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Abstract

I tackle the problem of the optimum quantity of money in a model
in the spirit of Friedman’s (1969) seminal work. Provided the seignorage
proceedings are distributed uniformly, I prove that the Friedman rule
is (ex-ante) pareto suboptimal, is dynamically inconsistent,and strains
capital formation.

1 Introduction

I will resent an economy that resembles that by Friedman (1969), where he ar-
gues heuristically that the government should issue money at a fixed rate which
makes the opportunity cost of holding money as low as possible. The insight
is that, as money provides transaction services, the optimal rate of inflation
should have all consumers satiated with real balances, provided the social cost
of producing money is negligible. That article prompted an immediate some
economists’ reaction, who sought to set out formally the axiomatic corpus pro-
posed by Friedman. For instance, Brock (1974, 1975) and Bewley (1977, 1980),
among others, confirmed the Friedman rule (FR) by means of formal general
equilibrium (GE) models. Phelps (1973), on the contrary, contradicted the FR
in the presence of excise taxes when money is a final good1 .

This article shows that the optimal inflation rate is strictly higher than
the FR regardless the presence of distorted taxes. To this scope, I construct
a Bewley-type economy where money is used as a store of value as well as a
medium of exchange. I have also imposed the condition that the existing trans-
action technology induces consumers to hold a decreasing real balances-capital
ratio with respect to wealth. This environment lies in harmony with Friedman’s
outlook on money demand. Besides, it is assumed that households face idiosyn-
cratic risk materialized in their labor productivity; and that they smooth their
consumption path by holding both capital and inconvertible money.

1See Krimbourgh (1986), Faig (1988), Guidotti and Veigh (1993).
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incomplete market models with idiosyncratic risk was first introduced by
Bewley (1977, 1980, 1983) to formalize classical issues such as the permanent
income hypothesis, and the FR itself. In the same spirit, Aiyagari (1994) and
Huggett (1995) addressed the capital accumulation patterns and the determi-
nation of the interest rate under the presence of idiosyncratic uncertainty, and
demonstrated the presence of precautionary motive of savings. Krussell and
Smith (1998) showed that, in a Bewley economy, the aggregate dynamics were
mostly explained by the first moment of wealth distribution. By contrast, this
article provides an example where idiosyncratic uncertainty matters substan-
tially in terms of policy implications.

As well as the distributional channel, other reason why welfare might be
increased by bidding up inflation is the interplay between aggregate capital and
consumption. On the one hand, when inflation is low enough, it promotes capi-
tal accumulation because it makes more costly holding money related to capital.
This phenomenon, known as the Tobin effect, reverses once inflation reaches a
threshold level. On the other hand, as fluctuating-income consumers are given
assets whose rate of return equals the opposite of the discount rate, they are
willing to accumulate wealth boundlessly (Schechtman, 1976; Schechtman and
Escudero, 1977; Sotomayor, 1984). Thus, as inflation decreases in a neighbor-
hood of the FR, the portfolio substitution effect dominates the precautionary
effect, and aggregate consumption and capital grow with the rate of injection
of liquid balances.

Market incompleteness has been proven to be key in the literature on the
OQM. In Levine (1991) and Kehoe et al. (1998), the distribution of real bal-
ances is exogenous. Other examples where an expansionary monetary policy
dominates the FR are provided by Levine, Green and Zhou (2002), Mehrling
(1995), Paal and Smith (2000), Deviatov and Wallace (2001), Smith (2002).

Along the next section I offer the description of the economy and some
properties displayed by aggregate demand for assets, necessary to characterize
equilibria. In section 3, the competitive equilibrium is defined. In section 4,
the main proposition on optimality is presented. Section 5 concludes and offers
future line of research. An appendix is devoted to proving the main result of
the paper.

2 The Economy

There is a continuum of agents with identical preferences, who seek to maximize
the same utility function defined over stochastic paths of consumption and cash.
Time is discrete and denoted by t ≥ 0, and the temporal horizon is infinite. Each
period, consumers suffer form an idiosyncratic shock materialized in their units
of efficiency labor. This is the only source of uncertainty, so that the aggregates
shall evolve deterministically over time. The total amount of labor is normalized
to one unit. Available stores of value are money and the single good which can
be sold to the productive units, which are assumed to be identical and operating
in a perfectly competitive market under a neoclassical production function.
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Money is issued by the government at a fixed rate

MS
t+1 = σMS

t .

According to whether σ is greater or less than one, money is either injected
or withdrawn. The proceedings of the inflation tax (subsidy) is assumed to be
distributed uniformly among consumers. With regards to the rest of the financial
market, it is assumed that no market for borrowing and lending exist, and thus
the only possibility for smoothing the path of consumption is by holding the
available assets (money and capital).

Although money is dominated by capital in terms of rate of return, real bal-
ances are held because they procure non pecuniary services, which are reflected
in the appearance of cash in the households’ utility function. This formulation
captures some frictions in the financial market, the shoe-leather costs or simply
represents the transactions technology.

At the aggregate level, the economy is described by the evolution of the
distribution of assets. Uncertainty is restricted to individuals: by the large of
law numbers (Judd, 1985) the shocks are purely idiosyncratic and not affect the
evolution of the whole economy. I assume that these shocks are governed by a
sequence of iid random variables which are cot correlated among individuals.

Firms produce out of labor and capital supplied by consumers. They have
identical neoclassical production function and operate in a perfectly competitive
regime. As the total labor is one, the production per capita can be expressed
this way

f(K) = F (K, 1)− δK.

f satisfies the usual Inada conditions. The firm buys capital and hire workers so
as to maximize their profits. The necessary and sufficient conditions establish
that the real wage and the real interest rate are paid their marginal productivity:

r = f ′(K)

w = f(K)− f ′(K)K.

2.1 Consumers

2.1.1 Preferences and Transaction Technology

Each consumer maximizes a separable utility function defined over stochastic
streams of consumption and real balances,

(1− β)E
∞∑

t=0

βt [u (ct) + ϕ (mt)] , (1)

for 0 < β < 1.As usual, c denotes the non storable units of consumption and
m stands for real balances available for transactions2 . E is the expectation

2ϕ(Mt
Pt
) would be a better representation of the implicit transaction technology that the

utility function is intended to rather than of ϕ(
Mt+1

Pt
) = ϕ(mt+1). However I use the

alternative specification for convenience of notation without altering the implications of the
model.
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operator. Preferences (including β) are identical among individuals, and the
current utility functions (u, ϕ) obey the usual Inada conditions. Moreover, it
will be assumed that u has finite asymptotic exponent and that dominates ϕ in
terms of marginal utility. Formally:

1 < lim
c→∞

−
lnu′(c)

ln c
<∞ (2)

lim
x→∞

ϕ′(x)

u′(x)
= 0. (3)

The separability of the utility function simplifies the analysis and should be
innocuous. The finite asymptotic exponent rules out the possibility that con-
sumers behave as if there continue to be uncertainty as wealth diverges to infin-
ity. A class of functions that does not exhibit asymptotic finite exponent is the
exponential utility function, whose graphic displays huge variations in marginal
utility of consumption as compared to values very close in proportion. This
assumption works as a sufficient condition for which the demand for assets does
not diverge to infinite. The fact that consumption dominates money in terms of
utility reveals the very nature of consumption and rescues the its predominant
weight on welfare in a context with money in the utility function.

When u and ϕ belong to the CRRA class of utility functions, (3) would
simply imply that the elasticity of intertemporal substitution of ϕ would be less
than that of u. The insight is that low values of m bring about a relatively high
willingness of cash, even though a consumer has an acceptable level of consump-
tion. This reflects an interaction between the productive system and financial
markets, as if a given level of production could not be efficiently allocated with-
out enough liquidity. The implications of this model must be interpreted on
the basis that it represents an reduced version of a more complex and implicit
transaction technology. The nature of this technology and its microeconomic
foundations are a subject of further research.

