restriction 0 ≤ ǫ ≤ γ < 1.
12Baumol, Blackman and Wolff (1985) document a structural change toward the slower growing

sector, which is in line with an elasticity of substitution smaller than one. Buera and Kaboski

(2009a) calibrate their model with an elasticity of substitution equal to 0.5. See also Ngai and

Pissarides (2007) and Acemoglu and Guerrieri (2008) which both emphasize the case where the

inter-sectoral elasticity of substitution is less than one (in their calibration Acemoglu and Guerrieri

(2008) use an elasticity of substitution equal to 0.76).
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Third, with ǫ = 0, we have homothetic preferences and consequently no income

effect on expenditure shares. In contrast, as long as ǫ > 0, goods are necessities

with an expenditure elasticity of demand strictly smaller than one.13

Next, we turn to the household’s intertemporal optimization problem. Households

maximize (1) with respect to {ei(t), ai(t)}
∞

t=0, subject to the budget constraint

ȧi(t) = [r(t)− n] ai(t) + w(t)li − ei(t), (8)

and a standard transversality condition, which can be expressed as

lim
t→∞

ei(t)
ǫ−1P2(t)

−ǫai(t) exp [−(ρ− n)t] = 0. (9)

r(t) and w(t) is the (nominal) interest and wage rate, respectively, and ai(t) denotes

the per-capita wealth of household i at date t. ai(0) is exogenously given. The result

of intertemporal household optimization is summarized in the next lemma.

Lemma 4. Intertemporal optimization yields the Euler equation

(1− ǫ)gei(t) + ǫgP2(t) = r(t)− ρ, (10)

where gei(t) is the growth rate of per-capita consumption expenditures of household

i and gP2(t) is the growth rate of the price of sector 2 at date t.

Proof. See appendix A.

The Euler equation takes the same functional form as in the standard one-sector

growth model with CRRA preferences.14 Additionally, since gei(t) is the only term

that involves a household index i, the Euler equation implies that the growth rate

of the per-capita expenditure levels is the same for all households at a given point

in time, or formally,

gei(t) = ge(t), ∀i. (11)

13Since this is the empirically relevant case (see figure 3), the opposite case, where services are

necessities, is excluded by assuming ǫ ≥ 0.
14Without loss of generality, we could chose P2(t) as a numéraire. Then, the Euler equation would

read as in the standard model: The intertemporal substitution elasticity of total consumption

expenditures, (1 − ǫ), times the per-capita growth rate is equal to the interest rate, minus the

rate of time preference. However, in this model the intertemporal substitution elasticity is directly

connected to the degree of non-homotheticity of intratemporal preferences, ǫ.
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Together with the desirable aggregation properties specific to all PIGL preferences,

the feature, that all expenditure levels grow pari passu, simplifies the equilibrium

analysis dramatically. Let us define E(t) as the aggregate consumption expenditures

and Xj(t) as the aggregate demand for consumption j = 1, 2 at date t (i.e. E(t) ≡

N(t)
∫ 1

0
ei(t)di and Xj(t) ≡ N(t)

∫ 1

0
xi
j(t)di, j = 1, 2). Then, consumer behavior is

summarized by the following proposition.

Proposition 1. Under consumer optimization,

(i) the intertemporal behavior of the demand side is fully characterized by the

following Euler equation, budget constraints and transversality conditions:

(1− ǫ) [gE(t)− n] + ǫgP2(t) = r(t)− ρ, ∀t, (12)

where gE(t) is the growth rate of E(t),

ȧi(t) = [r(t)− n] ai(t) + w(t)li − ei(0) exp

[
∫ t

0

gE(ς)− n dς

]

, ∀i, t, (13)

and

lim
t→∞

ai(t) exp

[

−

∫ t

0

r(ς)− n dς

]

= 0, ∀i, (14)

where ai(0), ∀i, is exogenously given.

(ii) the aggregate expenditure share devoted to goods, S1(t) ≡
P1(t)X1(t)

E(t)
, is given by

S1(t) = β

[

P2(t)
E(t)
N(t)

]ǫ
[

P1(t)

P2(t)

]γ

φ, (15)

where φ ≡
∫ 1

0

[

ei(0)N(0)
E(0)

]1−ǫ

di is a scale invariant measurement of inequality of

per-capita consumption expenditures across households. Furthermore, we have

E(t) = P1(t)X1(t) + P2(t)X2(t). (16)

(iii) a household with ei(t) =
E(t)
N(t)

φ−
1
ǫ ≡ eRA(t) is the representative agent in Muell-

bauer’s sense.15

Proof. See appendix A.

15With ǫ = 0, we have - according to Muellbauer’s definition - the limit case eRA(t) = E(t)
N(t) .
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This proposition fully characterizes the demand side of this economy. Given a path

of production factor, good and service prices, {r(t), w(t), P1(t), P2(t)}
∞

t=0, equation

(12) - (16) define the equilibrium evolution of the level and structure of aggregate

consumption expenditures. Since in general, the intratemporal preferences do not

fall into the Gorman class, a representative agent in the narrower sense does not

apply and the distribution of per-capita expenditure levels matters. Nevertheless,

the tractability of the specified preferences allows us to write the aggregate demand

of goods and services as a function of just two terms: the aggregate expenditure

level, E(t), and a summary statistic of the distribution of per-capita expenditure

levels at date t = 0, denoted by φ. This is the outcome of two special properties:

First, the fact that preferences are part of the “generalized linearity” class, allows for

a representative agent in Muellbauer’s sense (see Muellbauer (1975) and Muellbauer

(1976)). A household with the representative expenditure level, eRA(t), exhibits the

same expenditure shares as the aggregate economy. Moreover, since preferences are

even part of the PIGL class, the representative expenditure level is independent

of prices. Consequently, aggregate demand can be expressed as a function of E(t)

and the scale invariant inequality measure of per-capita expenditure levels at date

t, φ(t) =
∫ 1

0

[

ei(t)N(t)
E(t)

]1−ǫ

di.

The second property is that intertemporal optimization implies for all households the

same per-capita expenditure growth rate at any given point in time (see (11)). Then,

φ(t) is constant over time and can therefore be expressed as a function of the ei(0)

distribution.16 This tractability allows me to solve the model analytically, despite

household heterogeneity, non-Gorman intratemporal preferences and intertemporal

optimization.17

To close the model, i.e. in order to determine the equilibrium path of production

factor, good and service prices, the production side of the economy remains to be

16With ǫ > 0, a high dispersion of per-capita expenditure levels is associated with a low value of

φ. In the homothetic case, we have a representative agent economy (in the narrower sense), where

inequality does not matter (i.e. φ = 1).
17As in models with 0/1 preferences (see e.g. Foellmi and Zweimueller (2006), Foellmi, Wuergler

and Zweimueller (2009) and Wuergler (2010)), this paper presents a dynamic general equilibrium

model with intertemporal optimization, where inequality affects the sectoral demand structure.

But in contrast to 0/1 preferences, this model focuses on the intensive margin of consumption.

Moreover, the model allows us to study any - possibly continuous - income distribution which is

consistent with condition (3).
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specified.

2.2 Production

There are three output goods: the output of the two consumption sectors Y1(t) and

Y2(t) and an “investment good”, Y3(t), which can be transformed one-to-one into

capital, K(t). Capital depreciates at constant rate δ ≥ 0. This implies for the law

of motion of capital

K̇(t) = X3(t)− δK(t), (17)

where X3(t) are aggregate gross investments (in terms of investment goods) at date

t. The consumption sectors produce under perfect competition according to the

following technologies

Yj(t) = exp [gjt]Lj(t)
αKj(t)

1−α, j = 1, 2, (18)

where Lj(t) and Kj(t) denote labor and capital, respectively, allocated to sector

j at date t. Both production factors are fully mobile across sectors. α ∈ (0, 1)

is the output elasticity of labor, which is identical across sectors.18 Total factor

productivity (TFP) expands at a constant, exogenous, sector-specific rate gj ≥ 0.19

The investment good is produced by a linear technology

Y3(t) = AK3(t), (19)

with A > δ.20 The market of investment goods is competitive, too. Henceforth, I

normalize the price of the investment good at each date to one, i.e. P3(t) = 1, ∀t.

