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1. Introduction

In this paper, we depart from the basic Romer (1986) hypothesis for long run endogenous growth in a standard optimal

control framework, following the tradition of Ramsey (1928), Cass (1965) and Koopmans (1965) neo-classical long run

growth model of optimal savings and capital accumulation, and put forward the hypothesis that long run structural

growth in open economies will coexist with endogenous structural cycles, when assuming convex financial adjustment

costs for domestic capital investment and holdings of foreign debt/assets. Our research proposal tackles this hypothesis

by following a three step procedure. First, we put forward the fundamental optimal control problem for an open growing

economy a la Romer, assuming there are risk premia on holdings of foreign assets/debt and investment adjustment costs

on domestic capital, following the literature strains started by Bardhan (1967) and Hayashi (1982), respectively, and

discuss the relevant functional forms and parameter restrictions for our specific applied proposals. Two applied

examples of this style of formalization, very similar to our proposal in recent nonlinear macrodynamics policy oriented

literature are the papers by Turnovsky (2002) and Eicher, Schubert and Turnovsky (2008), which carefully describe the

literature background on nonlinear dynamic modelling of open economies in continuous time. Then, we show how it is

possible to define our problem as a dynamical system in the control and state variables, assuming dynamic adjustment

rules for the Keynes-Ramsey intertemporal consumption equations and a simple scaling procedure, for each specific

convex adjustment hypothesis individually first and finally the complete adjustment case. Finally, we discuss

analytically and numerically each of our three proposals with the purpose of determining the main qualitative dynamics

on the phase space and identify possible bifurcation regions with economic meaning that confirm our hypothesis of

growth and cycles coexistence. While we are able to confirm the existence of such regions analytically, when assuming

risk premia convex adjustment in holdings of foreign assets/debt for a state dependent switching control dynamical

system, we discard such a hypothesis for the convex investment adjustment costs case, where both long run growth and

transitions are only possible when assuming specific endogenous parameter combinations. To conclude, we show how

the introduction of both convex adjustment hypotheses, following the complete optimal control problem, is entirely

represented by a three dimensional dynamical system, when assuming only our set of a priori modelling rules, and, with

the aid of numerical methods introduce the hypothesis of further complex dynamics arising from our nonlinear

modelling proposal.

To conclude this short introduction to our proposal, we will take this paragraph to stress the importance of our idea in

the vast field of macroeconomic dynamics. Contemporary research on macroeconomic policy has undergone an

important shift in its methodology, in order to deal with issues related to economic openness. This additional economic

dimension imposes diverse challenges to modelling. One such challenge is the impact of broad access to international

capital markets through the domestic financial sector, which has become a crucial theme of mainstream macroeconomic

policy discussions since industrialized nations suffered the dire effects of excessive private debt to finance over

evaluated domestic asset investment and the consequent macroeconomic imbalances, and boom/bust dynamics it

implied. This issue, however, did not end with bad investment decisions by households; in a few months the problems

spread to the payment system and the vast majority of financial sector firms suffered the consequences of their wrong

decisions, as bad debt contracts circulated between financial institutions in the complex and interconnected world of

international financial markets, leading eventually to a series of bankruptcies in the banking system and the fears of a

systemic crisis leading to a collapse of the global payment system. Much speculation on the reasons that led to these

outcomes arose and the usual suspects of bad regulation, corporate and political malpractice and irresponsibility, rapidly

become the number one targets of mainstream commentators. However, the issue of global imbalances leading to

boom/bust dynamics at a national and regional level had already become a hot topic in macroeconomic dynamics

research, since the consecutive financial crises in Mexico, 1994, East Asia, 1997 and Russia, 1998. Research led on this

topic suggested that in the root of the balance of payments problems faced by these economies was the financial

openness of domestic capital markets. The conclusion was that openness contributes to growth by increasing the

investment opportunities of a developing economy, but increased the volatility of growth dynamics. Some of the

theoretical literature in the field, such as Aghion, Bacchetta and Banerjee (2004), even suggests higher amplitude

endogenous cycles during the catching up transition period. The expansion of globalization and consequent growth of

global commercial and financial links between nations, in a growing world during the last decade, just led to the

inevitable consequence that all nations can now suffer the worst consequences of globalization and not only the ones still

in its development stage. Theory reflected this outcome by ending the distinction between small open economies and

relatively closed big economies. No economy is nowadays big enough to minimize the effects of global financial
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imbalances. We suspect that the distinction between developed and developing economies will soon be substituted by

terms that reflect an economy’s international financial position instead. Following this introduction on the implications

of openness leading to global financial imbalances, it becomes clear that modelling economies, where access to

international financial markets is total and specific structural nonlinear implications, resulting in more complex

dynamics than the usual steady-state economics, such as endogenous cycles and growth, lies on the heart of the problem

of defining the correct conceptual dynamical causes and implications of this phenomenon. Following this path has a

greater probability of establishing the correct policy tools and targets for economic policymaking to tackle this problem

in the future, rather than imposing solutions based on the contemporary charges that the usual suspects are the sole

scapegoats responsible for this global economic problem.

