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Abstract 

In this paper I examine the market price of risk of the volatility term structure. To 

this end, the S&P 500 VIX volatility term structure is used as a proxy for the 

aggregate volatility risk. Principal component analysis shows that time variation 

in the term structure of volatilities can be explained by three factors, which 

capture changes in the level, slope and curvature. The market price of risk of each 

factor is estimated in the cross-section of asset returns. I find a significant 

negative market price of risk for the level and slope, and a positive price of risk 

for the curvature of the volatility term structure. It is shown that the slope of the 

volatility term structure predicts changes in market excess returns over 

intermediate quarterly horizons, while the level and curvature are more related to 

short-term variations in market premia. A model with market returns and the three 

volatility factors has similar performance to that of the Fama-French model in 

pricing size and book-to-market sorted portfolios.  
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1. Introduction 
 
Market volatility changes stochastically over time. This is by now a well 

understood phenomenon that has been confirmed by many studies using market 

returns, option prices or both (e.g., Andersen et al. 2002, Pan, 2002, Broadie et al., 

2007). While there has been a substantial progress in modeling time-varying 

volatility there is still some lack of understanding with respect to some of the 

asset pricing implications caused by stochastic volatility. Time variation in 

volatility affects the investment opportunity set and if volatility is systematic, 

intertemporal asset pricing models suggest that the expected returns of stocks 

should be determined by their covariation with both market returns and 

innovations in the state variables that drive volatility dynamics. 

The cross section of volatility risk has been previously examined by Ang et 

al. (2006b) and Adrian and Rosenberg (2008). Ang et al. (2006b), use as a proxy 

for market volatility the implied volatility VIX.1 They find a significant negative 

volatility risk premium in the cross section of asset returns. However, their factor 

model with market return and innovations in volatility reduces pricing errors 

marginally compared to the CAPM. Adrian and Rosenberg (2008) postulate a two 

component GARCH model for market returns and volatility in the spirit of Engle 

and Lee (1999). They find that both the short and long-run volatility components 

have significant negative prices of risk. They show that a model with market 

return and innovations in the two volatility components has lower pricing errors 

than the Fama and French (1993) three-factor model on portfolios sorted by size 
                                                 
1 Ang et al. (2006b) use data from the old VIX, which is now termed as VXO. VXO is the Black-
Scholes implied volatility of a synthetic ATM option on the S&P 100 with constant 30 calendar 
days to expiry. 
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and book-to market characteristics. They argue that the short-run component is 

related to market skewness risk, while the long-run component captures business 

cycle risk.  

In this paper I also test if volatility is priced in the cross section of asset 

returns. However, in contrast to Adrian and Rosenberg (2008) I do not impose 

any particular model on volatility dynamics and unlike Ang et al. (2006b) I don’t 

use only a single maturity implied volatility index. I adopt a market based 

approach using data from the S&P 500 VIX volatility term structure as a proxy 

for the aggregate volatility risk. Different from Black-Scholes implied volatilities, 

the VIX term structure is derived in a model-free manner using option prices from 

S&P 500, without reference to any particular form of volatility dynamics (see 

Carr and Wu, 2004).2 Moreover, in contrast to GARCH models, the VIX volatility 

term structure is a forward looking measure of expected volatilities at different 

horizons and may reflect more accurately market conditions.  

Principal component analysis suggests that the evolution of innovations in 

the volatility term structure over the 1992 to 2007 sample period can be captured 

by three factors. Similar to the interest rate literature, the factors capture changes 

in the level, slope and curvature of the volatility term structure. The market price 

of risk of each factor is estimated using size and book-to-market sorted portfolios. 

I find a significant negative market price of risk for the level and slope, and a 

positive price of risk for the curvature of the volatility term structure. A model 

                                                 
2 The volatilities from the VIX term structure are variance swaps for different maturities. This is a 
forward contract where the buyer (seller) receives the difference between the realized volatility of 
the returns of a stated underling and a fixed volatility rate, termed variance swap rate, if the 
difference is positive (negative).  
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with the market return and the three volatility factors has similar performance to 

that of the Fama-French model in pricing size and book-to- market sorted 

portfolios.  

To understand the economic underpinnings of the empirical success of the 

model I test whether the volatility factors capture changes in the investment 

opportunity set. I find that the slope of the volatility term structure captures 

changes in market excess returns over intermediate quarterly horizons. In 

particular, an increase (decrease) in the slope predicts low (high) future returns. 

The explanatory power of the volatility slope compares favorably to other 

forecasting variables such the price-dividend ratio and the consumption-wealth 

ratio. The other two volatility factors seem to be related to short-term variations in 

market premia. The results are consistent with a risk-based explanation of the 

Fama-French three-factor model. 

The remainder of the paper is structured as follows. In the next Section I 

outline the asset pricing framework used in the paper. Section 3 describes the 

construction of the volatility term structure and discusses the methods for 

extracting innovations. Section 4 applies principal component analysis to 

historical volatility term structure data and interprets the factors that explain the 

time variation. In Section 5 the market price of risk of the volatility factors is 

estimated in the cross section using portfolios sorted by size and book-to market 

characteristics. Section 6 examines the risk-return relationship using the volatility 

factors. Section 7 conducts robustness tests by taking into account bid/offer 

spreads in option prices, different methods for extracting volatility innovations 
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and different sets of test portfolios. The last Section concludes, it presents the 

implications of the study, and it suggests directions for future research. 

 
2. ICAPM Formulation 
 
I assume that investment opportunities vary over time and asset returns are driven 

by an Intertemporal Capital Asset Pricing Model (ICAPM) in the spirit of Merton 

(1973). According to ICAPM, both the excess market return and innovations in 

state variables that forecast changes in the future investment opportunity set 

should show up as pricing factors in the cross section of asset returns (see 

Cochrane, 2001, pp. 444). The intuition is that investors will bid up the prices of 

assets that do well when future investment opportunities are expected to 

deteriorate, and consequently lower the expected returns. These assets command a 

smaller risk premium because they increase the investor’s ability to hedge against 

unfavorable changes in investment opportunities. On the other hand, investors 

will command a higher premium for holding assets that do badly when future 

investment opportunities worsen. I assume the following model for the 

unconditional expected excess returns of the risky assets:  

 
1

( ) ( , ) ( , )
N

i i M j i j
j

E R Cov R R f Cov R Sγ
=

= + ∑  (1) 

where ( )iE R is the excess return of the risky asset i, RM the excess return of the 

market and Sj is the innovation in state variable j. Let J denote the indirect utility 

function of the investor and W the level of wealth. The coefficient of relative risk 
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aversion is WW

W

J W
J

γ −
=  while jWS

j
W

J
f

J

−
=  captures percentage changes in 

marginal utility due to innovations in the state variable j.  