18(18) represents aggregate production functions, comprising total factor inputs, which come

from direct production as well as indirect sources (production of intermediates). Valentinyi and

Herrendorf (2008) estimate sectoral labor income shares with respect to final output/consumption

rather than value added. The estimates for manufacturing, services, overall consumption and total

output are all between 0.65 and 0.67. Hence, for final consumption, on the level of aggregation

considered in this paper, the assumption of identical output elasticities of labor seems to be a good

approximation. Nevertheless, for the sake of completeness, appendix D illustrates the equilibrium

dynamic, when there are sectoral factor intensity differences.
19Appendix E shows how these sector specific TFP growth rates can be endogenized.
20The AK specification is not crucial. With Y3(t) = exp [g3t]L3(t)

κK3(t)
1−κ, g3 ≥ 0, κ ∈ (0, 1],

the model would be consistent with a globally saddle-path stable steady state, displaying exactly

the same properties as the equilibrium with the linear technology.
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The production side of this economy is similar to the one in Rebelo (1991).21 K(t)

is a “core” capital good, whose production does not involve nonreproducible factors.

This makes endogenous growth feasible. But as long as gj 6= 0, for some j = 1, 2,

the economy also consists of an exogenous driver of growth.

2.3 Equilibrium

2.3.1 Definition

In this economy, an equilibrium is defined as follows:

Definition 1. A dynamic competitive equilibrium is a time path of households’ per-

capita expenditure levels, wealth stocks and consumption quantities
{

ei(t), ai(t), x
i
j(t)
}

∞

t=0
,

j = 1, 2, ∀i; an evolution of prices, wage, interest and rental rate, {Pj(t), w(t), r(t), R(t)}∞
t=0,

j = 1, 2 and a time path of factor allocations {L1(t), L2(t), K1(t), K2(t), K3(t)}
∞

t=0,

which is consistent with household and firm optimization, perfect competition, re-

source constraints and market clearing conditions.

2.3.2 Resource constraints and market clearing conditions

In equilibrium, capital and labor markets have to clear, i.e.

L(t) = L1(t) + L2(t), and K(t) = K1(t) +K2(t) +K3(t), ∀t. (20)

Market clearing in goods, service and investment goods markets requires

Yj(t) = Xj(t), j = 1, 2, 3, ∀t. (21)

Since the price of the investment good is chosen as a numéraire, asset market clearing

implies

N(t)

∫ 1

0

ai(t)di = K(t), ∀t. (22)

Finally, the market rate of return of capital has to equalize the rental rate net of

depreciations, i.e. r(t) = R(t)− δ, ∀t.

21With β = 0 and g2 = 0 the model would coincide with the one by Rebelo (1991).
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2.3.3 Equilibrium dynamic

Under the choice of numéraire, perfect competition, resource constraints and the

market clearing conditions, the equilibrium in production is characterized by the

following lemma.

Lemma 5. Firm optimization implies at each date t,

r(t) = A− δ, (23)

w(t) = A
α

1− α

K1(t) +K2(t)

L(t)
, j = 1, 2, (24)

Pj(t) = exp [−gjt]

[

A

1− α

] [

K1(t) +K2(t)

L(t)

]α

, j = 1, 2, (25)

Yj(t) = exp [gjt]

[

L(t)

K1(t) +K2(t)

]α

Kj(t), j = 1, 2, (26)

and
K1(t)

L1(t)
=

K2(t)

L2(t)
=

K1(t) +K2(t)

L(t)
. (27)

Proof. See appendix A.

The dynamic competitive equilibrium is fully characterized by equations (12)-(17)

and (19)-(26). The endogenous variables are: Xj(t) and Yj(t), j = 1, 2, 3; ai(t), ∀i;

E(t), Pj(t), j = 1, 2; w(t), r(t), Lj(t), j = 1, 2; K(t) and Kj(t), j = 1, 2, 3. ai(0),

∀i, are exogenously given.

When we solve for the dynamic competitive equilibrium, we obtain the following

proposition.

Proposition 2. Suppose we have

A− δ − ρ+ ǫg2 > 0, (28)

ρ > (1− α)ǫ [A− δ] + n+ ǫg2, (29)

αǫl̄ǫ ≥
1− ǫ

1− γ
β

[

L(0)

K(0)

A (1− (1− α)ǫ)

n+ ρ− ǫg2 − ǫ(1− α) (A− δ − n)

]ǫ(1−α)

, (30)

and

γ [g2 − g1]− ǫ

[

g2 + (1− α) [A− δ − ρ]

1− (1− α)ǫ

]

≤ 0. (31)

Then, there exists a unique dynamic competitive equilibrium path along which
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(i) per-capita consumption expenditures, wages, aggregate capital and capital al-

located to the consumption sectors grow at constant rates

g∗E − n = g∗w =
A− δ − ρ+ ǫg2

1− (1− α)ǫ
> 0, (32)

g∗K = g∗K1+K2
= g∗E. (33)

The saving rate is constant and the real, investment good denominated interest

rate is given by A − δ. The prices of goods and services change at constant

rates

g∗Pj
= −gj + α [g∗E − n] , j = 1, 2. (34)

(ii) the expenditure share devoted to goods changes at constant rate

g∗S1
= −γ [g1 − g2]− ǫ [g2 + (1− α) [g∗E − n]] ≤ 0. (35)

Capital and labor allocated to the goods sector grow at constant rates

g∗K1
= g∗K + g∗S1

≤ g∗K ≤ g∗K2
(t), and g∗L1

= n+ g∗S1
≤ n ≤ g∗L2

(t), ∀t. (36)

The relative price between consumption goods and services changes at constant

rate

g∗P1
− g∗P2

= g2 − g1. (37)

Proof. See appendix A.

Part (i) of proposition 2 illustrates that on the aggregate the model features the

standard properties of neoclassical growth theory. The per-capita growth rate is

increasing in the marginal product of capital, A, and decreasing in the rate of time

preference, ρ, and the depreciation rate, δ. Furthermore, the Kaldor facts hold. To-

tal labor income, w(t)L(t), and the total capital income net of depreciation, rK(t),

grow at the same constant rate g∗E as aggregate output. Thus, the per-capita output

growth rate, the capital-output ratio, the saving rate and the labor income share

are constant.22 Furthermore, the real, investment good denominated interest rate

is equal to A− δ. Since all consumption prices change at constant rates (see (34)),

22The capital-output ratio and the saving rate read K(t)
R(t)K(t)+w(t)L(t) = 1−α

A−α[g∗

K
+δ]

and

R(t)K3(t)
R(t)K(t)+w(t)L(t) =

(1−α)[g∗

K+δ]

A−α[g∗

K
+δ]

, respectively.
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any price index with constant sectoral weights grows at a constant rate too. Hence,

deflated by a price index with constant weights, the real per-capita growth and real

interest rate would be constant. (For instance, the real, in goods or services denom-

inated interest rate is time invariant.) But in an economy with structural change,

the sectoral weights of an appropriate price index should be adjusted over time.

This would yield a non-constant growth rate of the price index and a time varying

real interest rate. But typically, changes in the growth rate of the price index due

to weight adjustments are very small (see Ngai and Pissarides (2004)). The model

predicts, that measured by the true cost of living price index of the representative

household, the real interest rate in 2009 is 0.005 higher than its asymptotic value.23

The model exhibits no transitional dynamic and can be solved analytically.24 With-

out exogenous TFP growth (i.e. with g1 = g2 = 0), the aggregate behavior would

be the same as in Rebelo (1991). However, the intertemporal substitution elasticity

of expenditure, 1
1−ǫ

, is tied together with the expenditure elasticity of demand for

goods, ǫ.25

Noteworthy, although preferences are non-Gorman and inequality matters, the Kaldor

facts hold irrespective of the distribution of expenditure level. This holds true since

the marginal propensity to save out of capital income is the same at all wealth levels

(and the marginal propensity to save out of labor income is zero for all households).