2. Non-linear dynamics and endogenous cycles in macrodynamics literature

We start this brief literature review on the topic of non-linear growth dynamics and endogenous cycles by putting

forward two book references, Barro and Sala-i-Martin (2004) and Gandolfo (1996)2, which will allow readers not

familiar with this field to get started in some of the economic growth topics and modelling issues discussed throughout

this paper. From here on, we shall distinguish between papers that directly tackle the theoretical modelling framework

for endogenous growth and cycles and the papers that propose specific applications in this specific field but assuming

particular extensions of endogenous growth modelling methodology. Since we are of the opinion that our proposal is

closer to the first group, we shall give particular attention to this literature strain and some few examples of specific

applications, in order to complete our short review. The papers by Baumol and Benhabib (1989) deal mainly with both

the economic interpretation and mathematical implications of nonlinear dynamics for economic modelling, but their

scope is not limited to endogenous growth theory. On the specific field of macrodynamics, in particular the research

dealing with the main modelling outcomes arising from the base endogenous growth setup, such as cycles, a variety of

papers defined the field during the past decade. This literature strain is usually defined in macroeconomics, as

indeterminacy and sunspot equilibria outcomes, following the intuition that an economic optimum should be reached in

a formal dynamic economic program and further dynamical issues are considered as mathematical outcomes with

limited economic interpretation3, therefore secondary to analysis. The literature we present in this section argues that

such outcomes should not be interpreted as marginal to macroeconomics and develops the endogenous cycle theory

hypothesis, departing from classical endogenous economic growth hypothesis. Examples of this early literature are the

papers by Lordon (1995), Greiner and Semmler (1996), Greiner (1996), Drugeon (1998), Benhabib and Nishimura

(1998) and Asada, Semmler and Novak (1998). For more recent proposals on the subject, we highlight the papers by

Wirl (2002), Nishimura and Shigoka (2006) and Slobodyan (2007) following the same base assumptions on endogenous

growth theory and cycles.

As referred to in the previous paragraph, a wide range of applied extensions has gained a relevant place in modern

macrodynamics literature, following the recent advances discussed for the base endogenous growth modelling setup and

its nonlinear dynamic implications. These extensions include, among others, the early work by Matsuyama (1991)

linking the Romer (1986) increasing returns hypothesis with indeterminacy of equilibrium in a model of

industrialization. More recent applications include the proposal by Flashel (2000), which deals with insider-outsider

effects in the labour market, Boucekkine et al (2005), dealing with vintage capital endogenous growth models,

Slobodyan (2005), proposal on development and poverty traps, and finally, Greiner (2008) model with human capital

financed by public expenditures.

3. General optimal control problem for a centralized open economy with convex adjustment costs4

The main objective of this paper is to assess analytically and numerically the dynamics of a standard infinite horizon

optimization problem for an open growing economy. Departing from the simple endogenous growth assumption defined

2Lorenz (1993) provides a good introduction to modelling of complex nonlinear dynamic economics but its scope is wider and not
restricted to the macrodynamics field.
3Or as it is usually described in economics as Self Fulfilling Prophecies or existence of Sunspots that enable an economy to be better
off than its current state.
4For reasons of simplification, we discard the use of the time subscript in the time varying variables of our model. The meaningful

variables are consumption,  C t , investment on domestic capital,  I t , domestic capital accumulation,  K t , and foreign

debt/assets accumulation,  B t .
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by Romer (1986), the extended benchmark optimization problem for an open economy can be defined by (1), in the

centralized case, where we assume the existence of convex adjustment costs for foreign debt/assets,  ,rB B K , and

investment,  ,I I K , following the usual definition for domestic capital, K , foreign debt, B , and investment in

domestic capital, I . In this framework no policy functions and/or parameters are considered, except for those directly

related to convex adjustment dynamics. This optimization problem can be described as a central planner consumption

and investment optimal control problem, restricted by the physical constraint on domestic capital accumulation, which

should be interpreted as a broad measure of capital, and the open economy intertemporal financial constraint, where

access to foreign financial resources for domestic consumption and investment activities is perfect. We follow this

formalization because we are only interested on characterizing the dynamics of convex adjustment in a conceptual

model for an open economy. Further assumptions on the functional forms describing utility, output and convex

adjustment follow in section 3.1.. The remaining parameters are  , r and  , which refer to the intertemporal discount

factor, international interest rate and capital depreciation rate, respectively.