According to model (1) the risk premia of assets are determined by their 

covariation with the excess market return as well as covariation (scaled by γ and 

fj) with innovations in state variables that capture changes in the investment 

opportunity set. In the next section, the factors that explain the time variation in 

the volatility term structure innovations are extracted from principal component 

analysis. I find that three factors explain approximately 96% of the total variation. 

The extracted factors play the role of state variable innovations for determining 

risk premia in equation (1). 

 

3. Term Structure of Volatilities  
 
The development of the VIX term structure is based on the notion of model-free 

implied volatility. This is the risk-neutral expectation of future integrated 

volatility over a fixed horizon and is constructed from out-of-the money calls and 

puts. Most importantly, in contrast to Black Scholes implied volatilities, does not 

require reference to any particular model (see, for example, Carr and Madan, 

1998; Demeterfi et al., 1999; Britten-Jones and Neuberger, 2000; Jiang and Tian, 

2005; Carr and Wu, 2008). 

Following Carr and Wu (2008), the time t risk-neutral expectation of an 

asset’s annualised integrated volatility over a period [t, T], denoted by ,t TIV , can 
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be approximated by a continuum of T maturity out-of-the money puts and calls 

written on the asset: 

 , 20

( , )2
( )

Q t
t t T

t

Q K TE IV dK
T t P T K

∞
⎡ ⎤ =⎣ ⎦ − ∫  (2) 

where Pt (T) is the value of a bond at time t that pays one dollar at time T. and Ot 

(K,T) denotes the price of a call at time t when K is greater than the spot price, and 

the price of a put at time t when K is smaller than the spot price.  

The Chicago Board of Exchange (CBOE) has made publicly available 

historical data on the VIX term structure to allow market participants to calculate 

the forward value of VIX, which is the underlying asset of VIX futures and VIX 

options (see Carr and Wu, 2004).3 The CBOE uses a discretised version of (2) to 

calculate the term structure of the risk-neutral expectation of the S&P 500 

integrated volatility, which is given by:  

2
( )

, 2
sin sin 0

2 1( , ) 1
( ) ( )

calendarr T tQ i
t t T i

iBu ess i Bu ess

K FE IV e Q K T
T t K T t K

− ⎡ ⎤∆
⎡ ⎤ = + −⎢ ⎥⎣ ⎦ − − ⎣ ⎦

∑  (3) 

where F  is the forward price derived from index options prices, r is the risk-free 

rate to expiration and K0 is the first strike below the forward index level. In the 

formulae above the CBOE uses both calendar and business days.4 Calendar 

days, ( )calendarT t− , reflect the actual financing costs of holding the replicating 

option portfolio. The business day measure, sin( )bu essT t− , is calendar days 

excluding weekends and holidays. 

                                                 
3 The data are available from: http://www.cboe.com/micro/vix/vixtermstructure.aspx. 
4 The CBOE is also subdividing each day into “business minutes” or “calendar minutes” to 
expiration, which are then annualized. 
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There are some differences between the VIX term structure and the VIX 

index, which is also available from CBOE. The VIX index is the model-free risk- 

neutral expectation of future integrated volatility with a constant 30-day maturity 

and is calculated using formulae (3) only with calendar days. In contrast, the VIX 

term structure is applied to a single strip of options having the same expiration 

date and does not reflect constant-maturity volatility. To correct for volatility 

changes due to the time decay in option prices I construct constant-maturity 

volatilities (V) for one month, two months, three months, six months and twelve 

months ( iT  for i = t+30, t+60, t+90, t+180, and t+360 calendar days). I use the 

same interpolation scheme employed by the CBOE for the construction of the 

VIX index:5 

 
1 2

2 1
, 1 , 2 ,

2 1 2

365
i

Q Q Qi i
t t T t t T t t T

i

T T T TE IV T E IV T E IV
T T T T T

⎧ ⎫⎡ ⎤ ⎡ ⎤− −⎪ ⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + ×⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ − −⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
 (4) 

where T2 and T1 are the calendar days for the two nearest-term expiration months. 

I use as a proxy for innovations in the term structure of volatilities the first 

differences of each constant-maturity volatility, 1 1, 1 ,( ) ( )
i i

Q Q
t t T t t TE IV E IV+ + + − 6. 

However, there are two drawbacks from using VIX data to derive innovations in 

the term structure of volatilities. First, if S&P 500 returns are driven by a jump 

diffusion stochastic volatility process the integrated volatilities will reflect both 

diffusion and jump risk (see Pan, 2002). Second, integrated volatilities are 

                                                 
5 Similar to the CBOE’s calculations for the VIX index, volatilities that have less than eight days 
left to expiration are not included in the interpolation to avoid microstructure effects. In this case, 
the second and third nearest volatilities are used. 
6 I use first differences because, as it shown in the next section, volatility levels are highly 
autocorrelated. As a robustness test, in section xxx the innovations are also extracted from a vector 
autoregressive model applied to volatility levels. 
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calculated under the risk-neutral probability measure. If S&P 500 returns are 

driven by a diffusion stochastic volatility process integrated volatilities will also 

include volatility risk premia (see Carr and Wu, 2008). In the case of a jump 

diffusion stochastic volatility process for asset returns, integrated volatility could 

reflect both jump and volatility risk premia (see Carr and Wu, 2008). Since 

innovations are measured by first differences, the results will not be affected only 

if premia are constant over time.  

These caveats from using VIX data can be properly addressed by assuming 

a particular model for asset returns, volatility dynamics and risk premia. However, 

even under this approach the extracted innovations will depend on the particular 

model parameterization. For example, in a recent study Leippold et al. (2009) 

show that a two-factor stochastic model provides a better fit to the dynamics of 

the volatility term structure compared to a one-factor model. However, in the next 

section I find that the variation in the term structure is captured by three factors. 