2.1.2 The Budget Constraint

The intertemporal budget constraint being faced by consumers is given by

ct +mt+1 + kt+1 = (1 + πt)
−1mt + (1 + rt) kt + θtwt + τ t ≡ xt (4)

x0 > 0, given.

I am assuming that the government distributes uniformly the inflation tax as
lump-sum subsidies (if σ > 1) transfers (otherwise). Accordingly,

τ t =
σMS

t

Pt
.

The variable k represents the units of capital sold to the firms. In this con-
text, this is foregone consumption rented at a rate r. Labor is supplied inelas-
tically, since leisure does not enter the utility function. Yet, units of efficiency
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labor are idiosyncratic, and follow a iid stochastic process inside a compact real
interval Θ =

[
θ, θ
]
with θ > 0, and according to a distribution (measure) ψ. It is

possible to define the probability space (Ω,F , P ) which captures all the intrinsic
uncertainty of the model: any element of Ω is a sequence {θt} of realizations of
the stochastic process; F is the infinite product of Borel fields of Θ; and P is
the probability measure naturally inferred from ψ3 . Individuals are assumed to
be rational: the expectation operator appearing in (1) and in the sequel is on
the basis of the intrinsic uncertainty just defined.

An individual’s position at period t is described by xt, the total amount of
resources available for consumption. I shall refer to it as wealth4 .

In Appendix B, it is proven that the economy is a globally stable system.
Therefore, in the sequel I will mainly consider stationary states, which are char-
acterized by displaying a constant series of asset returns z =

(
σ−1, 1 + r

)
. As

the wage rate can be deduced from the real interest rate, it can be dropped
away from the state variable. Note that z defines the law of motion of the (indi-
vidual) asset accumulation. Defining a = (m,k), and denoting by ’ the forward
operator,

x′ = a · z + θw + τ .

Note that θw represents the stochastic component of asset accumulation, and
of income.

2.1.3 A Recursive Formulation

The maximization of the utility function (1) subject to the intertemporal bud-
get constraint (4) may be written in a recursive formulation. Let us define
Z =

{(
σ−1, 1 + r

)
: σ−1 ≤ β ≤ 1 + r

}
and assume that z ∈ intZ. First, it is

convenient to have defined the current utility5 U = u+ ϕ:

v(x, z) = max
a≥0

{
U(x, a) + β

∫
v(a · z + θw + τ , z)ψ(dθ)

}
. (5)

As proven in Hernández-Lerma et al (1996), there is a unique value function
v solving the functional equation (5). Moreover, the stationary policy rules
are unique and continuous. It is well known that the value function is strictly
increasing, strictly concave and continuously differentiable in x. From the max-
imum theorem, v varies continuously with the parameter z. I introduce the
following notation. Functions c(x, z), a(x, z), with a = (m,k) are the optimal
consumption and asset rules. This rule, together with the particular history
{θt} define the law of motion of individual wealth

x′z = a(x, z) · z + θw + τ . (6)

3See Doob (1953) and Ionescu-Tulcea (1950) for the details.
4This is justified because in continuous time, indeed, the decision variable is wealth.
5U(x, z, a) = u

(
x− a+

)
+ ϕ (m) , where a+ = m+ k.
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2.2 Lump-Sum Taxes

That the FR is suboptimal crucially hinges on the distributional impact of infla-
tion. To understand this point, assume that during a period t, the distribution
of money holdings is6 λ.Were the government to allocate the injected money to
subsidies proportional to the beginning-of-period individuals’ money holdings,
the income from money once subsidies proceeding are considered will be given
by

m

σ
+
(σ − 1)m

σ
= m.

In other words, the return of money is independent of secular inflation. The
hypothesis made on the distributional effects of monetary policy emphasizes the
interplay between fiscal and monetary policy

The condition of implementability applies for negative inflation rates. Under
this condition, there might be a positive mass of consumers who are unable
to pay the tax associated with such policy. The point has extensively been
discussed by Bewley (1983). Given an initial distribution of wealth, a negative
inflation rate is said to be implementable whenever all (P−a.s) agents can afford
to pay the implicit tax that finances the withdrawal of money. This means that
households have enough resources as to pay the present value of the flow of tax
liabilities. Note that the Inada condition implies that limc→0 u

′(c) = ∞. This
condition implies that individuals will have an incentive to accumulate assets
pay the tax, since otherwise they face a risk of not consuming in a finite period.
It will be convenient to have the budget constraint written in terms of money
balances relative to the average, say bt = mt −MS

t /Pt.

ct + bt+1 + kt+1 = (1 + πt)
−1 bt + (1 + rt) kt + θtwt ≡ x̂t

x̂t = xt − σ
MS
t

Pt
∀t ≥ 0.

Here I am assuming that the sequence of gross returns zt =
(
(1 + πt)

−1 , (1 + rt)
)

converges to a steady state7 z =
(
σ−1, 1 + r

)
∈ intZ. Analytically, imple-

mentability means that the ex-ante probability of default is zero. This means
the existence of a plan

{
b0t+1, k

0
t+1

}∞
t=0

such that, for any t > 0 (a.s):

x̂0 + θ
t∑

n=1

wnR
−1
n ≥

t∑

n=1

in
1 + in

bnR
−1
n +R−1t

(
b0t+1 + k0t+1

)
, (7)

where Rt is the discount factor:

Rt =
t∏

n=1

(1 + rn) ,

6The distribution of money holdings will be λ = µt−1 ◦m
−1
t .

7Details can be found in Appendix B.
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and i is the nominal interest rate, namely (1+ i) = (1+r)(1+π). Therefore, the
implementability condition incorporates the opportunity cost of holding money
(i/1 + i). Equation (7) says that the present value of the flow of sure income
up to period t plus the initial wealth must be at least greater than the present
value of the flow of costs incurred by holding money. An inflation rate σ < 1
is implementable when (7) is satisfied by all consumers (a.s) for any t ≥ 0. In
steady state, the implementability condition is

bt ≥
σ

1− σ
θw. (8)

The right hand side of (8) is the present value of the labor income, or the natural
debt limit because the ratio σ

1−σ is the interest rate paid by money. Thus (8)
means that money balance must not differ from average more than the natural
debt limit. Maintaining this level of real balances guarantees that consumption
will ever be positive. This property is non trivial, since it has been assumed
that u′(0) =∞.

2.3 Euler Equations and the Optimal Plan

It is convenient to set out the Euler Equations of (5) in steady state:

u′(ct) ≥ βσ−1
[
ϕ′(mt) +

∫
u′(ct+1)dψ

]
(9)

u′(ct) ≥ β(1 + r)

[
ϕ′(mt) +

∫
u′(ct+1)dψ

]
. (10)

The conditions (9,10) hold with equality when (8) hold strictly and kt+1 > 0,
respectively. When σ > 1, there is no tax to pay and (8) holds trivially, and (9)
holds with equality.

Next proposition says that the optimal plan is continuous with x. Both
consumption and assets are normal — increasing with x. See Appendix A.

Proposition 1 The optimal plan c(x, z) and g(x, z) are continuous in their
domains. They are increasing in x and

lim
x→∞

c(x, z) = lim
x→∞

a(x, z) =∞

0 ≤
c(x+ h, z)− c(x, z)

h
≤ 1.

From now on, I will assume that the factor prices, in the long run, belong
to the set

Z =
{
z =

(
σ−1, 1 + r

)
: σ−1 ≤ 1 + r ≤ β−1

}
.