An unforeseen shock on the wealth distribution would change the demand structure,

but not the aggregate saving rate. Consequently, capital accumulation and growth

would not be affected.

Part (ii) of proposition 2 focuses on the non-balanced features of the model. Al-

though the Kaldor facts hold, the aggregate expenditure share devoted to goods as

well as the relative price between goods and services change over time. The func-

tional forms that the simple model imposes are striking. The model predicts that

23The growth rate of the partial true cost of living price index of household i is defined as

gTCL
P (t) = gP2

(t) + si1(t) [gP1
(t)− gP2

(t)] (see Pollak (1975)). In the data, relative price growth

rate is -1.6 percent and in 2009 the aggregate expenditure share of goods was 0.32, whereas its

asymptotic value is zero.
24This is due to the AK specification of the production function of investment goods. With a

decreasing marginal product of capital, transitional dynamics would arise (see footnote 20).
25With ǫ = 0, this interdependence reflects the result obtained by Ngai and Pissarides (2007): If

preferences are homothetic, reconciliation of structural change with the Kaldor facts requires that

intertemporal substitution elasticity of expenditures is equal to unity.
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both the expenditure share of goods and the relative price of goods decrease at con-

stant rates. Remarkably, this is consistent with the functional form of the stylized

facts discovered in figure 1 and 2.

The shift in the aggregate demand structure transforms to the production side (see

(36)). Capital allocated to the goods sector grows at a lower rate than the aggregate

capital stock, which itself grows at a lower rate than capital allocated to the service

sector. In contrast to g∗K1
and g∗K , g

∗

K2
(t) expands at a time varying rate. The same

applies to the allocation of labor. If n is small relative to g∗S1
, the absolute quantity

of labor allocated to the goods sector can even decrease. Nevertheless, consumption

of both goods and services increases steadily - even in per-capita terms. Thus, the

goods sector declines only in relative and not in absolute terms.

The required parametric restrictions (28)-(31) are harmless. Reconciliation of the

non-balanced features of growth with the Kaldor facts does not depend on any knife-

edge condition. (28) ensures positive capital accumulation and growth in per-capita

terms.26 Condition (29) is necessary and sufficient for the transversality condition

to hold. Furthermore, it is also sufficient to ensure finite utility. Condition (30)

makes sure that condition (3) is met for all households at t = 0. Moreover, together

with condition (31), it ensures condition (3) along the whole equilibrium path.

In general, the structural change is driven by both income and substitution effects.

With ǫ > 0 services are luxuries. Hence, due to per-capita growth, the expenditure

share devoted to services tends to increase. In addition, if the relative price changes

(i.e. g1 6= g2), there is a substitution effect. Since the elasticity of substitution be-

tween the two consumption sectors is strictly less than one, the expenditure share of

the sector with the higher TFP growth rate tends to decrease. The magnitude of the

income and substitution effects is controlled by the exogenous preference parameters

γ and ǫ. With ǫ = 0 we have homothetic preferences and changes in expenditure

shares are completely determined by the substitution effect. With g1 = g2 the rela-

tive price does not change and the entire structural change is driven by an income

effect. In general, income and relative price effects can go in opposite directions. If,

26The analysis is constraint on equilibria with positive per-capita growth and capital deepening

(which is the empirically relevant case). As long as A− ρ+ ǫg2 − (1− α)ǫδ > 0 the model would

be consistent with positive gross investments (but possibly negative net ones). With A− ρ+ ǫg2 −

(1−α)ǫδ ≤ 0 we would obtain a corner solution with no investments. As a consequence, aggregate

capital would decline at constant rate −δ.
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by sheer coincidence −γ(g1 − g2) = ǫ [g2 + (1− α) [g∗E − n]], the two effects cancel

each other so that there would be no structural change.27

In the next proposition the income and substitution components of structural change

are analyzed in more detail.

Proposition 3. Along the equilibrium path,

(i) for all households, the expenditure share devoted to goods changes at a constant

rate g∗S1
≤ 0.

(ii) according to the substitution effect, a decrease of the relative price of goods by

one percent, decreases the expenditure share devoted to goods of household i by

−γ + ǫsi1(t) ≤ 0 percents.

(iii) for all households, according to the income effect, an increase of the (instanta-

neous) utility level by one percent, decreases the expenditure share devoted to

goods by ǫ percents.

Proof. See appendix A.

The model predicts that not only the aggregate, but also all individual expenditure

shares of goods decrease at the identical, constant rate g∗S1
. This is consistent with

the linear and parallel decline of the logarithmized expenditure shares of different

income quintiles (see figure 3). However, as part (i) and (ii) of proposition 3 show,

if ǫ > 0, the division of this change in expenditure shares into an income and

substitution effect differs across households. For richer households (with a lower

si1(t)), the substitution effect is relatively more important. Consequently, as all

households get richer, the relative importance of the income effect as a determinant

of the aggregate expenditure share dynamics decreases. Since preferences allow for

a representative agent in Muellbauer’s sense, the substitution effect of the aggregate

economy is the same as the substitution effect for the representative agent. Hence,

a one percent decline in the relative price of goods decreases (according to the

substitution effect) the aggregate expenditure share of goods by −γ + ǫS1(t) ≤ 0

percents.

27A trivial case, where this condition is fulfilled arises if neither an income nor a substitution

effect exists. This occurs with homothetic preferences and a constant relative price (ǫ = g1−g2 = 0)

or with Cobb-Douglas preferences (ǫ = γ = 0).
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It is insightful to take a closer look at the equilibrium toward which the economy

converges, as time goes to infinity. To do so, we define:

Definition 2. The asymptotic equilibrium is the dynamic competitive equilibrium

path toward which the economy tends as time goes to infinity.

Then, we have the following proposition (asymptotic equilibrium values are denoted

by a superscript A).

Proposition 4. Suppose now, condition (31) holds with strict inequality. Then, in

the asymptotic equilibrium,

(i) the expenditure share devoted to goods is equal to zero, i.e. SA
1 = 0.

(ii) the expenditure elasticity of demand is 1− ǫ for goods and unity for services.

(iii) the elasticity of substitution between goods and services, σA
i , is equal to 1− γ

for all households i.

Proof. See appendix A.

Part (i) of proposition 4 shows that the service sector is the asymptotically dominant

consumption sector. The existence of an asymptotically dominant sector is a com-

mon feature of the models by Ngai and Pissarides (2007), Foellmi and Zweimueller

(2008) and Acemoglu and Guerrieri (2008). The asymptotic dominance of the ser-

vice sector is not a fact of a trivial disappearance of the goods sector. In absolute

terms, the asymptotically consumed quantity of goods goes to infinity - even in per-

capita terms.

Part (ii) and (iii) of proposition 4 illustrate how parsimonious the model is. The

expenditure elasticity of demand and the elasticity of substitution across sectors con-

trol size and magnitude of relative price and income effects on S1. The model has

exactly two exogenous parameters, ǫ and γ, which control separately the asymptotic

values of these two elasticities. With ǫ = 0 the asymptotic equilibrium is similar to

the one by Ngai and Pissarides (2007) and Acemoglu and Guerrieri (2008). There is

no income effect and the elasticity of substitution across sectors is constant. With

g1 = g2, there is no relative price effect and the asymptotic equilibrium resembles the

one by Foellmi and Zweimueller (2008). But in contrast to Foellmi and Zweimueller

(2008), where the expenditure elasticity of demand of the asymptotically dominated
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sectors converge to zero, it is asymptotically positive in this model. In general, with

ǫ 6= 0 and g1 6= g2, both income and relative price effects are even asymptotically

present.28

So far, it has been shown that the model is consistent with a unique dynamic com-

petitive equilibrium path, along which the Kaldor facts hold and changes in expen-

diture shares and relative prices occur. Furthermore, the functional form of these

nonbalanced features is consistent with the dynamics observed in the U.S. data.

But whether the model can quantitatively replicate the size of structural change

identified in figure 1 is another question. This will be assessed in the next section.