Similar to Ang et al. (2006b), instead of estimating a particular model I use 

unadulterated time series data of the VIX term structure.7  

 

4. Principal Component Analysis 

I use VIX term structure data over the period January 2, 1992 to December 31, 

2007. The data were downloaded from the CBOE’s web site. I use the volatility 

term structure derived from mid option prices. As mentioned in the previous 

section, the volatilities of the VIX term structure do not reflect constant-maturity. 
                                                 
7 As a robustness test, in Section 5 the innovations are also extracted from a vector autoregressive 
model applied to the volatility levels. 
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To correct for volatility changes due to the time decay in option prices, I use the 

interpolation scheme in (3) and construct daily volatilities with fixed maturities at 

one, two, three, six and twelve months. Figure 1 depicts the evolution of the 

volatilities for the period under consideration. For comparison purposes I also 

include the VIX index. The correlation between VIX and the one-month volatility 

is 99% and the correlation between their first differences is 90%. All volatilities 

series start at relatively low levels and display spikes in 1997 and 1998 due to 

Asian, Russian and hedge fund crises, respectively. Spikes are also observed 

between 2001 and 2003.  

[Figure 1] 

Table 1 (Panel A) reports the summary statistics of the volatility levels. The 

mean term structure is humped shaped. The mean volatilities increase for 

maturities up to six months and then decrease moderately. The mean term 

structure is also plotted in Figure 1. The standard deviation of all series decreases 

monotonically with maturity. All series show positive skewness and kurtosis and 

are highly persistent (all autocorrelation are more than 0.97). Panel B shows the 

summary statistics for the daily first differences of the volatility series. The mean 

daily change is effectively zero for all maturities. All series show excess kurtosis 

and the first-order autocorrelation drops substantially (the maximum 

autocorrelation being -0.35 for the case of the 12-month volatility).     

[Table 1] 

Since volatility levels are highly persistent, I apply principal component 

analysis to the daily first differences (see also Zhu and Avellaneda, 1997) of the 
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five volatility series. Table 2 shows that the first principal component (PC1) 

explains 70% of the variability in the data. The second (PC2) and third (PC3) 

component, explain 17% and 7%, respectively. All together, the first three 

principal components explain around 96% of the variability in the term structure 

of volatilities.  

[Table 2] 

Figure 2 plots the corresponding eigenvectors of the first three principal 

components. The first eigenvector is negative for all maturities. This suggests that 

the first factor is related to changes in the level of volatility. The second 

eigenvector is negative for maturities up to three months and positive otherwise. 

Hence, the second factor seems to capture changes in the slope of the term 

structure. The third eigenvector is positive for short and long maturities and 

negative for intermediate maturities and hence the third factor is related to 

changes in the curvature of the term structure.  

[Figure 2] 

Table 3 shows the correlations between the principal components and the 

daily changes in the volatility series. I also include daily changes in the difference 

between the 12-month and 1-month volatilities as a proxy for changes in the slope 

of the term structure. The first component is mostly correlated with short-term 

volatilities (1-month and 2-month with correlation -95%). Note that the 

correlation is negative and hence an increase in the first component should be 

interpreted as a decrease in the volatility level. To facilitate the interpretation of 

the results, in the subsequent analysis the first component is multiplied by minus 
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one. The second component is highly correlated with changes in the difference 

between the 12-month and 1-month volatilities (the correlation being 77%). 

Therefore, an increase in the second component is associated with an increase in 

the slope of the term structure. The third component is positively correlated with 

the 1-month and 12-month volatilities and negatively correlated with all other 

volatilities. An increase in the third factor can be interpreted as a change in the 

curvature of the term structure.  

[Table 3] 

 
5. Cross-Sectional Estimation  

In this section I estimate the market price of risk of the three volatility factors 

using cross-sectional regressions. For comparison purposes I also estimate the 

prices of risk according to the CAPM , the Fama-French three-factor model and 

the Fama-French three factor model augmented by the momentum factor. For the 

cross sectional estimation I use the two-stage method of Fama-Macbeth (1973) 

using daily data on the 25 size and book-to-market sorted portfolios.  The returns 

on the market portfolio, the Fama-French factors and the 25 portfolios are from 

Professor Ken French’s website and also cover the period January 3, 1992 to 

December 31, 2007. 

In the first stage I estimate for each portfolio i, the factors loadings with 

respect to market returns and volatility factors using the full sample as in Lettau 

and Ludvigson (2001) and Petkova (2006): 

 1 2 31 2 3i M i
t i iM t i t i t i t tR a R PC PC PCβ β β β ε= + + + + +  (5) 
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In the second stage the market price of risk of each factor is estimated using 

the following cross-sectional regression: 

 1 1 2 2 3 3i iM M i PC i PC i PC iR eβ λ β λ β λ β λ= + + + +  (6) 

Similar to Adrian and Rosenberg (2008) I assume correct pricing of the risk-

free asset and in the second-stage cross-sectional regression the intercept term is 

set to zero. Because factors loadings from the first regression are estimated with 

errors, the standard errors of Shanken (1992) are used to correct for the errors-in-

variables problem in the cross-sectional regression. I have also tried to allow for 

time variation in factor loadings and market prices of risk using a rolling window 

approach. However, for rolling windows of 30 or 60 days the factor loadings of 

the three volatility factors were very unstable. Similar to Adrian and Rosenberg 

(2008) the market prices of risk were also estimated using monthly cross-sectional 

regressions and factor loading estimates from the full sample.  The market prices 

of risk were similar to the ones obtained from the full sample approach. To 

preserve space I report the estimates from the first method only. 

Table 4 reports the correlations between the first three principal 

components, the excess return on the market (RM) and the Fama-French value and 

size factors (a zero cost portfolio that is long small-cap stocks and short in large-

cap (SMB), and a zero cost portfolio that is short in low book-to-market stocks 

and long in high book-to-market stocks (HML)). As expected, the first component 

is highly negatively correlated with market returns (leverage effect). The second 

component is positively correlated with market returns, and hence a steepening in 

the term structure is associated with contemporaneous positive market returns. 
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The third component has a small negative correlation with the market return. The 

first component (PC1) has a large positive correlation (0.38) with the value factor. 

[Table 4] 

Table 5 reports the estimates of the factor loadings from the first-pass 

regression. I also include the p values from a system of seemingly unrelated 

regressions to test the joint significance of the loadings.  

[Table 5] 

There is substantial variability with respect to factor loadings across the 

various size and book-to-market portfolios. Small firms have positive loadings on 

the first component while large firms have negative loadings. Recall that the first 

component is correlated with changes in short-term volatility. Therefore, the price 

of small firms tends to increase when there are positive shocks to the volatility 

level, while the price of large firms tends to decrease. Similar to the findings of 

Adrian and Rosenberg (2008) low book-to-market stocks (growth stocks) tend to 

have positive betas and hence positive returns when there are positive shocks to 

the volatility level while high-book-to-market stocks (value stocks) tend to move 

the opposite direction.  