If r were less than the interest rate paid by money (σ−1 − 1) the supply of
capital would be zero. When any of the portfolio assets earns a rate of return
greater than the rate of discount no equilibrium exists. In such a case, as show
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Schechtman and Escudero (1977) and Sotomayor (1984), consumers’ resources
would diverge to infinite (a.s).

Next proposition says that the ratio money-to-capital tends to zero as wealth
diverges to infinite. This implies that inflation is a regressive tax.

Proposition 2 For z ∈ intZ,

lim
x→∞

c(x, z) = lim
x→∞

m(x, z) = lim
x→∞

k(x, z) =∞

lim
x→∞

m(x, z)

c(x, z)
= 0

lim
x→∞

k(x, z)

c(x, z)
< ∞.

As a corollary of Proposition 2, the rich are eager to accumulate in terms
of capital rather than money. This can be justified in terms of robbery costs
(Friedman, 1969).

3 Competitive Equilibrium

A steady state perfect foresight equilibrium is defined as a set of optimal policies,
value functions and a price system (aσ, vσ, zσ) together with a distribution of
wealth µσ, such that

1. aσ is optimal given vσ, and the latter solves the Bellman equation (5).

2. zσ =
(
σ−1, 1 + rσ

)
, with rσ = f ′

(∫
kσdµσ

)
.

3. Markets clear: ∫
cσdµσ = f

(∫
cσdµσ

)
.

4. Government budget is balanced,

τσ =
σ

1− σ

∫
mσdµσ.

5. The distribution is ergodic:

µσ(A) =

∫
H(x,A)µσ(dx),

where A is a Borel set and

H(x,A) = ψ(B)

B = {θ : x′σ = aσ · zσ + θwσ + τσ ∈ A} .
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The rational expectations hypothesis is incorporated in the definition, since
households’ plans agree with the effective asset returns. The two first conditions
establish that individuals are rational. The third one is the market clearing
condition. The fourth one is the government budget constraint and the fifth
one establishes that the wealth distribution is ergodic.

Existence is proven geometrically. Nothing can be said of uniqueness since
the supply curve in figure 2 is not necessarily monotone, as argued in Aiyagari
(1994). This is so because a raise in the interest rate has a twofold effect. On the
one hand it increases capital income; on the other hand, it makes wages down.
Since capital supply becomes perfectly elastic as the interest rate approaches
the discount rate, the former effect will outweigh the latter for r high enough
and thus the equilibrium is unique.

From now onwards, I will denote the monetary equilibrium allocation by a
3-tupla8 Eσ = (aσ, vσ, µσ) . Next proposition states the existence of equilibrium,
which is an application of the Schauder fixed-point theorem (see Appendix B
for the details). The uniqueness for σ near β allow us to write unambiguously
limσ→β Eσ.

Proposition 3 There exists at least one stationary monetary equilibrium. There
exists an open neighborhood (β, σ0) for which the equilibrium is unique.

Since, as proven in proposition B.1, limσ→β xσ =∞ (a.s.) the capital supply
would behave likewise, by virtue of proposition 1. This argument proves the
following proposition.

8Note that z and any other equilibrium variable, like cσ can be stated in terms of Eσ.
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Proposition 4 Let the level of capital associated with the representative-agent
version of the model be kβ. Then, limσ→β kσ = kβ.

In terms of welfare, the transition path matters, and so the initial condition,
determined by historical and institutional variables, can influence the optimal
policy. For this reason we may be interested in defining the non-stationary
equilibrium as a 3-tupla Eλσ =

(
aλσ, v

λ
σ , µ

λ
σ

)
, where

(aλσ, v
λ
σ) = {(aσt, vσt)}

∞

t=1

µλσ = {(µσt)}
∞

t=0 → µσ, with µσ0 = λ.

Here aσt are the optimal decision plans and the convergence of wealth the dis-
tribution is weak convergence. In Appendix B we will deal with the convergence
of Eλσ to a steady state Eσ.

The sequence of optimal plans, resources and welfare can be written as a
random variable defined in the product probability space9

(R+ ×Ω,B(R)×F , λ⊗ P ).

The sequence of σ-fields B(R+) × Ft = B(R+) × B(Θ
t) make up a filtration.

Each Ft is the σ-field generated by the history of events θn for 1 ≤ n ≤ t, and

9B(R+) stands for the Borel sets of R+.
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the initial condition λ. In other words, Ft is the minimum σ-field generated by
∪Ft is by definition F . Given the economy-wide initial state, the individual
initial condition x plus the full realization of shocks will determine the path of
future asset returns, which in turn determine uniquely the optimal decision plans
(aσ,t+1, cσt). According to this notation, when the initial condition coincides
with the limiting distribution, (aλσ, v

λ
σ) =

(
a
µσ
σ , v

µσ
σ

)
= (aσ, vσ) . This work deals

with the ex-ante aggregate welfare assuming that the government commits itself
to a fixed rule of monetary policy. The lifetime utility is a random variable in
the probability space previously defined, which can be written in terms of of the
optimal plans of consumption and money holdings:

Wλ
σ = (1− β)

∫ ∫ ∞∑

t=0

βt [u(cσt) + ϕ(mσt)] dλdP. (11)

In steady state, Wλ
σ = W

µσ
σ = Wσ = u(cσ) + ϕ(mσ). The main result of this

work proves the existence of policy rules which improve the ex-ante welfare of
the Friedman rule. First, and in order for this result make sense, I first prove
that the Ramsey problem

max
σ≥β

Wλ
σ

(subject to the optimal plans) has a non-empty solution for any initial distrib-
ution λ.

Proposition 5 The Ramsey problem has a non-empty solution.

Unfortunately, the Ramsey problem is too complex an object as to be re-
solved in closed form, as it embeds a full sequence of decision rules. However,
it is not difficult to show that the Friedman rule is dominated in terms of wel-
fare by increasing the money growth rate. Within the context of this Ramsey
problem, Mulligan and Sala-i-Marti (1997) and Faig (1988) assume that current
consumption can be expressed as a function of the future discounted stream of
income. Consequently, the distributional issues I am dealing with are dropped
from the analysis. The main difficulty of dealing with distribution is that the
optimal inflation rate depends in general on the initial distribution, so that it is
not possible to draw general conclusions about what the optimal inflation may
be.

4 Optimality

In a pure monetary, representative-agent economy, the optimality of the Fried-
man rule is not much more than a truism as superneutrality holds and liquidity
is a public service that facilitates transactions. Bewley (1980) proved the va-
lidity of the Friedman rule in a monetary economy where individual income
fluctuates randomly. In Bewley (1983), it was proven that the implementability
of a negative inflation rate could not be attainable. The following result consti-
tutes the most important result of this work. optimality fails to hold because
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in the neighborhood of the Friedman rule, it is possible to increase aggregate
consumption and capital by increasing σ. The proof is provided in Appendix C.

Proposition 6 If θ is low enough, the function Wλ
σ as defined in (11) are

strictly increasing in σ in an open neighborhood of β.

In other words, the proposition says that, no matter the initial condition, and
provided the inflation rate is close enough to the FR, it is possible to increase
welfare by increasing inflation. Two major difficulties have been overcome to
prove the proposition: (1) there will be a temporary slowing down in aggregate
consumption; and (2) the welfare loss due to a reduction in the transaction
services is shown to be of second order compared to the welfare gains, because
the interest rate rises very slowly with inflation when the money interest rate
is close to zero. As a corollary of this proposition it is possible to show (see
Appendix C) that in a neighborhood of the FR there is no comparable pair
of inflation rates given a sufficiently high θ. On average, the transfer from the
rich towards the poor raises aggregate welfare. Yet, for a sufficiently high θ,
there is a positive mass rich consumers who unambiguously worse off under
a expansionary policy. For low θ it could be the case that there exists some
interval (β, σ0) such that, within it, an improvement in ex-ante welfare can be
obtained by increasing inflation. Another straightforward corollary drawn from
Proposition 6 is that the result on optimality is robust under alternative welfare
criteria whose weights are non decreasing in (x, ω).