 

     

0,

:

, ,

t

C I

subject to the solution of

MAX U U C e dt

B C I I K rB B K Y K

K I K








      


 







(1)5

The present value Hamiltonian for this optimization problem is:

          *
1 2 , ,H U C q I K q C I I K rB B K Y K        

The Pontryagin maximum necessary conditions for this optimal control problem are6:

Optimality Conditions

 '
2 0cU C q  (2)

   '
2 1, , 0Iq I K I I K q       (3)

Admissibility Conditions

0 (0)B B , 0 (0)K K

Multipliers Conditions

   '
2 2 , ,Bq q r B K rB B K       (4)

       ' ' '
1 1 2 , ,K K Kq q q rB B K I I K Y K           (5)

State Conditions

     , ,B C I I K rB B K Y K      (6)

K I K  (7)

5In economic optimal control problems it is usual to include the necessary condition of strict concavity of the present value
Hamiltonian in relation to the controls, known by the Arrow necessary second order conditions for the existence of an optimum,
which is always guaranteed to exist for solutions defined by the transversality conditions (8) and (9). We discard from this
presentation this discussion, because it is not clear the definition of similar conditions for endogenous growth problems with more
than one state variable, as the solution of such optimal control problems is defined by the existence of steady-state solutions under
specific scaling rules that guarantee the transversality conditions for optimum are fulfilled. For example, in endogenous growth
models with two state variables and endogenous technical change, in the Uzawa (1965) and Lucas (1988) fashion, it is usual to
impose distinct scaling rules and allow for different growth rates for the variables, in order to obtain solutions that fulfil the
Pontryagin maximum conditions.
6As usual in optimal control economic modelling proposals, we shall consider transversality conditions as relevant parameter
restrictions that allow for economic feasible outcomes arising from analytical and numerical analysis of the proposed dynamical
systems. Loosely, we can define both transversality conditions in endogenous growth theory as follows: (a) condition (8) states that
Ponzi games are not feasible in this economy, in other words, growth cannot be based on debt accumulation; and (b) condition (9)
states that we shall only accept growth dynamics with at most balanced growth paths and increasing growth dynamics are not
possible.
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Transversality Conditions

2lim 0t

t
q Be 


 (8)

1lim 0t

t
q Ke 


 (9)

3.1. Relevant functional forms

Utility Function

We follow the usual concavity assumption for the utility function,  U C , where  ' 0cU C  and  '' 0cU C  . A typical

formulation is given by the family of strictly concave isoelastic utility functions with constant intertemporal elasticity of

substitution,  , such as the functional form for aggregate consumption given by equation (10):

 
 
 

'

''
0, 0 1

1
y c

c

U C C
U C C where y

U C y
    


   (10)

Output function

The output function,  Y K , follows the usual increasing returns hypothesis from endogenous growth theory, originally

proposed in Romer (1986), where  ' 0KY K  and  '' 0KY K  . We shall assume in this paper the classic Romer (1986)

proposal for increasing returns and long run growth and compare it with the neoclassical hypothesis, where A , the

meaningful parameter, refers to the exogenous technology parameter.

 
1

0 1

A , Increasing Returns (Romer)
Y K AK ,

A , Cons tant Returns


 





 
(11)

Foreign debt/assets convex adjustment assuming exogenous and endogenous risk premium on holdings

The extended expression  ,rB B K follows the original proposal by Bardhan (1967), but is here extended to

accommodate the possibility of convex adjustment of both debt and foreign assets accumulation. Our formulation

follows the hypothesis that there exists a risk premium associated with the borrowing of foreign debt or the holding of

foreign assets. The risk premium depends on an institutional parameter, d , which represents the exogenous level of

premium that investors place in the dynamic measure of a country foreign balance, given by the ratio of holdings of

foreign debt/assets to domestic capital. We consider that the exogenous risk premium is also dependent on the level of

the international interest rate, which holds a level of exogenous spread on foreign holdings defined by rd .