3 Structural estimation and a numerical example

3.1 Quantitative replication of structural change in the U.S.

economy

The dynamic of structural change is described by (35). This equation relates the

growth rate of the expenditure share of goods, g∗S1
, to both the growth rate of the

relative price of goods and the growth rate of per-capita expenditures in terms of

services. In the U.S. data, the trend in the relative price of goods is well captured

by a decline at a constant annualized rate of -0.016 (see figure 2). Furthermore, per-

capita expenditures in terms of services grow on average at an annualized rate of

0.008.29 The relative importance of the income and substitution effects is controlled

by the two preference parameters ǫ and γ. In section 2 we presumed the parametric

restriction

0 ≤ ǫ ≤ γ < 1. (38)

28This is an important difference to theories where the income effect relies on quasi-homothetic

preferences. As Buera and Kaboski (2009a) show with their calibration: “The model fails to match

the sharper increase in services and decline in manufacturing after 1960. [...] Explaining this would

require a large, delayed income effect toward services. This is not possible with the Stone-Geary

preferences, where the endowments and subsistence requirements are most important at low levels

of income.” (See Buera and Kaboski (2009a), p. 473-474.)
29The average growth rate of aggregate expenditures in terms of services is well approximated

by a constant rate increase of 2.8 percents (see figure 7 in the appendix B). To match the average

employment growth in the data, N(t) is assumed to grow at constant rate n = 0.02. This yields

for the growth rate of per-capita expenditures in terms of services g∗E − n− g∗P2
= 0.008.
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We calibrate the model such, that the observed per-capita growth and the relative

price trend are matched. Then, the predicted growth rate of the expenditure share

of goods is given by g∗S1
= −0.016γ − 0.008ǫ. In the data we observe g∗S1

= −0.01

(see section 1). Given the model replicates the observed per-capita growth and price

dynamic, we can then ask whether ǫ and γ combinations (fulfilling (38)) exist, which

generate the observed magnitude of structural change. The answer to this question

is an unambiguous yes. Figure 6 plots all γ and ǫ combinations for which the model

predicts a g∗S1
of −0.75, −1.00 and −1.25 percents, respectively. Parameter combi-

nations that violate restriction (38) are represented by the gray area. We clearly

gs1
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Figure 6: γ and ǫ combinations perfectly matching the structural change
Notes: Given the observed per-capita growth and price dynamic, the solid lines plots all γ and ǫ combination which are consistent

with a g∗S1
of −0.75, −1.00 and −1.25 percent, respectively. The gray area represents γ and ǫ combinations which violate the

restriction 0 ≤ ǫ ≤ γ.

see, that if γ and ǫ is in the range of 0.42−0.63 and 0−0.42, respectively, (38) holds

and the magnitude of structural change is about the same as in the U.S. data. An

additional question is whether such parameter values are economically reasonable.

According to proposition 4, 1− γ can be interpreted as the asymptotic elasticity of

substitution across sectors, whereas 1 − ǫ is the expenditure elasticity of demand

for goods. Consequently, a joint replication of the observed magnitude of struc-

tural change, per-capita growth and relative price dynamics requires an elasticity of

substitution that converges (from below) to 0.37− 0.58 and an expenditure elastic-

ity of demand for goods between 0.58 and 1. These are both reasonable ranges.30

30In their calibration, Buera and Kaboski (2009a) and Acemoglu and Guerrieri (2008) use similar

values for the elasticity of substitution. Furthermore, for different expenditure categories, expendi-
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Therefore, we conclude that the model is able to replicate quantitatively the magni-

tude of per-capita growth as well as the nonbalanced price and expenditure features

observed at sectoral level.

3.2 Structural estimation of ǫ

As figure 6 illustrates, the effort to generate the same structural change as in the

data per se is uninformative about the size of the income and substitution effect.

g∗S1
= 0.01 is consistent with both a very large or inexistent income effect (ǫ = γ =

0.42 compared to ǫ = 0 and γ = 0.63). This subsection aims to provide evidence

on the magnitude of the income and relative price effects as drivers of structural

change. To do so, I exploit cross-sectional expenditure variations detected in figure

3 to estimate ǫ. Suppose we have different income groups h = 1, 2, ..., H. Then,

the model implies that the expenditure share devoted to goods of income group h

is given by

Sh
1 (t) = β

[

P2(t)

ēh(t)

]ǫ [
P1(t)

P2(t)

]γ

φh(t),

where ēh(t) is the average nominal per-capita expenditure level of income group h

and φh(t) is the expenditure inequality within group h. If within group expenditure

levels are relatively homogeneous (i.e. if the income bins are relatively narrow), φh(t)

is near unity for all income groups. Hence, we have log
[

Sh
1 (t)

]

≈ b(t)− ǫ log[ēh(t)],

where b(t) ≡ log [βP2(t)
ǫ−γP1(t)

γ]. Then, in order to identify ǫ by the cross-sectional

variation, the logarithmized expenditure share of goods of each income group h and

date t is regressed on a time dummy and the logarithmized group-specific per-capita

expenditure level. For thirteen income groups and seven years (2003-2009), the re-

sults are summarized in column (1) of table 1. The estimate for ǫ is equal to 0.18

and significantly different from zero. Notably, this simple regression explains over 83

percent of the observed variation in logarithmized group-specific expenditure shares.

Nevertheless, there are other household characteristics (as dependency-ratio, gender

or race), which potentially affect the expenditure structure. Since these household

characteristics are typically correlated with pre-tax income, the estimator of column

(1) may be biased. Consequently, we control in columns (2)-(4) for additional house-

hold characteristics. With these additional controls, the estimate for ǫ increases to

ture elasticities of demand between 0.5 and 1 are often estimated (see e.g. Houthakker and Taylor

(1970)).
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0.27 − 0.28. Two further robustness checks are performed in the last two columns

of table 1. First, in column (4), the years 1984-2002, for which we observe only the

lower eight income groups (up to 70’000 US$), are added. Second, in column (5)

we drop the highest, unbounded income group, for which within group inequality

may matter most. For both robustness checks, the estimated ǫ is about 0.23 and

significantly different from zero.31 Overall, there is clear evidence for the income

effect. Reasonable values of ǫ range between 0.2 and 0.3.

Suppose ǫ is equal to 0.25. Then, to be consistent with a decline of the goods’ ex-

penditure share at a rate of -1 percent and the observed growth and price dynamic,

requires γ = 0.5. With these parameter values, in 1946, 56% of the observed struc-

tural change is attributed to a relative price effect, whereas the remaining 44% are

attributed to the income effect.32 In 2009, the corresponding numbers are 67% and

33%, respectively. Furthermore, the model predicts that the relative contribution of

the substitution effect will asymptotically converge to 80%.

So far, we just presumed that the model replicates the per-capita growth rate and

price dynamic observed in the data. Matching the observed structural change and

cross-sectional expenditure share differences pins down the preference parameters ǫ

and γ. Only ǫ enters the equations which determine the aggregate behavior. Hence,

for any parameter values of α, δ, n and A, the exogenous TFP growth rates g1 and

g2 can be adjusted such that the per-capita growth rate and relative price dynamic is

matched. Finally, the rate of time preference is set in such a way that the Euler equa-

tion clears. Appendix C provides a full calibration of the model, which replicates

the per-capita growth, price dynamic, structural change and labor income share in

the U.S. economy. This emphasizes again the paper’s main contribution: Provid-

ing a theory, which quantitatively replicates the structural change and relative price

dynamic in the U.S. within a framework featuring balanced growth on the aggregate.