The crucial factor that determine the non-optimality of the FR is the dis-
tribution of the efficiency units of labor —the unique source of uncertainty. As
in Levine and Zame (2000), when agents are very patient, the economy virtu-
ally collapses to its representative-agent version of the model as far as policy
is concerned. Since the FR fails to smooth the individual consumption flows,
the analysis suggests that the welfare benefits of an expansionary policy are
important so long as heterogeneity is quantitatively relevant. Suitable fiscal
arrangements which keep the low-type workers permanently away form zero la-
bor income would make the welfare cost of a deflationary policy more innocuous.
İmrohoroğlu (1992) computed the inflation cost in a pure monetary economy
similar to ours. She found that the welfare costs of inflation are higher than
those reported by Bailey (1956).

The analysis of this paper differs from İmrohoroğlu (1992) and Kehoe et al
(1998) in that the minimal amount of income is here very small, stressing the dis-
tributive issue. Moreover, the comparison of alternative steady states as in İm-
rohoroğlu (1992) may potentially be lame, since the maximization of the steady
state level of consumption does not necessarily lead to Pareto optimal alloca-
tions, as proven in Cass (1965). By contrast, in this article a time-inconsistency
problem may arise for low inflation rates. when the policymaker applies a rate
of money growth close enough to the FR, there is a certain threshold beyond
which ex-ante welfare may be improved by increasing inflation.
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5 Conclusion

The potential distributive role of monetary policy is an empirical issue which
deserves serious study before we can adopt any definitive normative conclusion.
It crucially depends on the criteria with which financial institutions conduct
their monetary policy. Especially relevant issues are how the system allows for
the possibility of issuing inside money not directly controlled by central author-
ities.; the channel through which the financial system distributes the injected
outside money among the public; and of course, the quantitative importance
of the inflation tax. Regarding the last point, the very nature of the secular
inflation is related to alternative fiscal variables, in line with the contributions
of Sims (1994) and Woodford (1995). Accordingly, the results presented here
might well be robust even though the distributive role of money is apparently
small in a broad range of countries.

The results presented have been obtained by taking up the axiomatic cor-
pus of Friedman (1969), except for the fact that prices adjust instantaneously.
Friedman argues that money demand should be a decreasing function of the rate
of foreseen inflation, independently of the way inflation revenues are redistrib-
utes amongst consumers. This fact yields Friedman to abstract away from the
distributive effects of money issuance. Yet this issue does not hold in a standard
general equilibrium setup, for reasons pointed out above.

Moreover, it should be remarked that this article aimed at proving that ag-
gregate welfare increases as policy departs from the FR, rather than computing
the effective optimum quantity of money. Moreover, while the Tobin effect, by
which inflation stimulates the accumulation of capital through a substitution
effect between liquid and productive assets, prevails in steady state when infla-
tion is around the rate of discount, no clear insight indicates that this relation
should hold for higher inflation rates.

Finally, we are not sure that the result obtained in this work should be in-
terpreted as a way to explain why the real rate of inflation is in the real world
greater than that prescribed by Friedman, or rather to suggest possible norma-
tive implications which should guide monetary institutions. My view is that
a deflation rate may well have adverse effects in welfare through its effects on
distribution of wealth and income. The deflation episode of the Japan economy
makes it plausible that low money interest rates can eventually be associated
with poor economic performance. Whether this work should constitute a theo-
retical framework prescribing the inadequacy of an excessively tight monetary
policy is yet to be discussed.

Appendix A

Let i be the expected nominal interest rate. Let ω be the forward operator
applied to sequences. Then the following inequalities hold for any individual
state
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ϕ′(mt) ≥ it+1

∫
u′(ct+1)dψ (12)

ϕ′(mt) ≥
it+1

β(1 + rt+1)
u′(ct+1). (13)

The inequalities follow straightforwardly by rearranging suitably the Euler equa-
tions (9) and (10) with the former holding with equality, namely, when con-
sumers are not obliged to hold extra amount of real balances to pay the tax
when σ < 1. When such is the case, take the marginal consumer whose wealth
obliges her to maintain the minimum money holdings which allows her to pay
the tax. Note that she must be borrowing constrained in the capital market,
since otherwise, she could hold a marginal unit of capital rather than money,
rendering a higher return. Therefore, in this case, both inequalities hold. For
consumers who are less wealthy than the marginal one, the same must be true
due to a parallel argument. They must be borrowing constrained in the cap-
ital market, so that both Euler equations hold with strict inequality. Yet, as
far as the total resources decrease, the right-hand side of each Euler equa-
tion (9) and (10) diminishes respectively by β(1 + πt+1)

−1
∫
u′(ct+1)dψ and

β(1 + rt+1)−1
∫
u′(ct+1)dψ: Since the latter amount is greater, the relations

(13) and (13) follow.

Proposition 7 The optimal plan c(x, z) and g(x, z) are continuous in their
domains. They are increasing in x and

lim
x→∞

c(x, z) = lim
x→∞

a(x, z) =∞

0 ≤
c(x+ h, z)− c(x, z)

h
≤ 1.

Proposition 8 For z ∈ intZ,

lim
x→∞

c(x, z) = lim
x→∞

m(x, z) = lim
x→∞

k(x, z) =∞

lim
x→∞

m(x, z)

c(x, z)
= 0

lim
x→∞

k(x, z)

c(x, z)
< ∞.

The proof of both propositions are standard. the next appendix is devoted
to the analysis of the asymptotic behavior of the economy on the side of the de-
mand for consumption and the supply of production factors faced by consumers.
It contains sufficient conditions by which there is an invariant distribution of the
individual income, and, which is more important, there is a continuous depen-
dence on a quite general parameter, which is to be interpreted as the expectation
of future states of the economy.
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Appendix B

This section is devoted to show that the model hereby described is globally
stable, and displays uniqueness of equilibrium. While such result admittedly
hinges on some critical hypothesis, it is needed to tackle an ulterior welfare
analysis in line with Friedman (1969). We find it convenient recalling the reader
that in any stationary equilibrium with a inflation rate strictly greater than
the discount rate, there is a positive mass of households who happen to be
borrowing constrained. This result is obtained straightforwardly by integrating
(9) in steady state. The next proposition is aimed at justifying the property
displayed by Figures 1 and 2, according to which the demand for assets diverge to
infinity as the interest approaches the discount rate. It says that the sequence zt
converges weakly and has compact support if max zt < 1: let ς = θw+ τ . It has
a real compact interval with upper and lower limits provided that max zt < 1.
The probability distribution governing the process depends fully on ψ and z;
and will be denoted by the symbol (it conveys a linear transformation of θ).
Subindices are omitted for the sake of convenience when there is no risk of
confusion.

Proposition 9 For each z ∈ intZ, the stochastic process xz,t converges to a
random variable xz <∞ (a.s) which is independent of the initial state x0. Such
a limit is a measurable random variable. When z ∈ δβZ, limxt =∞ a.s.