 , 1 , 0
2

d B
B K d

K
    (12)

Investment convex adjustment costs

The extended expression  ,I I K is an application of the familiar Hayashi (1982) cost of adjustment framework,

where we assume that the adjustment costs, quantified by the institutional parameter h , are proportional to the rate of

investment per unit of installed capital. The introduction of investment adjustment costs on the open economy budget

constraint is a classical formalization in endogenous growth economics to impose regions of convergent transitions to

long run steady states defined by balanced growth paths of the type, x x xt t t
t t t t x tX x e X x e x e        , where  is

usually assumed to be common to all variables and define an endogenous growth rate dependent on model parameters.

The introduction of investment adjustment costs in a open economy endogenous growth model context has the following

interpretation: (i) if 0h  then conditions impose a home bias on investment in domestic capital, (ii) if 0h  then

conditions impose a bias on investment in foreign assets.

 , 1
2

h I
I K

K
   (13)
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4. Dynamic analysis of an open economy facing risk premia on foreign debt/assets: A credit/debit card

economy

In this section, we shall assume that there are no convex adjustment costs in investment,  , 1I K  . This hypothesis

yields changes to optimality condition (3), and in the co-state and state conditions (5) and (6), respectively, for the

general optimal control problem defined in section 3.. We state the new optimal control conditions:

2 1 0q q  (14)

     ' '
1 1 2 ,K Kq q q rB B K Y K         (15)

   ,B C I rB B K Y K     (16)

The strategy to solve this set of open economy growth systems follows the path of defining meaningful Keynes-Ramsey

rules for the dynamics of consumption7. These rules are obtained, as usual in optimal control problems, by assuming

optimality condition (2) and the respective time derivative and substituting in the co-state condition relating to the open

economy budget constraint, (4). In this set of problems, the first assumption to be taken is that consumption is always

available through foreign debt accumulation. This assumption yields the open economy Keynes-Ramsey consumption

rule described in (16) for the consumption dynamics through foreign debt accumulation:

 
 

    
'

'

''
, ,c

B B

c

U C
C r B K rB B K

U C
     (17)

As we imposed an optimal control condition on domestic assets investment, in order to guarantee that there exists

dynamic conditions that relate both asset accumulation decisions in an open economy setting. This condition, described

by equation (14), can be used to define an alternative Keynes-Ramsey rule. By substituting (14) in (2) and taking the

time derivative, we can use the co-state condition (15), associated with domestic assets accumulation, in order to define

the second Keynes-Ramsey rule for consumption through domestic asset accumulation, assuming the optimality

condition (14) holds always:

 
 

    
'

' '

''
,c

K K K

c

U C
C rB B K Y K

U C
      (18)

The path to follow from here is a tricky one, since we have two consumption rules and we are interested in defining a set

of dynamical rules that define consumption decisions in the phase space. In order to do that, we start by defining the rule

that guarantees indifference in asset accumulation from consumption decisions, B KC C  . This rule is:

       ' ' ', , ,B K Kr B K rB B K rB B K Y K           (19)

By considering the functional forms defined in section 3.1. we obtain the following rule for indifference in

accumulation:
2

1
2

B rd B
r d A

K K


   
       

   
(20)

In order to define a meaningful dynamical system that takes into account the indifference condition expressed in (20),

we shall redefine our dynamical system assuming the following scaling rule, i
i

X
Z

K
 , where subscript i refers to the

relevant scaled variables for this system, which are given by:

7By Keynes-Ramsey consumption rules, we mean the intertemporal dynamic consumption decisions that are obtained for the control
variable in an optimal control problem with a constant intertemporal discount rate. In macroeconomics literature these dynamic
equations are known by Keynes-Ramsey consumption rules, following the work by the two famous Cambridge scholars, which
related intertemporal consumption decisions to the discounted value of expected future incomes and optimal savings for capital
accumulation. However, it is our opinion that in open economy optimization problems with two state variables, this rule is not
unique, since state defined income accumulation can vary in its source. Therefore, it is reasonable to impose two possible
consumption paths that satisfy the optimal investment condition, (14), which for this model just states that the shadow price of
domestic capital is equal to the marginal value of foreign assets, or in other words, optimal investment decisions must always fulfil
the rule of equal intertemporal marginal adjustment for different assets, in order to allow for different accumulation decisions. The
straightforward interpretation of this definition is that investors will always choose to accumulate assets that adjust faster to optimum
outcomes rather than others that yield longer adjustment rates. In a market economy setup, this rule relates to investment decisions
that are based on the discounted rate of capital return on investment, which are linked to the expected intertemporal discounted
financial costs of investing between different assets.
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1 1 2 2 3, ,
C C C K B B B K K I