31For income quintiles instead of the 13 income groups analogous regressions with the sample

1984-2009 give for ǫ statistically highly significant estimates between 0.19 and 0.32 (not reported).
32In 1946, the goods sector accounted for 60% of total personal consumption expenditures. Then,

the change in expenditure share attributed to the substitution effect is equal to an annualized rate

of (−0.5 + 0.25 · 0.6) · 1.6 = 0.56 percents (see proposition 3). The expenditure share of goods has

declined to 32% in 2009.
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Dependent variable: Log expenditure share devoted to goods

(1) (2) (3) (4) (5) (6)

Log per-capita exp. −0.183∗∗∗ −0.269∗∗∗ −0.274∗∗∗ −0.277∗∗∗ −0.230∗∗∗ −0.235∗∗∗

(0.009) (0.019) (0.021) (0.023) (0.020) (0.037)

Size 0.060∗∗∗ 0.046∗ 0.010 0.030

(0.012) (0.024) (0.016) (0.026)

Children share 0.243 0.144 0.089 0.152

(0.169) (0.177) (0.115) (0.176)

Percent Black −0.006∗∗∗ −0.003 −0.002 −0.003

(0.002) (0.002) (0.002) (0.002)

Elderly share 0.007 0.173∗∗∗ 0.027

(0.097) (0.048) (0.095)

Percent Male −0.001 0.002∗∗∗ −0.001

(0.001) (0.000) (0.001)

Obs. 91 91 91 91 235 84

R2 0.838 0.874 0.874 0.880 0.759 0.798

Time fixed effects yes yes yes yes yes yes

Considered years 2003-2009 2003-2009 2003-2009 2003-2009 1984-2009 2003-2009

Table 1: Cross-sectional estimation of ǫ
Notes: Standard errors in parenthesis. *** significant at 1 percent, ** significant at 5 percent, * significant at 10 percent. “Size” is

the consumption unit size. “Children share” and “Elderly share” measures the household share with age < 18 and ≥ 65, respectively.

“Percent Male” and “Percent Black” refers to the corresponding percentages of reference persons. The 13 pre-tax income groups

are: -4’999$, 5’000-9’999$, 10’000-14’999$, 15’000-19’999$ 20’000-29’999$, 30’000-39’999$, 40’000-49’999$, 50’000-69’000$, 70’000-

79’000$, 80’000-99’000$, 100’000-119’000$, 120’000-149’000$ and 150’000$-. For the years 1984-2002 only the first 8 income classes

are available.
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4 Conclusion

This paper presented a parsimonious growth theory, which is consistent with struc-

tural change, relative price dynamics and the Kaldor facts. The model allows us

to analyze both explanations of structural change - income and substitution effects

- simultaneously. To the best of my knowledge, such a theory did not exist yet.

The theory can quantitatively replicate the structural change, expenditure growth

and relative price dynamic observed in the data. Moreover, it is consistent with

cross-sectional differences in the expenditure structure.

The theory has been motivated and applied to the structural change between goods

and services in the U.S. after World War II. But more generally, the theoretical

model offers a simple framework in which structural change can be discussed. Con-

sequently, the theory may prove to be useful also in other contexts, where changes

in the sectoral economic structure are of relevance.
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Appendix A: Proofs of lemmas and propositions

Proof of lemma 1

Proof of part (i): (2) corresponds to the expenditure function

e(P1(t), P2(t), Vi(t)) =

[

ǫ

[

Vi(t) +
β

γ

[

P1(t)

P2(t)

]γ

+
1

ǫ
−

β

γ

]]
1
ǫ

P2(t). (39)

According to proposition 3.E.2 of Mas-Colell, Whinston and Green (1995), for an

expenditure function to represent a locally non-satiated preference relation it has to

be (a) homogeneous of degree one in prices, (b) strictly increasing in Vi(t) and non-

decreasing in all prices, (c) concave in prices and (d) continuous in prices and Vi(t).

It is readily to see, that (a) and (d) are fulfilled. So I start proving (b). If we take the

first derivative with respect to Vi(t) and use (39), we get ∂e(·)
∂Vi(t)

=
[

e(·)
P2(t)

]1−ǫ

P2(t) > 0.

For the derivative with respect to prices we obtain (using (39) again) ∂e(·)
∂P1(t)

=

β
[

e(·)
P2(t)

]1−ǫ [
P2(t)
P1(t)

]1−γ

> 0 and ∂e(·)
∂P2(t)

=
[

e(·)
P2(t)

]1−ǫ [[
e(·)
P2(t)

]ǫ

− β
[

P1(t)
P2(t)

]γ]

, which is

positive as long as (3) holds (note that γ ≥ ǫ). This proves (b). To prove (c) we

show that the Hessian reads

H = Ξ

(

P2(t)
P1(t)

−1

−1 P1(t)
P2(t)

)

,

where Ξ = β
[

e(·)
P2(t)

]1−2ǫ

P1(t)
γ−1P2(t)

−γ
[

β(1− ǫ)
[

P1(t)
P2(t)

]γ

− (1− γ)
[

e(·)
P2(t)

]ǫ]

. The

eigenvalues are 0 and Ξ
[

P2(t)
P1(t)

+ P1(t)
P2(t)

]

. So both eigenvalues are less or equal to zero

if (1 − γ)
[

e(·)
P2(t)

]ǫ

≥ β(1 − ǫ)
[

P1(t)
P2(t)

]γ

, which is guaranteed by (3). This proves (c)

and completes the proof of part (i).

�

Proof of part (ii): V (·) is clearly increasing in ei(t) (see proof of part (i)). For

the second derivative we get ∂2Vi(t)
∂ei(t)2

= −(1− ǫ)ei(t)
ǫ−2P2(t)

−ǫ < 0.

�
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Proof of lemma 3

Proof of part (i): The Allen-Uzawa formula for the elasticity of substitution

reads σi(t) =
∂x

i,H
1 (t)

∂P2(t)
ei(t)

x
i,H
1 (t)xi,H

2 (t)
, where x

i,H
j (t) is the Hicksian per-capita demand

of household i for sector j = 1, 2. Plugging in the expressions, simplifying and

substituting (2) by Vi(t), we obtain (7). With γ > 0 and (3), σi(t) is clearly strictly

smaller than one since γ ≥ ǫ.

�

Proof of part (ii): The expenditure elasticity of demand for goods is 1− ǫ, which

is strictly less than one if and only if ǫ > 0. Then, Engel aggregation implies that

the expenditure elasticity of services is larger than one.

�

Proof of part (iii): With ǫ = 0, demands of both sectors are linear functions

of the per-capita expenditure level (see (4) and (5)). From this, part (iii) follows

immediately.

�

Proof of lemma 4

The current value Hamiltonian of the household’s intertemporal optimization is

given by

H = V (P1(t), P2(t), ei(t)) + λi(t) [ai(t) [r(t)− n] + w(t)li − ei(t)] .

We can then derive the first-order conditions

λ̇i(t) = λi(t) [ρ− r(t)] and ei(t)
ǫ−1P2(t)

−ǫ = λi(t). (40)

The two first-order conditions, (40), simplify to (10).

�
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Proof of proposition 1

Proof of part (i): (11) and the definition of E(t) yield gei(t) = gE(t) − n. Using

this in (10) gives (12). Substituting ei(t) in (8) by ei(0) exp
[

∫ t

0
gE(ς)− n dς

]

gives

(13). Using the first-order conditions (40) in (9) and ignoring the positive constant

λi(0) gives (14).

�

Proof of part (ii): Aggregation of individual demands gives

X1(t) = βP1(t)
−1P2(t)

ǫ

[

P1(t)

P2(t)

]γ [
E(t)

N(t)

]

−ǫ

E(t)φ(t), (41)

X2(t) =
E(t)

P2(t)
− βP2(t)

ǫ−1

[

P1(t)

P2(t)

]γ [
E(t)

N(t)

]

−ǫ

E(t)φ(t), (42)

where φ(t) ≡
∫ 1

0

[

ei(t)N(t)
E(t)

]1−ǫ

di. Since φ(t) is a scale invariant measurement of

inequality of per-capita consumption expenditures across households, (11) implies

φ(t) = φ(0) ≡ φ, ∀t. Then, (41) and (42) imply (15) and (16).

�

Proof of part (iii): (6) and (15) show that a household exhibits the same expen-

diture share as the aggregate economy if and only if ei(t) =
E(t)
N(t)

φ−
1
ǫ .

�

Proof of lemma 5

Optimization implies that the marginal rate of technical substitution is equal to the

relative factor price, i.e.

w(t)

R(t)
=

α

1− α

Kj(t)

Lj(t)
, j = 1, 2. (43)

Hence, we have K1(t)
L1(t)

= K2(t)
L2(t)

. With (20), this gives (27). Next, the rental rate has

to equalize the valued marginal products across all sectors. This yields

R(t) = A = (1− α)

[

L(t)

K1(t) +K2(t)

]α

Pj(t) exp [gjt] , j = 1, 2,
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where (27) has been used. Solving for Pj(t) gives (25). Using R(t) = A and (27)

in (43) yields (24). Finally, with (27), the production functions can be rewritten as

(26).