Proof. Let z ∈ int(Z). Using the Theorem 3.8 in Schechtman and Escudero
(1977), the existence of a number b such that xt+1 > xt for any x > b amounts
to showing that

lim
x→∞

∫
v′(xt+1)dψ

v′(x)
≤ 1,

where x is the upper bound of xt+1, given x; namely x = a(x, z) ·z+θw+τ . By
assumption (2) there exists a bound in the exponent of u0; say α (Schechtman
and Escudero,1977) so that

(
c1
c0

)α
<

u′(c0)

u′(c1)

for c0 > c1 large enough. Thus, as proven in Proposition 2, limx→∞ a(x, z) =∞;
defining

x = a(x, z) · z + θw + τ ,

c = c(x, z)

c = c(x, z)

and taking into account the above inequality,

lim
x→∞

∫
v′(xt+1)dψ

v′(x)
≤ lim
x→∞

u′(c)

u′(c))
≤ lim
x→∞

(
c

c

)α
.
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By Proposition 1, for x large, there exists a function 0 < d(x, z) < 1

c = c+w
(
θ − θ

)
d(x, z).

Then,

lim
x→∞

∫
v′(xt+1)dψ

v′(x)
≤ 1 +w

(
θ − θ

)
lim
x→∞

d(x, z)

c
= 1.

Next, let us prove that the sequence xz as defined in (6) converges weakly.
Define ξ = sup {x : k(x, z) = 0} . Define Xt = −v′(xt). The stochastic process
so defined is Ft−adapted. In order to prove that the stochastic process converges
almost surely, we need to show that I(Xt>ξ)Xt converges. The stochastic process
I(Xt>ξ)Xt is a submartingale. If the inflation rate is implementable, then X
is bounded. Therefore, the martingale convergence theorem applies and the
process I(Xt>ξ) converges almost surely to a bounded, Ft measurable random
variable. Note that the random variable xt can be expressed (see equation 6)
as a function of the history of realizations of the θ′s and of the initial wealth,
that is xt+1 = x(t)(ht, x0). Let ht be the worst history of events up to period t.
The limx(t)(ht, x0) is well defined and finite. Moreover, with probability one,
individual wealth will reach a value at least greater than

x = sup
x0>0

limx(t)(ht, x0).

Let xξ = (−v′)−1(ξ). It is clear that xξ > x , since otherwise the mass of
people who are borrowing constrained in stationary equilibrium would be zero.
By Assumption (3), the function a must be concave, since the willingness to
consume relative to money holdings increases as wealth increases. Accordingly,
limx(t)(ht, x0) ∈ [x, xξ] for any x0 ∈ [x, xξ] , provided that θ ∈ [θ, θξ] ⊂ Θ.
Besides, there is a one-to-one, increasing relationship between the sets [θ, θξ]
and [x, xξ]. Such a set is invariant along I(Xt>ξ)Xt. Let Ξ be such mapping.
The distribution of wealth is then ψ◦Ξ−1 along the set for which θt < θξ except
for a finite number of times. Accordingly, the set

{
ω ∈ Ω : lim sup I(Xt>ξ)Xt > lim inf I(Xt>ξ)Xt

}

is the set for which both Xt > ξ and θt < θξ infinitely many times. Yet, this
set is of measure zero, for otherwise, the stochastic process I(Xt>ξ)Xt would
not converge. Therefore, if both I(Xt>ξ)Xt and I(Xt≤ξ)Xt converge weakly, the
stochastic process Xt converges and so does xt as v

′ is monotonic. If βmax(z) =
1, the Euler equation for accumulation of capital amounts to

v′(xt) ≥

∫
v′(xt+1)dψ

with equality if k(x; z) > 0. Therefore, the induced process Xt is a non-positive
submartingale. By Theorem 4.1s of Chapter 7 in Doob (1953), and by strict
monotonicity of v′, there exists limxt = x; with probability one. (The proof
is similar to that provided in this theorem for the case βmax(z) < 1, without
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conveying the transformation of the process X.) If the limit were finite, then
there should be a maximum level of the support of wealth xmax. By the Euler
equation

v′(xmax) ≥ v′(a (xmax) + θw + τ) > v′(xmax)

a contradiction.
As proven in Clarida (1987)indeed, the support is a closed interval.
Next proposition enables us to aggregate whatever Borel-measurable real

valued functions. Since policy function is continuous and thus measurable, it
allows for integrating with respect to the probability P . It shows the far from
obvious issue that such aggregates vary continuously with respect to the para-
meter z. To such scope, it will be useful to define µz to be the distribution of the
asymptotic consumer’s wealth by µz = P ◦x−1z . This is well defined because xz is
measurable, as proven in Proposition 1. At this point, it is convenient to index
the random variable with z. The weak-topology continuity ensures that, for any
real valued, continuous function f , the expectation

∫
fdµz varies continuously

with respect to the parameter z. In the sequel we will use the notation ‖·‖ to
denote the norm of a probability measure induced from the weak topology. It
is known that the space of probability measures over a metric space X can be
metricized as a separable metric space, according to the weak topology, if and
only if the space X is itself separable Parthasarathy (1967, Chapter 2). The
key issue that guarantees the continuity consists of the fact that the speed of
convergence is geometric, as proven in Kakutani and Yosida (1941).

Proposition 10 The aggregate asset demand
∫
a(xz, z)dP varies continuously

with respect to the parameter z in the weak topology:

Proof. Since the function a is continuous, the above integral is well defined
as long as total resources are bounded. Note that the expression (6) defines an
operator Tz over the space of measures which determines the law of motion of
µ. Assume that the economy starts, at time 0, from a state λ. We know, from
Kakutani and Yosida (1941), that there are positive numbers a, ρ (ρ < 1) such
that, for any t, ∥∥T tzλ− µz

∥∥ ≤ aρt.

This means that ∥∥T tzλ− µz
∥∥ ≤ ρto (Tzλ− λ) .

Proving the proposition amounts then to proving that, for any given sequence
zn → z, the sequence µzn = Tznλ converges weakly to µz. The first step consists
in noting that the operator T is “continuous”in the sense that, for any λ; the
sequence Tznλ converges weakly to Tzλ. Since by definition Tzµz = µz,making
λ = µz in (??), yields

‖Tznµz − µz‖ ≤ ρto (Tznµz − µz) ,

implying weak convergence.
To conclude this appendix, we state formally the global stability of the econ-

omy. The following definitions will be useful to characterize the space of beliefs.
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Definition 11 Let Z be the set of sequences of gross asset returns such that

1. there are at most a finite number of periods in which (1 + r) is greater
than β−1; and

2. their first element is strictly smaller than the second, namely, the nominal
interest rate is positive.

Definition 12 Let ∂βZ be the sequences of asset returns for which the interest
rate converges to the inverse of the discount rate, that is, such that lim rt =
β−1 − 1.

Z allows us to pay attention to a reduced space of beliefs inasmuch as to
allow us to find self-fulfilling equilibrium. Its definition makes sense since the
services rendered by money will imply that the nominal interest rate is positive.
Confining attention to such a set can be interpreted as the agents’ internalization
of this statement, causing no loss of generality whatsoever. The set ∂βZ is the
effective boundary beyond which wealth would diverge almost surely to infinite.
Since this cannot be positive in equilibrium under standard assumptions made
on preferences, and technology, we (and rational agents) know that equilibrium
asset returns turn to be in Z \∂βZ. Although the wage rate matters in order to
infer future wealth, it is assumed that it can be taken from r. This point shall
become clearer once the discussion of the productive sector is made

Proposition 13 If beliefs are homogeneous among agents, for each implementable
σ there exists a non-stationary equilibrium. Moreover, for each stationary equi-
librium, there exists a non-stationary equilibrium which converges uniformly to
the stationary equilibrium.

Proof. Let T : Z → Z be the operator defined in the following way: given
z ∈ Z, the transition function governing the individual states is given by Hz :
R+ ×B(R+)→ [0; 1] thus defined:

Hz(x;A) = ψ {θ : L(x; z) +w′ + τ ′ ∈ A} .