Z Z Z Z Z
K K K K K K K K K K

          
    

   (21)

Assuming this scaling rule, we can define the indifference condition in the phase space for 1Z and 2Z as a threshold rule

obtained from solving the quadratic equation (20), which sets boundaries for switching dynamics between the two

relevant Keynes-Ramsey conditions (17) and (18). In order to define the meaningful dynamical system, we need to

impose a final rule on the growth rate of capital accumulation. Since we have no meaningful information about

investment dynamics, we shall assume that capital grows at a constant endogenous rate and the ratio of investment to

capital is just a parameter, 4Z . These set of assumptions are portrayed in (22):

     4

4 0
Z tI

Z K t K e
K





   (22)

The dynamics of this economy are given by a switching threshold system, where the relevant switching regions between

the scaled differential equations obtained from (17) and (18) are defined by the solutions of (20), which we shall briefly

describe as 2,
tZ  and 2,

tZ  . The solution to this quadratic equation defines the two influence regions for each equation

and is given below:

   
2

2

2
1t

rd rd r A
Z

rd

  
  (23)

On the other hand, it is also reasonable to consider that expression (23) does not define threshold influence regions, but

the two possible equilibrium solutions for scaled debt/asset dynamics. Therefore, we can impose 2 2
tZ Z and solve this

optimal control problem of long run growth by imposing parameter restrictions in a classical endogenous growth

fashion. This will lead to a solution where long run growth solutions are possible under specific parameter restrictions

and transitions only exist if we consider discontinuous, instantaneous adjustment to exogenous shocks. We derive the

existence of BGP solutions for this specific hypothesis of our optimal control problem in the first section of the appendix

and put forward the meaningful parameter restrictions for the existence of economically feasible steady-states, along

with some numerical results that demonstrate some possible BGP outcomes under reasonable parameter values. Still, as

this hypothesis does not entail any interest to the dynamic perspective that we wish to pursue in this paper, we leave

further discussion on this issue to another opportunity. Nevertheless, it is important to consider the solution presented in

the appendix as a possible solution arising from a full information criteria on state adjustment, which may be compared

in welfare terms with the switching threshold dynamic proposal we discuss thoroughly in the following paragraphs and

subsections.

Recall from the threshold quadratic condition (20) that both the left and right hand side of the quadratic equation have to

be negative due to the parameter restriction 1  . Therefore, we can use this result to define in the phase space the

influence region described for this threshold system:

   

   

2

2 2 2, 2 2,

2

2 2 2 2, 2 2,

1 0
2

1 0
2

t B t

K t K t

rd
Z r dZ A Z Z Z

rd
Z r dZ A Z Z Z Z





 

 

    

     

  

  

(24)

We obtain the relevant expressions from (23), which define the switching phase space regions of influence, (24), for this

system. We shall call these regions as the credit and debit threshold influence regions, which are defined by the

following two dynamical systems with a common state condition and control switching state dependent dynamics

obtained after the application of scaling rules (21) and (22). We shall further consider that dynamics on the threshold

limits will be governed by either one of the systems, which will not imply further analytical assumptions since the

threshold limits are not fixed points of this system. Nevertheless, for simulation purposes we shall assume an equal

probability of decision, in order to portray the indifference in asset accumulation dynamics discussed previously, such

rule is sufficient in our opinion to allow for all possible outcomes on the threshold limits without imposing further

restrictions on the model.
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 

    
2

2 4

1 1

2 1 4 2 4 2

1
2

1
:

2

K

K K

K
i

K K K K

rd
Z A Z

Z Z

Debit Economy Z

rd
Z Z Z r Z Z Z A

   





  
       

  
    


 

         





(25)

 

    2 4

1 1

2 1 4 2 4 2

1 1

1
:

2

B

B B

B
i

B B B B

r dZ Z
Z Z

Credit Economy Z

rd
Z Z Z r Z Z Z A

  





      
  

   
  

        
 





(26)

4.1. Phase space dynamics and equilibrium

It is not straightforward to study the complete phase space of the threshold switching model defined in (25) and (26), as

local bifurcation interactions may arise due to the threshold nature of our model. Taking into account this issue we shall

proceed in a step by step process to able us to define the main equilibrium expressions and restrictions analytically and

then undertake some numerical exploration of the underlying dynamics. There are three sets of distinct fixed points that

are meaningful to explore: The static fixed points arising from threshold switching endogenous expressions given in

(24); the universal fixed point given when we set scaled consumption dynamism to be equal to zero, *
1 0Z  ; and finally

the specific to regime set of fixed points, which entail expected outcomes for economic dynamics and are obtained by

setting **
1 0Z  in the switching threshold system given by (25) and (26).