�

Proof of proposition 2

Proof of part (i): First, we show that there exists a unique equilibrium in

which ge(t) grows at a constant rate. (16), (21), (25) and (26) imply E(t) =
A

1−α
[K1(t) +K2(t)]. Hence, we have gE(t) = ge(t) + n = gK1+K2(t). Using this

in (25) yields (34). Plugging (23) and (34) into (12) we get [1− (1− α)ǫ] ge(t) =

A − δ − ρ + ǫg2. This proves that we have ge(t) = g∗e , ∀t, in equilibrium. Next,

we show that - given ge(t) = g∗e - the transversality condition holds if and only if

per-capita wealth grows at rate g∗e too. With (23), the transversality condition, (14),

can be rewritten as

lim
t→∞

ai(t) exp [−(A− n− δ)t] = 0, ∀i. (44)

(24), g∗E = g∗K1+K2
and gE(t) = g∗e+n yield gw = g∗e . Then, with (23), the flow budget

constraint, (13), simplifies to ȧi(t) = [A− δ − n] ai(t) − [ei(0)− w(0)li] exp [g
∗

et].

This linear differential equation has the following solution (see e.g. Acemoglu (2009),

Section B.4)

ai(t) = Ai exp [(A− δ − n) t] +
ei(0)− w(0)li
A− δ − n− g∗e

exp [g∗et] , (45)

where Ai is a constant which is to be determined. Using this expression in (44) we

get

lim
t→∞

Ai +
ei(0)− w(0)li
A− δ − n− g∗e

exp [− (A− δ − n− g∗e) t] = 0.

Then, the transversality condition is fulfilled if and only if Ai = 0 (note that (28)

ensures that A− δ − n− g∗e > 0). Ai = 0 implies that ai(t) grows at constant rate

g∗e . Since this is the case for all households i ∈ [0, 1], this proves uniqueness of the

equilibrium path with g∗E = g∗K .

Next, we show that (30) and (31) jointly ensure condition (3) for all individuals

at each date. The poorest household has no wealth, i.e. ai(0) = 0, and a labor
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endowment of l̄. Individuals with no wealth consume the entire income (see (45)).

Hence, the poorest household exhibits ei(t) = w(t)l̄, ∀t. Then, in the view of (25),

at t = 0, condition (3) can be rewritten as

w(0)ǫl̄ǫ ≥ β

[

1− ǫ

1− γ

] [

A

1− α

]ǫ [
K1(0) +K2(0)

L(0)

]αǫ

. (46)

Note that (17) and (20) yield K1(t)+K2(t)
K(t)

=
A−δ−g∗K

A
and we have K1(0)+K2(0)

L(0)
= w(0)

A
1−α
α

(see (24)). Then, (46) can be written as

αǫl̄ǫ ≥ β

[

1− ǫ

1− γ

] [

L(0)

K(0)

A

A− δ − g∗K

]ǫ(1−α)

.

Plugging in the expression for g∗K , we see that this condition coincides with (30).

The nominal expenditure levels and all prices grow in equilibrium at constant rates.

Hence, given condition (3) holds at date t = 0, it also holds for t > 0 if ǫ(g∗E − n) ≥

γg∗P1
+ (ǫ− γ)g∗P2

. This is guaranteed by condition (31) and completes the proof of

part (i).

�

Proof of part (ii): According to (15), S1(t) changes at rate gS1(t) = −ǫ [ge(t)− gP2(t)]−

γ [gP2(t)− gP1(t)]. In equilibrium, this expression reduces to (35). The goods market

clearing condition can be rewritten in growth rates as gS1(t) = gP1(t)+gX1(t)−g∗E ≤

0. With (34), gX1(t) = g1 + αgL1(t) + (1− α)gK1(t) and gK1(t)− gL1 = g∗K − n (see

(27)) this implies (36). Finally, (34) follows immediately from (37).

�

Proof of proposition 3

Proof of part (i): The individual expenditure shares are given by (6). Then, since

gei = g∗E − n, ∀i, the individual expenditure shares devoted to goods grow at the

same rate as their aggregate counterpart.

�

Proof of part (ii): In terms of prices and attained utility level, Vi(t) the expendi-

ture share of goods of household i is given by (see (39) and (6))

si1(t) = β

[

ǫ

[

Vi(t) +
β

γ

[

P1(t)

P2(t)

]γ

+
1

ǫ
−

β

γ

]]

−1 [
P1(t)

P2(t)

]γ

. (47)
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In view of (47), the elasticity of si1(t) with respect to P1(t)
P2(t)

reads−γ+ǫβ
[

P2

ei(t)

]ǫ [
P1(t)
P2(t)

]γ

,

which can be rewritten as −γ+ǫsi1(t). This expression is non-positive since si1(t) ≤ 1

and γ ≥ ǫ.

�

Proof of part (iii): For the elasticity of si1(t) with respect to Vi(t) we obtain −ǫ.

�

Proof of proposition 4

Because (31) holds with strict inequality, the expenditure share devoted to goods

decreases at a constant rate and reaches asymptotically a value zero. This proves

part (i). The expenditure elasticity of demand for goods is 1− ǫ for all households

at each date (see proof of part (ii) of lemma 3). Since we have growth in per-capita

terms (see (32)), the expenditure level of all household goes to infinity. Then, the

expenditure elasticity of demand for services reaches asymptotically unity and the

elasticity of substitution reduces to 1− γ (see (7)). This proves part (ii) and (iii).

�
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Appendix B

3
3.

5
4

4.
5

1950 1960 1970 1980 1990 2000 2010
year

Figure 7: Logarithmized aggregate expenditures in terms of services
Notes: The figure plots the logarithmized aggregate expenditures in terms of services and a linear fit. The slope of the linear fit is

equal to 0.028. Source: BEA, NIPA tables 1.1.4 and 1.1.5.

Appendix C: Calibration

The theoretical model of section 2 has 10 parameters: the preference parameters, ρ,

β, γ and ǫ, the technology parameters α, δ, g1, g2, and A and the demographical

parameter n. Motivated by the estimates of table 1, we chose ǫ = 0.25 and γ = 0.5.

To match the average employment growth, we set n = 0.02. For simplicity, I assume

zero depreciations. The real (in investment goods denominated) interest rate is set

to 10%, i.e. A = 0.1. We chose ρ, g1 and g2 such that the model replicates the output

growth, relative price dynamics and the aggregate labor income share,
α[A−g∗E−δ]
A−α[g∗E+δ]

,
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parameter value target data

population growth, n 0.0200 annual labor force growth 0.020

output elasticity of labor, α 0.7748 labor income share 0.670

TFP goods sector, g1 0.0193 price dynamic of goods, g∗P1
−0.003

TFP service sector, g2 0.0033 price dynamic of services, g∗P2
0.013

rate of time preference, ρ 0.1008 output growth, gE 0.041

Table 2: Calibration of the numerical example
Notes: The real interest rate, A− δ, is set to 10%, whereas the depreciation rate, δ, is assumed to be zero. For γ and ǫ values of 0.5,

and 0.25 are chosen. These values are according to the estimations of table 1 reasonable and match - for the given output growth

and price dynamic - the observed structural change.

of the U.S. economy. The corresponding values are g∗E = 0.041, g∗P1
= −0.003,

g∗P2
= 0.013 and 0.67 for the labor income share. To match the labor income share

we need α = 0.7748. Then, according to (34) we have g1 = 0.0193 and g2 = 0.0033.

Finally, the Euler equation, (12), gives ρ = 0.1008. The chosen parameter values are

summarized in table 2. With these parameter values, the model perfectly replicates

the structural change and price trend observed in figure 1 and 2 (see dashed lines).