(The symbol ′ stands for the forward operator). Hz determines the law of motion
of states which in turn implies, by an aggregation-based method, a sequence Tz
which will be so defined: given that the current state as of t is λ, the future
state moves according to Ψzµ defined by

µt+n = Ψ
(n)
z λ

with (ω being the forward operator)

Ψ(n+1)z λ(A) =

∫
Hωnz(sn, A)

∫
Hωn−1z(sn−1, A) · · ·

∫
Hz(s, ds1)λ(ds)

Ψ(0)λ ≡ λ (14)
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The sequence Ψ
(n)
z in turn maps a sequence of factor prices in a natural way: let

the first and second components of (Tz)n+1 be respectively

πn+1 =

∫
m(·, ωnz)dΨ

(n)
z λ

∫
m(·, ωn+1z)dΨ

(n+1)
z λ

− 1,

and

rn+1 = max

{
(f ′)

−1
[∫

k (·, ωnz) dΨ(n)z λ

]
,−πn+1(1 + πn+1)

−1

}
.

Note that we impose the condition that the nominal interest rate is positive.
For the sequence z to belong to Z, its first component must converge to the
rate of money growth , which turns out to be strictly greater than β. Therefore,
there is at most a finite number of periods after which the inflation rate falls
below the rate of discount. By virtue of Proposition in the next appendix, for
any initial condition ; the number

sup
n
{rn : z ∈ Z}

is well defined, which insures that the set Z is compact (for Z endowed with
the supremum norm ‖·‖). Further, by construction, T (Z) ⊂ Z. In order for the
expectations to be fulfilled, it must be the case that beliefs are a fixed point of T .
The next step consists of proving that the mapping T is continuous. From the
definition of T , proving continuity amounts to proving the continuity of Ψz for
any z ∈ Z in the weak topology. For if Ψz were continuous, then, by induction,

Ψ
(n)
z is easily proven to be continuous. Continuity is clear from the continuity

of the policy function and the continuity of Q: for any sequence zn convergent
to z0,

Ψznλ(A) =

∫
Hzn (·, A) dλ

converges to Ψz0λ(A), due to identity (14). The continuity of the policy function
implies that the second term of the right hand side of (14) is measurable. By
hypothesis, the first term of the right-hand side is continuous in its first argu-
ment. Proposition 1 and the monotonicity of a guarantees that H is monotonic.
Equation (14) yields

limΨznλ(A) =

∫
Hz0 (·, A) dλ

The maximum theorem guarantees that Ψz varies continuously in the parameter
z and thereby Ψznλ converges in the strong topology (for a reference see Lucas
and Stokey 1987, Chapter 11). Strong continuity implies weak continuity. By
induction it is immediately proven that, by applying the Schauder Theorem, T
has a fixed point. Let N be the set of asset returns which constitute a stationary
equilibrium. Call Zν with ν ∈ N , the subset of elements of Z converging to ν .
The property that N is finite is generic, so that Z is compact. I will prove that
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the image of Z under T is a subset of Z, implying the existence of a sequence z
converging to ν, which constitutes in turn an equilibrium. In Gil Martín (2001,
Proposition 2.5), it is shown that Ψzνλ converges weakly to µν , being µν the
equilibrium distribution of wealth corresponding to the equilibrium ν.

Appendix C: Proof of Proposition 5

Let mσ′ , w
′ be the optimal money rule and wage associated with σ′ and mσ, w

the same associated with σ. Then,

lim
σ→β

lim
σ′→σ

σ (w′ −w) + (σ′ − σ)w′∫
(mσ′ −mσ) dP

= 0.

The proof is straightforward from the fact that

lim
σ→β

∫
mσdP =∞.

As discussed in Section 3, this convergence is monotonic (the key assumption is
A2). As a consequence,

lim
σ→β

lim
σ′→σ

σ′ − σ∫
(mσ′ −mσ) dP

= 0.

Proving the lemma, then, amounts to showing that

lim
σ′→σ

σ′ − σ

w′ −w

is bounded away by zero. But this is clear from Proposition 4.

Lemma 14 Assume u’ is convex and that the equilibrium converges to a unique
steady state. If at time t (1 + f ′(Kt)) ≥ 1; the transition path of accumulated
capital is monotone from then onwards.

Proof. The proof is similar to that Theorem 2 in Huggett (1995).

Proof of proposition 5

The proof proceeds in several steps. Firstly, we make use of the fact that, as the
rate of injection of money equals the rate of discount, individual consumption
differs from labor income by an arbitrarily small amount. Further, we already
know that the golden rule level of consumption is strictly greater than the limit
of the average consumption in steady state equilibrium as σ→ β . Moreover, as
proven in Appendix B, the dependence on the parameter σ is continuous. Thus,
from Proposition 4,

lim

∫
kσdµσ = kβ,
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where the left hand side denotes the representative-agent steady state level of
capita, namely the one which equals the real interest rate to the inverse of β.
It follows that there exists a number ε1 > 0 such that for σ ∈ (β, β + ε1) ,the
average level of capital is increasing. Besides, since the golden rule level of
consumption is strictly less than the one attained by10 kβ, there should be
another real number ε2 > 0 for which consumption increases in capital. By
Proposition B.1, there exists an invariant distribution of states which constitutes
the equilibrium of the economy for every value of σ; and therefore an invariant
distribution for consumption, money, capital and any other measurable function
in suppµσ.

Let us define a sequence of mappings ιxt+1 : R→ Θ in the following way: for
any initial condition λ households are assumed to perfectly foresee the path of
inflation rates converging to σ. The optimal decision rule is determined by a
sequence of functions at+1 converging pointwise to a . Let the family of functions
be defined recursively as follows:

Nθ
1 (x) = a1(x) · z + θw1 + τ1

· · ·

Nθ
t+1(x) = at+1(x) · z + θwt+1 + τ t+1

for any t ≥ 0. It is taken for granted that such sequence depends on the
initial condition. Now, each of the functions Nθ

t+1 in turn defines a one-to-one
correspondence between a level of wealth and a level of θ. In symbols, let define
ιxt+1(x

′) = θ if and only if Nθ
t+1(x) = x′. The monotonicity of the policy function

is passed on to ιxt+1. Further, as at → aσ ; and sup(suppµσ) is finite, then a
fortiori limNθ

t+1(x) is finite and independent of x. By construction, lim ιxt+1 = ι,
a function independent of x; and by definition ιxt+1(xθ) = θ. The convergence
is as well pointwise.

Moreover, by construction, for any sequence of Ft-measurable, real valued
functions ft, ∫ ∫

ftdλdP =

∫ ∫
ft ◦

(
ιxt+1

)−1
dλdψ.

If ft converges weakly to a function, say, f0, independent of the initial state (as
the functions relevant for our purpose), then

∫ ∫
ftdλdP → lim

∫ ∫
ft ◦

(
ιxt+1

)−1
dλdψ =

∫ ∫
f0 ◦ (ι

x)−1 dλdψ =

∫
dλ

∫
f0 ◦ (ι

x)−1 dψ =

∫
f0 ◦ (ι

x)−1 dψ

10To see this point, note that the golden rule level of consumption maximizes, by definition,
the average of consumption for a given level of capital (always in steady state). By concavity
of production function, the level of capital satisfies the first order condition

f ′(k∗) = 1;

whereas f ′(kβ) = β−1 > 1: rearranging, the level of consumption is strictly increasing in k
for a small enough interval containing kβ .
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The last but one equality stems from the fact neither f0 nor ιx, as argued above,
depend on the initial state. Consequently, for any sequence of Ft-measurable
real random variables f , there exists a sequence of transformations ιx depending
on the initial condition x, such that

∫ ∫
fdλdP =

{∫ ∫
ft ◦

(
ιxt+1

)−1
dλdψ

}
.