Small firms have negative betas with respect to the slope factor and large 

firms positive. Across the value and growth dimension factor loadings related to 

changes in the slope of volatility term structure tend to be negative. All types of 

stocks have positive exposure to changes in the curvature factor.  

Table 6 reports the estimates of the market price of risk of the three 

volatility factors using the 25 size- and book-to-market–sorted portfolios. To 
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better assess the empirical results I also include the estimates from the CAPM, the 

Fama-French model and Carhart’s (1997) momentum factor (UMD). Column (10) 

reports the estimates of the market price of risk of the three volatility factors.  

[Table 6] 

Consistent with previous results, the factor related to innovations in the 

volatility level carries a negative premium (-0.37% per day) in the cross section. 

The second principal component also carries a negative premium (-0.40% per 

day), while the third has a positive price of risk (0.18% per day). All principal 

components are significant pricing factors at the 1% significance level. However, 

the prices of risk that I find differ substantially from previous estimates. Ang et al. 

(2006b) use data for the 1986 to 2000 sample period and find that innovations in 

the volatility level have a negative price of risk of approximately -1% per annum. 

In the 1963 to 2005 sample period Adrian and Rosenberg (2008) find that the 

short-term volatility component has a price of risk of -2.52% per annum and the 

long term component a price of risk of -24.24% per annum. The annualized 

estimates that I obtain are -94% for PC1, -101% for PC2 and 46% for PC3, 

respectively. This difference may be attributed to the different sample periods or 

the different methods for extracting volatility risk. Note that in the literature there 

is still no consensus with respect to the exact market price of volatility risk. For 

example, Carr and Wu (2004) examine the returns from buying variance swaps on 

S&P 500 and find that the market price of volatility risk is around −39.7% per 

month. 
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The root-mean-square pricing error (RMSPE) and the cross sectional R2 

both show that the pricing performance of the proposed four factor model is 

similar to that of other competing models.8 The RMSPE is 0.0117 and the R2 is 

20.30% (column 10) while the RMSPE and R2 of the Fama-French model 

(column 2) and the CAPM (column 1) is 0.012, 14.27% and 0.0184, -98.21%, 

respectively. However, when the momentum factor is included in the Fama-

French model (column 3) the RMSPE drops to 0.0108 and the R2 increases to 

24.95%. Note that from the Fama-French factors only the value factor has a 

significant price of risk in the cross section of asset returns. 

 Columns (4, 5 and 6) report the market price of risk when each principal 

component enters the cross sectional regression separately. The market price of 

risk of the first (column 4) and third component (column 6) remains significant 

but the second factor becomes insignificant (column 5). Columns (7), (8) and (9) 

show the prices of risk when the principal components enter in pairs. The price of 

risk of the second factor is significant when it is estimated along with the market 

price of the first component, but becomes insignificant when it is estimated along 

with the market price of risk of the third factor. When the three principal 

components are augmented by the Fama-French and momentum factors (column 

11) the market price of risk of the second and third component becomes 

                                                 

8 The root-mean-square pricing error (RMSPE) is calculated as 
25

2

1

/i
i

a N
=
∑  and ( )i i ia R β λ= − . 

The cross sectional R2 is similar to that employed by Jagannathan and Wang (1996) and Lettau 

and Ludvigson (2001) and it is given by 2 ( ) ( )
( )

c c

c

Var R Var a
R

Var R
−

=  where R is the vector of average 

returns of the 25 portfolios and α is the vector of pricing errors.   
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insignificant. It seems that the value and momentum factors contain some 

additional information beyond that reflected in the volatility term structure.  

To further facilitate the interpretation of the empirical results, the pricing 

performance of the models is also depicted in Figure 4 that plots the average 

realized returns of the 25 portfolios against the predicted returns derived from 

four different models and the estimates from Table 6. Each two-digit number 

represents a separate portfolio. The first digit refers to the size quintile of the 

portfolio (1 denotes the smallest and 5 the largest), while the second digit refers to 

the book-to-market quintile (1 denotes the lowest and 5 the highest). The realized 

average returns are computed as the time-series averages of the 25 portfolio 

returns using the full sample. Under perfect fit realized and predicted returns 

should lie on a 45-degree line. It is evident that the CAPM model is unable to 

explain the returns of size and book-to-market sorted portfolios. When the CAPM 

is augmented by the first principal component the performance improves only 

marginally. I have also used the VIX index as in Ang et al. (2006b) to extract 

innovations in volatility and the pricing performance was found to be 

approximately the same with that from using the first principal component. 

However, when all three principal components are included in the model the 

performance improves substantially and is very similar to that of the Fama-French 

model.  

[Figure 4] 

To examine further the empirical results, Figure 5 depicts the percentage 

contribution of each portfolio to the total squared pricing errors for the Fama-
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French and the three factor volatility model, respectively. In both models the 

largest contribution to the total pricing error is coming mainly from portfolios 

with small size stocks (11, 12, 13, 14, and 15). The three factor volatility model 

performs better in pricing large value stocks (45, 55) while the Fama French 

model has smaller pricing errors in large growth stocks (43, 53). 

[Figure 5] 

 
6. Risk Return Tradeoff and Hedging Components 

In this section I examine the economic underpinnings of the empirical success of 

the volatility model and I test whether the volatility factors capture changes in the 

investment opportunity set. The empirical results on the relationship between risk 

and market return have been ambiguous. For example, French et al. (1987), 

Glosten et al. (1993) and Brandt and Kang (2004), among others, find a positive 

by insignificant relationship. Ghysels et al. (2004) and Lundblad (2005) find a 

positive and significant relationship, while some studies even find a negative 

relation (e.g., Campbell, 1987, Harvey 2001, Lettau and Ludvigson, 2003). 

Scruggs (1998) and Guo and Whitelaw (2005) argue that the relationship is 

positive after controlling for the hedge component in the model specification.  