The expenditure share and the relative price of goods decrease at constant rates

g∗S1
= −0.01 and g∗P1

−g∗P2
= −0.016, respectively. The preference parameter β can be

chosen such that the level of expenditure shares is met. On the aggregate, standard

properties of balanced growth are matched. The real interest rate is constant and

the real per-capita growth rate in terms of investment goods is, as in the data, 2.1%.

The capital-output ratio, the saving rate and labor income share are constant at 3.3,

0.135 and 0.67, respectively (see footnote 22).
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Appendix D: Equilibrium dynamic with factor in-

tensity differences

Suppose the technologies are instead of (18)

Yj(t) =
exp [gjt]

α
αj

j (1− αj)1−αj
Lj(t)

αjKj(t)
1−αj , j = 1, 2,

with αj ∈ (0, 1), j = 1, 2 and α1 6= α2. We assume that the relative factor endow-

ments are the same for all households, i.e. ai(0)
li

= K(0)
L(0)

, ∀i. Under this assumption,

changes in the expenditure shares - which will now affect the relative factor reward
R(t)
w(t)

- do not affect the inequality measurement, φ.33 Finally, we assume that condi-

tion (3) holds with strict inequality.34

With factor intensity differences lemma 5 will not hold anymore. Together with zero

profits and market clearing, firm’s cost minimization yields w(t)L1(t) = α1S1(t)E(t)

and w(t)L2(t) = α2 [1− S1(t)]E(t). Combining these expressions with the labor

market clearing condition gives

w(t) =
E(t)

L(t)
[α2 + S1(t) [α1 − α2]] . (48)

The AK technology of the investment goods sector is unchanged. Consequently, we

still have r = R− δ = A− δ. Equilibrium prices are given by

Pj(t) = exp [−gjt]w(t)
αjA1−αj , j = 1, 2. (49)

Combining (15) with (48), (49) and the definition of L(t) we obtain

S1(t) = β̃

[

E(t)

L(t)

]α1γ−(γ−ǫ)α2−ǫ

L(0)−ǫ [α2 + S1(t)(α1 − α2)]
α1γ−(γ−ǫ)α2 , (50)

where β̃ ≡ βφAǫ+α2(γ−ǫ)−α1γ exp [((γ − ǫ)g2 − γg1)t]. Differentiating (50) with re-

spect to time gives

Ṡ1(t)

S1(t)
= γ̂

[

Ė(t)

E(t)
− n

]

+(γ−ǫ)g2−γg1+[α1γ − (γ − ǫ)α2]
Ṡ1(t) [α1 − α2]

α2 + S1(t) [α1 − α2]
, (51)

33Without this assumption, the joint li and ai(0) distribution would have to be specified and

potentially multiple equilibria arise.
34This assumption shortens the subsequent proofs, since a separate discussion of the case in

which - by coincidence - S1(0) = 1, can be avoided.
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where γ̂ ≡ α1γ − (γ − ǫ)α2 − ǫ. With (48) and (49) the Euler equation (12) can be

written as

[1− ǫ(1− α2)]

[

Ė(t)

E(t)
− n

]

= A− δ − ρ+ ǫg2 −
ǫα2Ṡ1(t) [α1 − α2]

α2 + S1(t) [α1 − α2]
. (52)

Finally, the law of motion of the capital stock is given by K̇(t)
K(t)

= A−δ+ w(t)L(t)
K(t)

− E(t)
K(t)

.

With (48) this can be written as

K̇(t)

K(t)
= A− δ −

E(t)

K(t)
[1− α2 − S1(t)(α1 − α2)] . (53)

Equations (51), (52), (53) and the transversality condition define the evolution of

S1(t), E(t) and K(t). K(0) is exogenously given. The non-predetermined E(0)

implicitly pins down S1(0) according to (50).35

A constant growth path (CGP) is defined according to Acemoglu and Guerrieri

(2008) as an equilibrium growth path along which expenditures grow at a constant

rate. We have the following proposition:

Proposition 5. Suppose we have

(γ − ǫ)g2 − γg1 + [α1γ − (γ − ǫ)α2 − ǫ]
A− δ − ρ+ ǫg2

1− (1− α2)ǫ
< 0, (54)

and let us denote asymptotic values by a superscript A (i.e. zA = limt→∞ z(t), for

z = S1, gE, gK , gw, gS1). Then, there exists a globally saddle-path stable CGP with

SA
1 = 0,

gAE − n = gAK − n = gAw =
A− δ − ρ+ ǫg2

1− (1− α2)ǫ
,

gAS1
= (γ − ǫ)g2 − γg1 + [α1γ − (γ − ǫ)α2 − ǫ]

[

gAE − n
]

< 0.

35For any given E(t), exactly one unique S1(t) ∈ (0, 1) fulfills (50). To see this, note that at

S1(t) = 0, the left-hand side (LHS) of (50) is zero, whereas the right-hand side (RHS) is ∈ (0, 1)

(the upper bound is ensured by the strict inequality of condition (3)). On the contrary, with

S1(t) = 1 we have LHS = 1 > RHS. Hence, since both are continuous functions, there is at least

one intersection between 0 and 1. Finally, since the LHS is linear and the RHS is either concave

or convex on the entire domain we have at most two intersections. Hence, LHS and RHS cross

exactly once between 0 and 1.
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Proof. With the expressions for gAE and gAS1
, (51) and (52) can be rewritten as

Ṡ1(t)

S1(t)
=

[

Ė(t)

E(t)
− gAE

]

γ̂ + [α1γ − (γ − ǫ)α2]
Ṡ1(t) [α1 − α2]

α2 + S1(t) [α1 − α2]
+ gAS1

,

and
Ė(t)

E(t)
− gAE = −

ǫα2Ṡ1(t) [α1 − α2]

[1− ǫ(1− α2)] [α2 + S1(t) [α1 − α2]]
. (55)

Solving these two equations for Ṡ1(t) gives

Ṡ1(t) =
gAS1

S1(t)
[

S1(t) +
α2

α1−α2

]

α2

α1−α2
+ S1(t)

[

1− α1γ + (γ − ǫ)α2 + α2ǫ
γ̂

q

] ,

where q ≡ 1 − ǫ(1 − α2). Hence, Ṡ1(t) is zero if and only if S1(t) = 0 (note that

S1(t) ∈ [0, 1]). The equilibrium with Ṡ1(t) = S1(t) = 0 is stable since

∂Ṡ1(t)

∂S1(t)

∣

∣

∣

∣

∣

S1(t)=0

= gAS1
< 0.

Hence, no matter where we start, S1(t) will always converge to SA
1 = 0 and conse-

quently Ė(t)
E(t)

will converge to gAE (see (55)). Hence, asymptotically we have K̇(t)
K(t)

=

A−δ− E(t)
K(t)

[1− α2] and E(t) grows at a constant rate. This is exactly the same struc-

ture as in the equilibrium of the main text. Then, by the identical argument as in the

proof of proposition 2, the transversality condition is violated unless K̇(t)
K(t)

= Ė(t)
E(t)

.

The CGP is very similar to the one in Acemoglu and Guerrieri (2008). But, the

important difference to Acemoglu and Guerrieri (2008) is that this model features

an income effect (as long as ǫ > 0). In contrast to the asymptotic equilibrium in

the main text (see proposition 4), the structural change is now also governed by the

sectoral differences in the output elasticities of labor. The intuition is the same as

in Acemoglu and Guerrieri (2008): We have capital deepening, whereby the relative

factor price of labor, w(t)
R(t)

, increases over time. This increases the relative price of the

sector, which is more labor intensive. Finally, according to the substitution effect,

this relative price drift affects the structural change. Condition (54) ensures gAS1
< 0

and guarantees global stability.
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Appendix E: Endogenizing g1 and g2

Suppose that, instead of (18), the production functions read

Y1(t) = ∆̃χc
1(t)

1−∆χa
1(t)

∆, and Y2(t) = ∆̃χc
2(t)

1−∆χb
2(t)

∆,

with ∆̃ ≡ 1
∆∆(1−∆)1−∆ . χ

a(t), χb(t) and χc(t) are three different intermediate inputs.