We shall start by defining the system steady-states independently from threshold dynamics, in order to produce some

economic and mathematical meaningful restrictions that allow us to reproduce correctly the phase portrait of this system:

Universal fixed points

     
2

4 4 4* *
1 2

2
0,

r Z r Z rd Z A
Z Z

rd

        
  (27)

Debit economy fixed points

  
 4,** ,** ,** ,**

2 1 4 2 4 2

1
2 ,K K K K

A Z
Z Z A Z r rdZ Z Z

rd

   


    
        (28)

Credit economy fixed point

  
 4,** ,** ,** ,**

2 1 4 2 4 2

1
,B B B B

r Z
Z Z A Z r rdZ Z Z

rd

  


   
       (29)

One main rule to guarantee the existence of economically feasible regions on this system,

      * * ,** * * ,** * **
2 2, 2 2, 2, 2 2, 1

B KZ Z Z Z Z Z Z Z 
                 , arises from the analysis of the steady states

described above. This rule is obtained by assuming that the specific fixed points for scaled consumption, **
1Z , are always

positive. This restriction, described below in expression (30), imposes meaningful economic steady states for scaled

debt/assets, **
2Z , to be always contained in the region defined by the two roots obtained for the universal fixed point, *

2Z .

 ** ** ** *
1 4 2 4 2 2

** * ** *
1 2, 2 2,

0 0 0

0

Z A Z r rdZ Z Z Z

Z Z Z Z



 

      



  

  
(30)

We continue this analytic analysis of the credit/debit economy by putting forward the generalized Jacobian matrices,

characteristic equations and respective eigenvalue expressions for the universal and specific fixed points qualitative
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analysis of the linearized system. These conditions are described below in expressions (31) and (32) for the universal

and specific steady state, respectively:

  *
2 2

*
2 2

*

* 11
1* *1

12 41

1* * *
2 4 2 2 4

0
, 0

1
i i

Z Z

Z Z

Z Z

dZdZ
dZ dZJ r rdZ ZdZ
dZ

r rdZ Z r rdZ Z


  

  







                             




(31)

 

 

**

**

**

1
** 2 ** 1

2 42

2**
2 4

2** ** 1
2 4 2 4

2**

0
, 4 0

1

4

2

i i

i i

i i

Z Z

Z Z

Z Z

dZ
dZ

J r rdZ ZdZ
dZ

r rdZ Z

dZ
r rdZ Z r rdZ Z

dZ

  



 









 
         
    

       

 





(32)

Although, we have taken the option of following a complete description of the linearized dynamics obtained from (31)

and (32), it is not clear that local qualitative analysis of fixed points is sufficient to describe this system dynamics fully.

The reason for such claim is obvious, when we take into account the interdependence between the switching threshold

regions and local dynamics arising from different parameter combinations. In this scenario, parameter variation may

lead to several local bifurcations and impose critical changes to the shape of the phase portrait of this system.

Nevertheless, we present in section 2.1. of the appendix a summary of the main restrictions and conditions for local

qualitative dynamic analysis under the Grobman-Hartman theorem. This section is useful to describe all relevant

mathematical conditions that are significant for a broader exploration of this system; still, taking into account the

remaining economic and mathematical conditions describe in this section, it becomes clear that further analysis of this

system must rely on thorough numerical analysis, since restrictions imposed are still too broad to allow for simple

classification of the dynamics arising from this proposal.

Following our brief discussion of the problems arising from parameter combination and its impact on the phase portrait

of this system, we finish this section by exploring feasible economic phase space regions with Hopf bifurcations. We

follow this path for two reasons. First, because we are interested in introducing possibility of cycles in models of long

run endogenous growth, in this case through local bifurcations arising from specific steady state for the debit economy,
,**

2,
KZ  , as described in section 2.1. of the appendix. Second, because by imposing the existence of Hopf bifurcations in

economic feasible regions of the plane, we are able to input enough restrictions, in order to give a partial perspective of

the dynamics arising for the debit/credit economy in a economically feasible region with endogenous cycles8.