Here I estimate the relationship between risk and return, but also take into 

account the hedging components that may arise from the remaining two volatility 

factors. The relationship between the future excess market returns and the three 

volatility factors is estimated with the following regression: 

 (1) (12) (1) (12) (1) (3)
, 1 0 1 2 3( ) ( 2 )M t t t t t t t tR V V V V V V uβ β β β+ = + + − + + − +  (7) 
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where (1)V , (3)V  and (12)V  are the 1-month, 3-month and 12-month volatilities, 

respectively. The term (12) (1)V V−  is used as a proxy for the slope of the term 

structure, while the term (12) (1) (3)2V V V+ −  is used as a proxy for the curvature 

(see also Ang et al. 2006a for a similar approach in yield curve modeling). Table 

7, reports the estimates from regression (7). The coefficient of the short-term 

volatility (β1) is positive but it is not statistically significant.  The signs of the 

other two coefficients imply that future excess returns depend negatively on the 

slope of the volatility term structure (β2) and positively on the curvature (β3). 

However, both coefficients are not statistically significant.9 Note that that the t-

statistics of the level and curvature coefficients (1.34 and 1.54, respectively) are 

much higher than the t-statistic of the slope coefficient (-0.80). Though the 

significance of the results is not extremely strong, it seems that the level and 

curvature are more related to daily future changes of market excess returns.  

[Table 6] 

To better appreciate the forecasting power of the volatility factors I run 

predictive regressions on a monthly and quarterly frequency, since many studies 

(e.g., Cochrane, 2008)) have shown that market returns are more predictable at 

low frequencies. I use multi-period return regressions of the form: 

 (1) (12) (1) (12) (1) (3)
, 0 1 2 3 ,

1

1 ( ) ( 2 )
h

M t j t t t t t t t t h
j

R V V V V V V u
h

β β β β+ +
=

= + + − + + − +∑  (8) 

where now t, denotes end-of-month data.  

                                                 
9 When regression (7) is estimated by imposing a zero intercept the signs of the coefficients 
remain the same, but the coefficient of the volatility level becomes significant. 
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Table 8 reports the estimates from regression (8) for monthly horizons 

(h=1). Because the volatilities are highly cross-correlated to account for 

collinearity problems I also run regressions in which the coefficients of the 

different volatility factors (level, slope and curvature) are estimated separately 

(regressions 1, 2 and 3). At the monthly horizon (h=1) the different volatility 

factors do not seem to have any predictive power. The largest R2 (0.7%) is given 

by regression 2, where the dependent variable is only the slope factor. Regression 

4 reports the coefficients when all three volatility factors enter as dependent 

variables. The coefficients are not statistically significant and the R2 becomes 

negative. In Table 9 I repeat the same estimation procedure using quarterly excess 

returns (h=3).  In regression 1 the coefficient of the volatility level is not 

statistical significant but the R2 increases to 1.93%. The forecasting ability of the 

slope factor is evident from looking at the results from regression 2. The 

coefficient is statistically significant with a large t-statistic of -2.23 while the R2 

increases substantially and reaches 3.9%. The magnitude of the slope coefficient 

implies that a 1% increase in the slope of the volatility term structure predicts an 

average -0.26% decrease in the market excess returns over the next three months. 

The R2 may not look very impressive but nevertheless the predictive power of the 

slope factor compares favorably with other traditional forecasting variables.  For 

approximately the same sample period (January 1, 1990 to December 31, 2007), 

Bollerslev et al. (2008) finds that at a quarterly horizon the price-dividend ratio 

and the consumption-wealth ratio have R2,s of 4.19% and 4.13%, respectively.  

[Table 7] 
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In Figure 6 I plot the slope coefficients and the R2,s for different return 

horizons when the dependent variable is only the slope factor. The slope 

coefficient increases monotonically with the return horizon. The adjusted R2 starts 

at relatively low levels at the one-month return horizon and reaches its maximum 

value at quarterly horizons. Then it gradually drops off and becomes negligible at 

the annual horizon. Interestingly enough, the pattern of the slope coefficient and 

R2,s as functions of return horizon look very similar to the results by Bollerslev et 

al. (2008) (Figure 2, pp. 39) when they regress future excess returns against the 

volatility risk premium. It seems that the volatility risk premium and the volatility 

slope share some common information. Unfortunately, data on the volatility term 

structure are limited to the post ’90 sample period and this does not allow the 

examination of longer sample periods and longer return horizons. However, the 

results here suggest that there are strong indications that the slope of the volatility 

term structure carries important information with respect to time variation in 

market risk premium. 

[Figure 6] 

The empirical results from regressions (7) and (8) together with the market 

prices of risk estimated in Section 4 are consistent with an ICAPM interpretation. 

The estimated coefficients imply that a positive shock in the slope of the term 

structure signals a deterioration of the investment opportunity set. Given the 

negative market price of the slope, an asset that covaries positively with 

innovations in the slope is considered less risky and thus commands a smaller risk 

premium. A similar interpretation can be given to the curvature factor. Though the 
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statistical results on the curvature factor are not extremely strong, regression 7 

suggests that this factor seems to be related to short-term (e.g., daily) variations in 

market premia. 

Note that the economic interpretation of the empirical success of the 

volatility model is somewhat different from that given by Adrian and Rosenberg 

(2008). Adrian and Rosenberg argue that the short volatility component captures 

market skewness risk and the long volatility component captures business cycle 

risk. Their conclusions are based on the empirical finding that the risk premium of 

the short-run component correlates highly with the risk premium of market 

skewness and the risk premium of the long-run component correlates highly with 

the risk premium of industrial production growth. However, they don’t provide 

any strong evidence on the predictive ability of the volatility components and 

their results are closer to an APT interpretation.  

 
7. Robustness Tests 
 
In this section I examine whether the estimates of the market price of risk of the 

three volatility factors are robust to bid/offer spreads in option prices, different 

methods for extracting volatility innovations and different sets of test portfolios.  

The CBOE has also made publicly available the VIX term structure derived 

from bid and offer option prices, respectively. To test whether the results are 

affected by market frictions I estimate the market price of risk of the volatility 

factors using the bid/offer volatility term structure.  I also derive innovations in 

the volatility term structure by running a first order vector autoregressive (VAR) 

process with the five volatility series as state variables. From the VAR system I 
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use the five residual series as a proxy for innovations in the term structure and 

then apply principal component analysis. I find that the first three components 

capture around 96% of the variation in the residual series.  Finally, to address the 

concerns by Lewellen et al. (2006) and examine whether the results are affected 

by the choice of the test portfolios, I estimate the market price of risk of the 

volatility factors using as test assets the 25 portfolios augmented by the 30 

industry portfolios. The 30 industry portfolios are downloaded from Professor 

Ken French’s website.  All the results are assembled in Table 10. 