χa(t), χb(t) are sector specific inputs, whereas χc(t) is a “general” input, which

can be used in both sectors. ∆ ∈ (0, 1) is a measure of differences in production

processes between goods and services.36 Intermediate inputs are CES aggregators

of different input-specific sets of available machines, mωl(t),

χl(t) =

[

∫ Ml(t)

0

mωl(t)
ν−1
ν

]
ν

ν−1

dωl, l = a, c,

and

χb(t) = Mb(t)
−

1
ν−1

[

∫ Mb(t)

0

mωb(t)
ν−1
ν

]
ν

ν−1

dωb,

where ν > 1. The measures of available machine varieties Ml(t) are time varying.

The technology of service specific intermediates, χb(t), does not allow for produc-

tivity gains due to specialization. Production of intermediates as well as goods and

services is competitive. Market clearing implies χa
1(t) = χa(t), χb

1(t) = χb(t) and

χc
1(t)+χc

2(t) = χc(t). Each machine type ωl suitable in production of input l = a, b, c

is produced by a monopolist according to the following production function

mωl(t) =
ν

(ν − 1)αα(1− α)1−α
Lωl(t)αKωl(t)1−α, ∀ωa, ωb, ωc,

where α ∈ (0, 1). Lωl(t) and Kωl(t) denote labor and capital, respectively, used in

firm ωl at date t. To simplify the expressions, we set henceforth ν = 2. Monopolisti-

cally competitive machine producers face an iso-elastic demand and maximize their

profits taking the wage and rental rate as given. Hence, all machine producers set

their price equal to w(t)αR(t)1−α. The prices of intermediate inputs l = a, b, c are

then given by pl(t) =
w(t)αR(t)1−α

Ml(t)
, l = a, c and pb(t) = w(t)αR(t)1−α. Then, under

perfect competition, we have

P1(t) = w(t)αR(t)1−αMa(t)
−∆Mc(t)

−(1−∆), and P2(t) = P1(t)Ma(t)
∆. (56)

36With ∆ → 0 the production processes are identical.
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A fraction ∆S1(t) of total expenditures is spent on type a machines. Then, because

of symmetry and constancy of the markup, profits per firm are given by

πωa(t) =
∆S1(t)E(t)

2Ma(t)
, ∀ωa. (57)

The market size of all type b and c firms is ∆ [1− S1(t)]E(t) and (1 − ∆)E(t),

respectively. Consequently, we have

πωc(t) =
(1−∆)E(t)

2Mc(t)
, ∀ωc, and πωb(t) =

∆ [1− S1(t)]E(t)

2Mb(t)
, ∀ωb. (58)

Suppose a blueprint of a machine variety suitable in production of input l = a, b, c

can be invented according to a Cobb-Douglas production functions defined over the

factor inputs labor and capital. Then, the innovation possibilities frontiers can be

written as follows

Ṁl(t) =
1

flκκ(1− κ)1−κ

Ll
R(t)

κK l
R(t)

1−κ, l = a, b,

and

Ṁc(t) =
1

fcϑϑ(1− ϑ)1−ϑ
Lc
R(t)

ϑKc
R(t)

1−ϑ,

where Ll
R(t) and K l

R(t) is labor and capital, respectively used for R&D directed to

the intermediate sector l. ϑ ∈ (0, 1) may differ from κ ∈ (0, 1). fa, fb and fc are

positive constants. At date t the value of a firm that produces machine ωl is given

by

vωl(t) =

∫

∞

t

πωl(τ) exp

[

−

∫ τ

t

r(ς)dς

]

dτ.

Henceforth, we consider an equilibrium with positive R&D investments in all sectors

(i.e. firm values equalize R&D costs of a new blueprint). Moreover, let us focus on

the constant growth path (CGP) of this economy, which is defined as an equilibrium

path along which sectoral TFP growth rates (i.e. gMa
and gMc

) are constant and a

constant fraction of total labor and capital is devoted to R&D.

Along a CGP, the system of equilibrium conditions is similar to the equilibrium in

the main text. Consequently, we have g∗E = g∗K = g∗w + n and R(t) = A (using 2).

With positive R&D investments we then have (where we used g∗w = g∗E − n)

vωl(t) =
πωl(t)

r − κ(g∗E − n)
= flw(t)

κA1−κ, l = a, b, (59)
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and

vωc(t) =
πωc(t)

r − ϑ(g∗E − n)
= fcw(t)

ϑA1−ϑ.

Plugging in the expressions for the profits and differentiate both sides of these equa-

tions with respect to time yields

κ(g∗E − n) = g∗S1
+ g∗E − g∗Ma

, and ϑ(g∗E − n) = g∗E − g∗Mc
. (60)

The intuition is as follows: Along the CGP, total profits of the type a machine sector

grow at constant rate g∗S1
+g∗E and market entry cost grow at rate κ(g∗E −n). Hence

in order to be consistent with zero ex ante profits, the growth rate of the number of

firms has to fill the gap. Since the growth rate of the sector specific market depends

on the pace of structural change, the growth rate g∗Ma
is a function of g∗S1

. Similarly,

the total market size of type c machines grows at rate g∗E, whereas entry cost grow

at rate ϑ(g∗E − n). Hence, for zero ex ante profits the number of firms has to grow

at the rate g∗E − ϑ(g∗E − n).

Then, according to (56), the sectoral prices grow along the CGP at the constant

rates g∗P1
= α(g∗E − n) − ∆g∗Ma

− (1 − ∆)g∗Mc
and g∗P2

= α(g∗E − n) − (1 − ∆)g∗Mc
.

With these price evolutions we obtain for the dynamic of S1 (see (35))

g∗S1
= −γ∆g∗Ma

− ǫ
[

(1−∆)g∗Mc
+ (1− α) [g∗E − n]

]

. (61)

Finally, the Euler equation reads

(1− (1− α)ǫ) [g∗E − n]− ǫ(1−∆)g∗Mc
= A− δ − ρ. (62)

We have the following proposition.

Proposition 6. There exists a unique CGP with

g∗E =
A− δ − ρ+ n [ǫ(1−∆)ϑ− ǫ(1− α) + 1]

1− ǫ [(1− α) + (1−∆)(1− ϑ)]
,

g∗Mc
=

(1− ϑ)(A− δ − ρ) + n [1− ǫ(1− α)]

1− ǫ [(1− α) + (1−∆)(1− ϑ)]
,

g∗Ma
=

g∗E(1− ǫ(1−∆)) + (g∗E − n)(1− κ + ǫ(ϑ(1−∆)− (1− α))

1 + ∆γ
.
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Proof. Equations (60), (61) and (62) jointly define g∗E, g
∗

Ma
, g∗Mc

and g∗S1
. Finally, to

proof that this equilibrium path is a CGP, we have to show that a constant fraction

of total resources is devoted to R&D. R&D investments of sector c are given by

g∗Mc
Mc(t)w(t)

ϑR(t)1−ϑ which grows at rate g∗E. For the type a and b machine sector

we have (see (59) and (57))

faMa(t)+fbMb(t) =
πωa(t)Ma(t) + πωb(t)Mb(t)

w(t)κR(t)1−κ(r − κ(g∗E − n))
=

∆E(t)

2w(t)κR(t)1−κ(r − κ(g∗E − n))
.

Hence, R&D investments in type a and b machines are given by

[

faṀa(t) + fbṀb(t)
]

w(t)κR(t)1−κ =
∆(g∗E − κ(g∗E − n))E(t)

2(r − κ(g∗E − n))
,

which grows at rate g∗E too.

This proposition illustrates, that we can endogenize the sectoral TFP growth rates.

The CGP is identical to the equilibrium in the main text with g1 = ∆g∗Ma
+(1−∆)g∗Mc

and g2 = (1−∆)g∗Mc
. The endogenization resembles the growth model without scale

effects by Jones (1995). Nevertheless, notice the following two differences: First,

since we have a multiple sector model with structural change, the sector specific TFP

growth rate of goods depends also on the pace of structural change. Second, since

the model contains capital accumulation as another source of endogenous growth,

even without population growth (i.e. n = 0), we will have R&D investments along

the CGP.