We start this analysis by stating the conditions for Hopf bifurcation existence in economically feasible regions,

dominated by debit economy dynamics:

Theorem 1: For regions with economic meaning dominated by debit economy dynamics, there will

exist feasible Hopf bifurcations leading to local cycle dynamics, in the vicinity of ,**
2,
KZ  , if the

following necessary and sufficient conditions are fulfilled:

Condition 1 – ,**
2, 2,
K tZ Z   Debit economy region

Condition 2 – ,** * ,**
2 2 2 2,, , 0K t KZ Z Z Z   

Condition 3 –
,**

* ,** * ,** 1
2, 2, 2, 1,

2

0 0
K

i i

K K

Z Z

dZ
Z Z Z Z

dZ
   



  


    Economic feasible region

8
When assuming the possibility of dynamical adjustment arising from high frequency threshold switching control variable dynamics

based on state variable dynamical outcomes, we paved the way for introducing sliding mode control dynamic regions for this

system. In section 1.2. of the appendix, we extend the issues in order to allow for a broader comprehension of the global dynamics of

this system and the possibility of local bifurcations interactions leading to the existence of regions dominated by sliding mode

control dynamics or degenerate cycles.
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When these conditions are fulfilled, Hopf bifurcations, defined by positive exogenous risk premia on

foreign holdings, will exist in economic meaningful regions and these local bifurcations will be

defined by the following expression, which renders the real parts of the eigenvalues defined in (32)

equal to zero:

 
  

2

4,** 4
2,

4

0
2 1

K
Z rZ r

Z d
rd r A Z



   


  
  

      



Taking into account the restrictions imposed by theorem 1 and the information for local linearized dynamics described

in section 2.1. of the appendix, we are able to define the phase portrait for this system for parameter combinations that

correspond to possible cycle regions with economic interpretation. To construct this phase portrait we depart from one

main assumption, regarding the sign of
*

2 2

1

1 Z Z

dZ

dZ



, and develop the two possible hypotheses that are feasible in this case,

regarding the specific position of the positive root for the universal fixed point, *
2,Z  . This main assumption is that this

steady state will be a repellor, if it lies on the debit economy region, *
2, 2,
tZ Z  and

*
2 2

1

1

0
K

K

Z Z

dZ

dZ



 , or a saddle point if it

lies on the credit economy region,
*

2 2

1

1

0
B

B

Z Z

dZ

dZ



 and *

2, 2,
tZ Z  . By assuming this hypothesis, we restrict the dynamics

of the negative universal root, *
2,Z  , to be a saddle path, following the analytical description provided in section 2.1. of

the appendix. Based on numerical simulations, we know that the second case is more likely to occur, when we take into

account the feasible economic parameter space. Further, we can also define a generalized expression for the slope of the

eigenvectors in the vicinity of the universal fixed points. For *
2,Z  , the trajectories associated with *

2 will have a slope

equal to zero and the trajectories associated with *
1 ,will have a slope equal to * *

2 1   . As
*

2 2

* 1
1

1 Z Z

dZ

dZ







. As the sign

of *
2 is equal to the sign the specific root, *

2,Z  , we can define both trajectories governing the saddle points described.

For the case where *
2, 2,
tZ Z  , we will have only a saddle path associated with *

2,Z  , in the debit economy region. The

stable manifold for this saddle path will have a positive slope, while the unstable manifold lies on the 2Z axis. For the

case where *
2, 2,
tZ Z  , we will have another saddle path associated with *

2,Z  , in the credit economy region. The

unstable manifold for this saddle path will have a negative slope, while the stable manifold lies on the 2Z axis.

We conclude this phase portrait description by defining the critical dynamical transitions occurring for varying

parameter d , through numerical simulation and the analytical results presented in the appendix, relating to the

qualitative dynamics for ,**
2,
KZ  . For regions defined by Hopfd d , the dynamics in the vicinity of this steady state will be

governed by a node, as described by the local linearized dynamic conditions in table 9, and therefore impose a

supercritical Hopf bifurcation transition to the system. In this case the steady state, ,**
,
K
iZ  , is increasing in ,**

1,
KZ  and

decreasing in ,**
2,
KZ  . For the opposite case, the dynamics are of a repellor and we have a subcritical Hopf transition with

the steady state of the system following the opposite direction. Having put this, we are now able to draw the phase

portrait of this system, which can be found in figure 1, and discuss further implications of this specific region of the

phase space defined by theorem 19:

9We discard from this analysis the remaining fixed points, as numerical simulations suggest that under theorem 1 conditions, both,
,**

,
K
iZ  and ,**B

iZ do not belong to the economic feasible region, defined on the first and fourth quadrants of the plane.