The estimates of market price of risk when the volatility term structure is 

constructed using the bid and offer option prices are reported in columns (2) and 

(3), respectively. In both cases the R2,s, the RMSPE and the estimates of the price 

of risk are very similar the ones obtained using the mid option prices in Table 6. 

When the volatility innovations are extracted from the VAR system (column 3) 

the price of risk of the curvature factor becomes insignificant. The curvature 

factor also becomes insignificant when the test portfolio is the 25 portfolios 

augmented by the 30 industry portfolios (column 4). However, in both cases the 

market price of risk of the level and slope remains highly significant. A drawback 

of the models is that the R2 decreases substantially when the test assets are 

augmented by the 30 industry portfolios. However, Lewellen et al. (2006) report 

similar results. The show that the performance of many popular asset pricing 

models deteriorates substantially when they are tested against the 25 size and 

book-to-market sorted and 30 industry portfolios.  

[Table 10] 
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8. Conclusions 

In this paper I examine the market price of risk of the volatility term structure. 

Principal components analysis suggests that that time variation in the term 

structure of volatilities can be explained by three factors, which capture changes 

in the level, slope and curvature. The market price of each factor is estimated in 

the cross section of asset returns using size and book-to-market sorted portfolios. I 

find a significant negative market price of risk for the level and slope, and a 

positive price of risk for the curvature of the volatility term structure. The 

proposed asset pricing model with market return and the three volatility factors 

has similar performance to that of the Fama-French model in pricing size and 

book-to-market sorted portfolios. The volatility factors are priced in the cross 

section because they capture changes in the investment opportunity set in the 

spirit of ICAPM. The slope of volatility term structure predicts changes in market 

excess returns over intermediate quarterly horizons, while the level and curvature 

seem to be related to short-term variations in market premia. Future research 

should try to develop equilibrium models in order to pin down the exact economic 

mechanism behind the cross sectional price of risk and return predictability 

pattern of the volatility factors, and especially that of the slope factor. This 

perhaps can be done by developing multifactor stochastic volatility models in the 

context of Bansal and Yaron (2004) and Bollerslev et al. (2008). 
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Panel A: Levels 

Maturity  Mean Std. Dev. Skewness Kurtosis 1st Auto 
1 0.04 0.03 2.05 8.82 0.97 
2 0.04 0.03 1.73 6.88 0.98 
3 0.04 0.03 1.66 6.65 0.98 
6 0.04 0.02 1.43 5.45 0.99 

12 0.04 0.02 1.30 6.23 0.97 
Panel B: First Differences 

Maturity Mean Std. Dev. Skewness Kurtosis 1st Auto 
1 4.16E-06 0.01 0.62 41.00 -0.12 
2 5.75E-06 0.00 0.49 48.10 -0.05 
3 5.69E-06 0.00 -0.64 29.95 -0.09 
6 8.36E-06 0.00 1.03 100.59 -0.15 

12 8.61E-06 0.00 0.37 745.25 -0.36 
 
Table 1: Descriptive statistics for volatilities with fixed maturities at one, two, three, six 
and twelve months. Panel A reports the summary statistics for the volatility levels and 
Panel B for the first differences. The data are daily and cover the period from January 2, 
1992 to December 31, 2007. 
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Principal Component PC1 PC2 PC3 PC4 PC5 
% of Total Variance 70.8 17.4 7.58 2.26 2 

 
Table 2: Principal component analysis of the time series of daily differences of 
volatilities with fixed maturities at one, two, three, six and twelve months. The time 
period is from January 3, 1992 to December 31, 2007.   
 
 
 
 
 
 PC1 PC2 PC3 ∆ (1M) ∆ (2M) ∆ (3M) ∆ (6M) ∆ (12M) ∆(12M-1M) 
PC1 1.00         
PC2 0.00 1.00        
PC3 0.00 0.00 1.00       
∆ (1M) -0.94 -0.18 0.26 1.00      
∆ (2M) -0.95 -0.15 -0.07 0.88 1.00     
∆ (3M) -0.83 -0.10 -0.53 0.67 0.80 1.00    
∆ (6M) -0.80 0.38 -0.07 0.66 0.70 0.63 1.00   
∆ (12M) -0.46 0.88 0.05 0.29 0.30 0.27 0.65 1.00  
∆(12M-1M) 0.59 0.77 -0.22 -0.76 -0.63 -0.46 -0.18 0.41 1.00 
 
Table 3: Correlation between the three principal components (PC1, PC2, PC3) and daily 
differences in volatilities with fixed maturities at one (∆ (1M)), two (∆ (2M)), three (∆ 
(3M)), six (∆ (6M)) and twelve (∆ (12M)) months.12M-1M is difference between the 
twelve and one month volatility and is used as a proxy for changes in the slope of the 
term structure. The time period is from January 3, 1992 to December 31, 2007.   
 
 
 
 
 
 

  RM RSMB RHML PC1 PC2 PC3 
RM 1.00      
SMB -0.08 1.00     
HML -0.60 -0.20 1.00    
PC1 -0.73 0.13 0.38 1.00   
PC2 0.11 -0.05 -0.06 0.00 1.00  
PC3 -0.06 0.04 0.05 0.00 0.00 1.00 
 
Table 4: Correlation between the three principal components (PC1, PC2, PC3) the excess 
market return (RM) and the Fama-French Factors (SMB, HML).The time period is from 
January 3, 1992 to December 31, 2007.   
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, , , , 1 , 2 , 3 ,1 2 3i t i i M M t i PC t i PC t i PC t i tR a R PC PC PCβ β β β ε= + + + + +  