Let first do the welfare analysis in steady state. The transform so obtained,
induces an equivalent class of the form ι−1 (θ). When ft = f for any t in steady
state, the following equality holds:

∫ ∫
fdλdP =

∫
fdλ,

where λ denotes the invariant distribution of wealth. Alternatively, in steady
state, any level of wealth belonging to the support of the steady state can be
associated with a θ by means of ι. By construction,

∫
fdλ =

∫
f ◦ ι−1dψ. (15)

Let A be defined as {x ∈ R+ : cσ+ε − cσ ≥ 0} . Let fθ denote f ◦ ι−1(θ) for a
generic λ⊗P measurable function f. Thus constructed, the equilibrium invariant
distribution µσ defines a random variable xσ : Ω→ suppµσ by

xtσ ⇀ xσ,

where⇀ means weak convergence or limit in probability, and xtσ is obtained by
recursion of (6). The limiting random variable is well-defined as established in
Appendix B. For any measurable real valued function f : R→ R, the change of
variable formula gives rise to the equality

∫
fdµσ =

∫
fθdψ.

Our claim is to show the existence of a sufficiently small real number ε > 0
such that for levels of inflation close enough to the inflation rate σ, σ + ε leads
to a higher expected value of welfare. Let us call ξ0 the limiting distribution
of a generic equilibrium variable for an arbitrary σ ∈ (β, β +min (ε1, ε2)), and
ξε the same for a strictly greater level of inflation σ + ε. Likewise, throughout
the proof, ρ0, i0 and ρε, iε shall denote, respectively, the gross real interest and
nominal interest rate under regimes σ and σ + ε. By the reasoning undergone
earlier, we know that

∫
c0dψ <

∫
cεdψ.

The levels of inflation are bounded away from min (ε1, ε2) ≡ ε. By (strict)
concavity of the utility function,

u(cε)− u(c0) > u′(cε)(cε − c0). (16)
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By Euler equation (the one that corresponds to capital), the last equation,
together with Theorem 8.3 in Clarida(1987) yields

u(cε)− u(c0) > βρε

(∫
u′(cε)dψ

)
(cε − c0). (17)

The proof of the first part of the proposition then amounts to showing that there
exists a level of inflation (close enough to the rate of discount), and a number
ε > 0 such that

∫
[u(cε)− u(c0)] dψ >

∫
[ϕ(cε)− ϕ(c0)] dψ.

By monotonicity of the consumption plan, the random variable (µσ ⊗ P ) ◦ c−1σ
has range Cσ = [cσ(a); cσ(b)] ; for some elements of Ω, a and b having an
infinite number and converging to θ, and θ, respectively. The mapping cσ ◦ ι

−1
σ

is monotonic in θ due to the monotonicity of ι−1σ in θ. Besides, the following
identity holds:

cσ ◦ ι
−1
σ (θ) = θwσ + rσkσ ◦ ι

−1
σ (θ) +

1− σ

σ
τσ.

Since consumers are borrowing constrained so long as is close enough to ;
it follows that

cσ ◦ ι
−1
σ (θ) = (θ − θ)wσ,

cσ ◦ ι
−1
σ (θ) > θ

when the interest rate paid on money is positive (σ < 1). The tangent of
the mapping cσ ◦ ι

−1
σ decreases globally in σ when the inflation rate is chosen

to be close enough to the discount factor. Since, as discussed above, aggregate
capital is locally increasing in inflation and the wage rate is in turn an increasing
function of aggregate capital, there will exist a unique θ0 such that c0◦ι

−1
0 (θ0) =

cε ◦ ι−1ε (θ0). Hence, the set A above defined as

A =
⋃

θ0≤θ

ι−10 (θ) =
⋃

θ0≤θ

ι−1ε (θ),

implying ∫
u′(cσ)dP ≤

∫
u′(cσ+ε(x, s)P (ds), ∀x ∈ A.

By integration of (16) and equation (17) we get to
∫ [∫

u(cσ+ε)dµσ+ε −

∫
u(cσ)dµσ

]
dP

=

∫
[u(cε)− u(c0)]dψ

>

∫
u′(cε)(cε − c0)dψ

≥

∫
u′(cε)dψ

∫
(cε − c0)dψ. (18)
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The first equality comes out at once of (15). The first inequality is a consequence
of the fact that the welfare gain first order dominates the welfare lose. Anew,
proceeding similarly with the Euler equation corresponding to money, exploiting
the fact that ϕ is strictly concave, we obtain

ϕ(m0)− ϕ(mε) > ϕ′(mε)(m0 −mε).

Let us define Jε to be the excess of contemporaneous marginal transaction ser-
vices of money over the marginal utility of consumption multiplied by the rela-
tive cost of holding money under the policy regime σ + ε. By Euler equation,
Jε differs from zero if and only if the household happens to be borrowing con-
strained. That is,

Jε = ϕ′(mε)−
iε
βρε

u′(cε)

which is finite as far as θ > 0. By the Euler equations,

ϕ(m0)− ϕ(mε) <

[
iε
βρε

u′(cε) + Jε

]
(m0 −mε). (19)

On the other hand, note that, due to the fact that u′(0) =∞, consumers need
to hold, in steady state, an amount of real balances that does not differ from
the average by a quantity

σ

1− σ
θwσ

(see 8). Note that for any random variables X,Y defined over the same proba-
bility space, and provided their two first moments exist,

EXY = EXEY + cov(X,Y )

where cov indicates the covariance operator. If |Y −EY | ≤ γ, then we can
write the inequality

EXY ≤ EXEY + γ sup |X −EX|

Taking expectations on (19), applying the last formula, and considering the
upper bound (8) on money holdings, we get to

∫ ∫ [
ϕ(mσ)dµσ − ϕ(mσ+ε)dµσ+ε

]
dP

=

∫
[ϕ(m0)− ϕ(mε)] dψ (20)

<
iε
βρε

∫
(m0 −mε)dψ

∫
u′(cε)dψ +

iε
βρε

θ |w0 −wε|

1− σ
sup
ω∈Ω

∣∣∣∣u
′(cε)−

∫
u′(cε)dψ

∣∣∣∣+
∫

Jε(m0 −mε)dψ (21)
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for σ close enough to β and ε close enough to zero. Next, I shall prove that
there exists a number small enough for which the last two summands of the
right-hand side of the last equation are negligible. Let

γf = sup
ω∈Ω

∣∣∣∣f
′(mε)−

∫
f ′(mε)dψ

∣∣∣∣
f = u, ϕ

For the third summand of the right-hand side we have

∫
Jε(m0 −mε)dψ∫
(m0 −mε)dψ

=

∫
ϕ(mε)(mε −m0)dψ∫
(m0 −mε)dψ

−
iε
βρε

∫
u′(cε)(m0 −mε)dψ∫
(m0 −mε)dψ

<

∫
ϕ(mε)dψ

∫
(mε −m0)dψ∫

(m0 −mε)dψ
+

iε
βρε

∫
u′(cε)dψ

∫
(m0 −mε)dψ∫

(m0 −mε)dψ
+

θiε |w0 −wε|

β (1− β) ρε

γu + γϕ∫
(m0 −mε)dψ

.

Since the nominal interest rate and
∫
ϕ(mε)dψ tend to zero as ε tends to zero,

the last expression tends to zero so long as

lim
σ→β

lim
ε→0

supω∈Ω
∣∣u′(cε)−

∫
u′(cε)dψ

∣∣
∫
(m0 −mε)dψ

= 0. (22)

But this equality holds trivially once we make use of Lemma 1. To demonstrate
it, it suffices to divide the numerator and denominator of the right- hand side
of the last expression by and make use of Lemma 1. Likewise, the second
term in the right-hand side of (21) is dominated asymptotically by the first one.
Proving this fact indeed amounts to (22). Rearranging (18) and (21), a sufficient
condition in order for the existence of an sufficiently small ε such thatWε > W0

is

βρε

∫
(cε − c0)dψ > iε

∫
(m0 −mε)dψ.