  Low 2.00 3.00 4.00 High   Low 2.00 3.00 4.00 High 
                        α                        ta 
Small -0.03 0.01 0.02 0.04 0.04  -2.15 1.01 2.38 3.68 4.03 
2.00 -0.02 0.00 0.02 0.02 0.02  -1.78 0.14 1.99 2.31 2.04 
3.00 -0.02 0.01 0.02 0.01 0.03  -1.70 0.91 2.29 1.62 3.00 
4.00 -0.01 0.01 0.02 0.02 0.02  -0.87 1.95 2.07 2.68 1.67 
Large -0.01 0.01 0.01 0.01 0.01   -1.32 1.90 1.21 1.10 1.27 

p-Value that all 25 Intercepts Are Equal =0.00% 
                       βΜ                       tβM 
Small 1.01 0.85 0.67 0.59 0.58  25.53 27.24 25.56 24.40 25.14 
2.00 1.23 0.95 0.85 0.79 0.80  46.64 44.92 38.43 35.54 33.50 
3.00 1.28 0.94 0.78 0.75 0.78  47.30 59.80 37.56 36.07 32.50 
4.00 1.32 0.85 0.77 0.73 0.70  45.72 50.22 38.95 27.28 25.86 
Large 1.07 0.86 0.78 0.72 0.76   91.99 43.55 31.82 25.31 24.12 

p-Value that all 25 Loadings Are Equal =0.00% 
                      1PCβ                       1PCt  
Small  0.10  0.09  0.05  0.03  0.02   3.03  3.09  2.39  1.41  0.96 
2.00  0.11  0.07  0.06  0.03  0.01   3.79  3.35  2.87  1.56  0.43 
3.00  0.12  0.04 -0.03 -0.02 -0.00   3.52  1.87 -1.39 -0.89 -0.04 
4.00  0.14 -0.02 -0.04 -0.01 -0.01   5.37 -1.25 -2.12 -0.31 -0.44 
Large -0.01 -0.08 -0.11 -0.04 -0.07   -0.68 -4.69 -6.20 -2.23 -2.78 

p-Value that all 25 Loadings Are Equal =0.00% 
                      2PCβ                      2PCt  
Small -0.06 -0.06 -0.05 -0.04 -0.04  -2.60 -3.06 -2.80 -2.22 -2.20 
2.00 -0.07 -0.04 -0.06 -0.04 -0.04  -2.61 -2.16 -3.14 -2.73 -1.93 
3.00 -0.04 -0.04  0.01 -0.02 -0.03  -1.38 -3.04  0.68 -1.22 -1.53 
4.00 -0.06  0.02  0.00 -0.03 -0.01  -2.87  1.44 -0.06 -1.66 -0.49 
Large  0.01  0.02  0.06  0.03  0.05    1.22  1.31  3.68  1.92  2.46 

p-Value that all 25 Loadings Are Equal =0.00% 
                    3PCβ                     3PCt  
Small 0.05 0.10 0.06 0.06 0.06  1.00 2.55 1.84 1.96 1.95 
2.00 0.07 0.10 0.10 0.12 0.05  1.62 3.18 2.64 3.02 1.18 
3.00 0.03 0.06 0.08 0.05 0.05  0.72 2.22 2.09 1.44 0.94 
4.00 0.08 0.02 0.06 0.07 0.03  2.34 0.77 1.79 1.38 0.50 
Large -0.06 -0.01 0.02 0.02 0.02   -2.20 -0.44 0.43 0.49 0.34 

p-Value that all 25 Loadings Are Equal =0.05% 
     R2    
     0.58 0.58 0.57 0.55 0.54    
     0.72 0.70 0.67 0.64 0.61    
     0.76 0.78 0.74 0.69 0.65    
     0.82 0.82 0.77 0.66 0.60    
        0.92 0.83 0.76 0.65 0.57      
 
Table 5: This table reports factors loadings on the excess market return, RM, and the first 
three principal components (PC1, PC2, PC3) of  innovations in the term structure of 
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volatilities for 25 portfolios sorted by size and book-to-market. The corresponding t-
statistics are corrected for autocorrelation and heteroskedasticity using the Newey–West 
estimator with five lags. The sample period is from January 3, 1992 to December 31, 
2007. The p values are from a system of seemingly unrelated regressions and test the 
joint significance of the corresponding loadings. The R2s from each time-series regression 
are reported in percentage form. 
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   (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Excess Market Return (RM) Coef. 0.0396 0.0253 0.0297 0.0424 0.0376 0.0267 0.0343 0.0279 0.0269 0.0283 0.0303 

 t-stat [2.4196] [1.6190] [1.8990] [2.6027] [2.3512] [1.6912] [2.0314] [1.7552] [1.6891] [1.7742] [1.9351]
Level Factor (PC1) Coef.    -0.1535   -0.4460 -0.2166  -0.3765 -0.2207

 t-stat    [-2.2489]   [-2.7197] [-2.2624]  [-2.9614[[-2.0689]
Slope Factor (PC2) Coef.     -0.0972  -0.6342  0.1481 -0.4027 -0.2095

 t-stat     [-0.7066]  [-2.4054]  [0.7301] [-2.3262][-1.5652]
Curvature Factor (PC3) Coef.      0.2435  0.2949 0.2975 0.1858 0.1214 

 t-stat        [2.5894]  [2.8993] [2.9480] [2.0921] [1.6760]
Size Factor (SMB) Coef.  0.0033 0.0009        0.0006 

 t-stat  [0.3730] [0.1001]        [0.0710]
Value Factor (HML) Coef.  0.0209 0.0254        0.0233 

 t-stat  [2.2702] [2.7433]        [2.5050]
Momentum Factor (UMD) Coef.   0.1476        0.1336 

 t-stat   [3.2688]        [2.3282]
RMSPE  0.0184 0.0120 0.0108 0.0170 0.0183 0.0159 0.0128 0.0128 0.0155 0.0117 0.0100 
 %R2  -98.21 14.27 24.95 -68.48 -94.4 -47.53 2.62 2.06 -41.84 20.30 39.89 
RMSPE = root-mean-squared pricing error 
 
Table 6: This table reports the Fama–MacBeth cross-sectional regressions using the excess returns on 25 portfolios sorted by book-to-market and 
size. In the first stage, factor loadings are obtained from regressing portfolio returns to pricing factors using the full sample over the time period 
January 3, 1992 to December 31, 2007. The factor loadings are reported in Table 5.  In the second stage, the average excess returns of the 
portfolios are regressed on the loadings to obtain the estimates of the market price of risk for each factor. The t-statistics reported in brackets are 
adjusted for errors-in-variables as in Shanken (1992).   
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 constant (1)
tV  (12) (1)

t tV V−  (12) (1) (3)2t t tV V V+ − Adj. R2 (%) 

 -0.01 
[-0.24] 

1.19 
[1.34] 

-1.38 
[-0.80] 

3.23 
[1.54] 0.20 

 
Table 7: This table reports the estimates from the regression 

(1) (12) (1) (12) (1) (3)
, 1 1 2( ) ( 2 )M t t t t t t tR V V V V V Vβ β β+ = + − + + − , where (1)V , (3)V  and (12)V  are 

the 1-month, 3-month and 12-month volatilities, respectively. The term (12) (1)V V−  is 
used as a proxy for the slope of the term structure and (12) (1) (3)2V V V+ −  is used as a 
proxy for the curvature. The sample period is from January 2, 1992 to December 31, 
2007. The corresponding t-statistics are corrected for autocorrelation and 
heteroskedasticity using the Newey–West estimator with nine lags. 
 
 
 
 

 constant (1)
tV  (12) (1)

t tV V−  (12) (1) (3)2t t tV V V+ − Adj. R2 (%) 

1 0.14  
[0.38] 

12.19 
[1.38]   0.3 

2 0.62 
[2.12]  -23.55 

[-1.77]  0.7 

3 0.60 
[2.14]   -12.17 

[-0.53] -0.4 

4 0.51 
[1.1] 

2.54 
[ 0.2] 

-19.85 
[-1.31] 

-5.07 
[-0.22] -0.3 

 
Table 8: This table reports the estimates from the regression 

(1) (12) (1) (12) (1) (3)
, 1 1 2( ) ( 2 )M t t t t t t tR V V V V V Vβ β β+ = + − + + − , where (1)V , (3)V  and (12)V  are 

the 1-month, 3-month and 12-month volatilities, respectively. The term (12) (1)V V−  is 
used as a proxy for the slope of the term structure and (12) (1) (3)2V V V+ −  is used as a 
proxy for the curvature. The sample period is from January 2, 1992 to December 31, 
2007. The regressions are based on overlapping monthly observations. The corresponding 
t-statistics are corrected for autocorrelation and heteroskedasticity using the Newey–West 
estimator with four lags. 
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 constant (1)
tV  (12) (1)

t tV V−  (12) (1) (3)2t t tV V V+ − Adj. R2 (%) 

1 0.17 
[0.49] 

12.04 
[1.48]   1.93 

2 0.63 
[2.42]  -26.08 

[-2.23]  3.90 

3 0.61 
[2.43]   -13.42 

[-1.26] -0.02 

4 0.65 
[1.54] 

-0.58 
[ -0.05] 

-26.00 
[-1.31] 

-6.18 
[-0.66] 2.97 

 
Table 9: This table reports the estimates from the regression 

3
(1) (12) (1) (12) (1) (3)

, 0 1 2 3
1

1 ( ) ( 2 )
3 M t h t t t t t t

h

R V V V V V Vβ β β β+
=

= + + − + + −∑ , where (1)V , (3)V  and 

(12)V  are the 1-month, 3-month and 12-month volatilities, respectively. The term 
(12) (1)V V−  is used as a proxy for the slope of the term structure and (12) (1) (3)2V V V+ −  is 

used as a proxy for the curvature. The sample period is from January 2, 1992 to 
December 31, 2007. The regressions are based on overlapping monthly observations. The 
corresponding t-statistics are corrected for autocorrelation and heteroskedasticity using 
the Newey–West estimator with four lags. 
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   bid offer VAR FF25 + 30 ind. 
   (1) (2) (3) (4) 

Excess Market Return (RM) Coef. 0.0288   0.0280 0.0319 0.0386 
 t-stat [1.7940] [1.7619] [1.9201] [2.4257] 

Level Factor (PC1) Coef. -0.3940 -0.3738 -0.3600 -0.1552 
 t-stat [-2.9274] [-2.9542] [-2.7368] [-2.1167] 

Slope Factor (PC2) Coef. -0.4316 -0.3735 -0.5200 -0.2142 
 t-stat [-2.3681] [-2.2531] [-2.2712] [-2.1531] 

Curvature Factor (PC3) Coef. 0.1843 0.1902 0.1000 -0.0714 
 t-stat [2.1537] [2.0217] [1.2696] [-1.2881] 

RMSPE  0.0115 0.0118 0.0123 0.0165 
% R2  20.61 17.84 11.43 -13.86 
RMSPE = root-mean-squared pricing error 
 
Table 10: This table reports the Fama–MacBeth cross-sectional regressions using the excess returns on 25 portfolios sorted by book-to-market and size (columns 
1, 2, 3) and the 25 portfolios plus the 30 industry portfolios (column 4). In the first stage, factor loadings are obtained from regressing portfolio returns to pricing 
factors using the full sample over the time period January 3, 1992 to December 31, 2007. In the second stage, the average excess returns of the portfolios are 
regressed on the loadings to obtain the estimates of the market price of risk for each factor. The t-statistics reported in brackets are adjusted for errors-in-
variables as in Shanken (1992). 
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Figure 1: Time series of daily volatilities with fixed maturities at one, two, three, six and twelve 
months, for the time period January 2, 1992 to December 31, 2007.   
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Figure 2: Average term structure of volatilities for the time period January 2, 1992 to 
December 31, 2007. The maturities are one, two, three, six and twelve months, 
respectively. 
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Figure 3: Eigenvectors of the first three principal components. Principal component 
analysis is applied to the time series of daily differences of volatilities with fixed 
maturities at one, two, three, six and twelve months. The time period is from January 3, 
1992 to December 31, 2007.   
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Figure 4: This figure shows the average realized excess return (%) on the horizontal axis 
for the size and book-to-market sorted portfolios against the predicted returns (%) from 
the models reported in columns (1), (2), (4) and (10) of Table xxx. The first digit refers to 
the size quintile of the portfolio (1 denotes the smallest and 5 the largest), while the 
second digit refers to the book-to-market quintile (1 denotes the lowest and 5 the 
highest).The sample period is from January 3, 1992 to December 31, 2007. 
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Figure 5: This figure shows the percentage contribution to the total pricing error of each 
one of the 25 size and book-to-market sorted portfolios for the Fama-French model (solid 
line) and the three-factor volatility model (dashed line) . The pricing errors are based on 
the parameter estimates from Table 6.In the horizontal axis the first digit refers to the size 
quintile of the portfolio (1 denotes the smallest and 5 the largest), while the second digit 
refers to the book-to-market quintile (1 denotes the lowest and 5 the highest). 
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Figure 6: This figure shows the estimated slope coefficients (top figure) and the adjusted 

R2,s (bottom figure) from the regression (12) (1)
, 0 1 ,

1

1 ( )
h

M t j t t t t h
j

R V V u
h

β β+ +
=

= + − +∑  for 

different return horizons (h). The term (12) (1)V V−  is used as a proxy for the slope of the 
term structure, where (1)V  and (12)V  are the 1-month and 12-month volatilities, 
respectively.  The sample period is from January 2, 1992 to December 31, 2007. The 
regressions are based on overlapping monthly observations.  