It amounts to showing that

lim
σ→β

lim
ε→0

iε
ε
= 0, (23)

for we know, from a previous reasoning made earlier, that

lim
σ→β

lim
ε→0

∫
(cε − c0)dψ

ε
> 0.

26



A sufficient condition for this (23) to hold is that

lim
σ→β

lim
ε→0

iε

∫
mεdψ = 0. (24)

The last equality and the fact that

lim
σ→β

lim
ε→0

ε−1
∫

mεdψ =∞,

(proven on the basis that
∫ ∫

mσdλdP diverges to infinite as σ approaches the
rate of discount in the way shown diagrammatically in Figure 1). Then (24)
in turn reduces to (23), as the speed of convergence to zero of money interest
dominates over that of money. In order to prove the statement (23), I make use
of the assumption (2). It implies

lim
m→∞

ϕ′(m)m = 0.

Thus, making anew use of the Euler equation, and the fact that the set of
borrowing-constrained individuals becomes of P-zero measure as the inflation
rate collapses to the discount factor,

lim
σ→β

lim
ε→0

[
ϕ′(mε)mε −

iε
βρε

u′(cε)mε

]
= 0.

Of course, ρε and u′(cε) are finite magnitudes: accordingly, (24) holds, as we
wanted to show.

A parallel reasoning can be made to demonstrate the second part of this
proposition, namely that W

µβ+ε
σ is increasing in σ for a given interval. The

second part of this proposition establishes that, starting from a steady state
characterized by an inflation rate σ, welfare would be improved by increasing
expected inflation. We start by showing that consumption is increasing, from
the first period after the implementation of the new regime onwards. Recall
the notation for a non stationary equilibrium as Eλσ =

(
aλσ, v

λ
σ , µ

λ
σ

)
. As usual,

we shall omit the dependence on the parameter σ when it is no risk of con-
fusion. Jensen inequality and the assumption convexity of marginal utility of
consumption (2) guarantee that

∫
u′(ct)dψ > u′

(∫
ct+1dψ

)
.

If ε is small enough, βρε is close enough to one, implying

u′(ct) ≥ u′
(∫

ct+1dψ

)
.

Note that both sides of the inequality depend on the level of wealth x. Inte-
grating both sides of the inequality,

ct ≤

∫
ct+1dψ,
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and applying Theorem 8.3 in Stokey and Lucas (1989), a version of the iterated
rule of conditional expectations,

∫
ctdµt ≤

∫
ct+1ddµt+1.

Namely, the sequence of consumption increases monotonically to the steady
state. This assertion indeed implies that aggregate consumption in the first pe-
riod is strictly less than that of period zero. However this decrease in consump-
tion, ex-ante (at time zero, immediately after implementing the new rule) one-
period ahead instantaneous utility increases, due to a redistribution of wealth
which provokes a gain in terms of utility that overwhelms the losses. To show
this point, I need to introduce some notation. Let bt be the excess of money
holdings with respect to the average and b0 the same variable for the steady
state characterized by . As pointed out above, under the FR, there is barely
any discrepancy between consumption and labor income. From the definition of
the function ι0, it is clear that consumption in period t may be rewritten as a
function cεt : Θ×Θ

t → R+. For period 1, c
ε
1(θ, θ) turns out to be strictly greater

than θ because the previous plan characterized by consuming θ is attainable
and there exists a sequence of sufficiently small numbers {ηt}

∞

t=1 (function of
θ and ε among other variables) such that bt + ηt = b0, bt being the infimum
of money holdings among every possible realizations. Let us define cεt and c0
likewise. Let ψ(t) be defined as the product measure of ψ on itself t times. Let
h be a operator defined on Θ defined in this way: h(θ) = θ′ if and only if the
following equation holds:

∫
u (cε1 (θ, s))ψ(ds) = u(c0 ◦ ι

−1
0 (θ

′)).

Since the divergence of c0 ◦ ι
−1
0 from identity diverges (in the supremum norm)

by an arbitrary small number, the mapping h (which is parametrized by ε) has
a unique fixed point lying in the interior of Θ for the same reasons pointed out
in the first part of the proof. By continuity and monotonicity, there is a unique
fixed point, say θε > θ. Any θ in the interval Γ1 = [θ, θε] satisfies

∫
u (cε1 (θ, s))ψ(ds) > u(c0 ◦ ι

−1
0 (θ)).

A similar argument leads to the existence of a family of non empty measurable
subsets Γt such that, for any θ ∈ Γt,

∫

Θt

u (cεt (θ, s))ψ
(t)(ds) > u(c0 ◦ ι

−1
0 (θ)).

Let Γ = ∩Γt. It is non empty because, as the capital is an increasing sequence,
so it is the sequence of the wage rate. Hence, there exists an attainable plan of
consumption consisting of holding an amount of money holdings equaling the
average b = 0, and consuming the labor income. This plan gives a period by
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period utility strictly greater than the one achieved by the optimal plan under
the FR. The proposition is concluded once we show that

lim
t→∞

∫ ∫
u(cεt)dψ ⊗ dψ(t) > u(c0 ◦ ι

−1
0 (θ)).

Note that, from the fundamental theorem of calculus,

∫

Θt

u (cεt (θ, s))ψ
(t)(ds)− u(c0 ◦ ι

−1
0 (θ)) =

∫ [∫ cεt (θ,s)

c0◦ι
−1

0
(θ)

u′(q)dq

]
ψ(t)(ds)

for any t. Define a measurable mapping ℓ : Γ→ Γcwhere Γc is the complement
of Γ such that the mapping ℓ is mean-preserving as of period 1; namely

∫ ∫

Γ×Θ

cε1dψ
(2) =

∫ ∫

ℓ(Γ)×Θ

cε1dψ
(2).

The function ℓ has the additional properties (not essential yet facilitating the
remaining analysis):

1. ℓ is decreasing and continuous
2. If θ ∈ ℓ(Γ), θ′ ∈ ℓ(Γ) for any θ′ < θ.
Clearly, since marginal utility is strictly decreasing,

∫ [∫ cε1(θ,θ′)

c0(θ)

u′(q)dq

]
ψ(dθ′) >

∫

ℓ(Γ)

[∫ cε1(θ,θ′)

c0(θ)

u′(q)dq

]
ψ(dθ′),

or
∫

Γ×Θ

[
u
(
cε1
(
θ, θ′

))
− u(c0 ◦ ι

−1
0 (θ)

]
dψ(2)

>

∫

ℓ(Γ)×Θ

[
u
(
cε1
(
θ, θ′

))
− u(c0 ◦ ι

−1
0 (θ)

]
dψ(2).

Next, we shall argue that long-run utility of agents belonging to Γc ∪ ℓ(Γ)c

increases, despite reducing their consumption at time 0. The reason is that
the previous plan continues to be optimal, since we chose to be close enough
to β as to make the discrepancy of money holdings with respect to the aver-
age negligible. From Lemma the capital stock is increasing and converging to∫
kεdψ >

∫
k0dψ. As the initial condition allows households to maintain b up

to average, and capital (and wage) grows with σ,

cεt ≥ θwεt > θw0.

Since w0 differs from c0 by an arbitrary small amount independent of ε, it must
be the case that

lim
t→∞

∫ ∫
u(cεt)dψ ⊗ dψ(t) > u(c0 ◦ ι

−1
0 (θ)).

The proposition is then concluded, because then consumption is reduced at the
expense of increasing b with the prospective of pooling risk, but their long-run
utility cannot be reduced.
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