Fig. 1- Phase Space portrait for economic meaningful regions of the Deb

A quick inspection to the vector fields depicted in figure 1 renders the first conclus

The eventual behaviour depends on initial conditions. Further, in the most likely

switching threshold dynamics, the stable manifold of *
2,Z  and both the stable and un

role in the creation of degenerate cycles, associated with the subcritical transitions n

the interactions with the two saddle points vector fields, which may be able to lock

within the inner region dominated by the stable and unstable saddle point manifold

stable if both the stable manifold of *
2,Z  and the unstable manifold of *

2,Z  were abl

through the subcritical region in the vicinity of ,**
,
K
iZ  . However, we were not a

parameters that is able to reproduce such dynamics. In these simulations, we are abl

degenerate cycles, but as the amplitude of the cycle increases in the subcritical regi

eventually crosses the stable manifold of *
2,Z  without locking in and therefore

infinity, until it passes the upper threshold and explodes to infinity. We shall dis

features of this system, both in the next sections and in the appendix, by re

macroeconomic theory. This option is related to the existence of feasible region

describe briefly in this section but that may have different economic implication

resulting parameter combinations that fulfil theorem 1.

4.2. Numerical Analysis: Local Hopf Bifurcations and Cycles in the De

We conclude this presentation of the debit/credit economy by demonstrating the pha

previous section. For this purpose, we evaluated numerically the parameter spa

technology,    4 , 0.051,1.5Z A  that fitted the conditions of theorem 1 for rea

premium,  0,10d  ,assuming as fixed the remaining parameters described in tab

intertemporal substitution of consumption, 0.9  , because it allows to demonstra

the previous section for the most likely case, *
2, 2,
tZ Z  , and the interaction between

the cycle region in the neighbourhood of ,**
,
K
iZ 

10. Figure 2 shows the feasible param

existence of long run growth, 4Z  , and feasible outcomes for the Hopf bifu

numerical exploration, we are able to confirm that feasible values for exogenous tec

10In section 1.2. of the appendix, we explore the feasible parameter spaces for different value

with less numerical detail.
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in a region where both the net marginal productivity of domestic capital and net investment in domestic capital are lower

than the net marginal revenue on foreign assets, 4,A Z r  . Cycle regions are more common in economies with

negative net inflows of capital when higher values for the intertemporal elasticity substitution of consumption,  , are

chosen. We decided to choose the remaining values assuming a reasonable long run growth rate for the variables of 2%.

Figure 2 demonstrates the phase space dynamics of the limit cycle with initial values in the vicinity of ,**
,
K
iZ  steady state.

 r  4Z  A Hopfd

0.05 0.05 0.05 0.07 0.9 0.07 0.2813

Table 1- Parameter values for specific Hopf bifurcation

,**
2,
KZ 

,**
1,
KZ 

,**
2,
KZ 

,**
1,
KZ 

,**
2
BZ ,**

1
BZ *

2,Z 
*
2,Z  2,

tZ  2,
tZ 

-2.1333 0.0320 2.1333 -0.0960 0.1422 -0.0044 -4.2667 0 -1.2949 3.2949

Table 2- Computed steady states and dynamical threshold boundaries

Fig. 2- Feasible  4 ,Z A parameter space for hopfd d Fig. 3- Phase space dynamics for hopfd d

To demonstrate the interaction between the two saddle points and the cycle region, we may follow two different paths,

which will render the same outcome for this set of parameters. The first option is to choose a set of initial values for the

variables that lie on the region where the stable and unstable manifolds interact with the cycle region, as defined in

figure 1. The other option is to vary slightly the Hopf bifurcation parameter and let the sub-critical Hopf region lead the

trajectories until the moment they are unable to lock in with the stable manifold of *
2,Z  and end up exploding after

crossing the upper switching threshold region. We follow the second path, and set it up to correspond to a permanent

exogenous shock on exogenous risk premium parameter, 0.05d   , at 1000t  . Figures 4 to 7 demonstrate the

dynamics in the phase space and the time paths of each variable:

Fig. 4- Two dimensional phase space for unstable cycle dynamics Fig. 5- Three dimensional phase space for unstable cycle dynamics
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Fig. 6-  1Z t time path for unstable cycle Fig. 7-  2Z t time path for unstable cycle

This simple numerical demonstration of the dynamics described in the previous section represents only a taster of the

potential dynamics that this system may contain. In section 2.3. of the appendix, we demonstrate some further

applications of the credit/debit economy by following two main directions that we believe still require further numerical

exploration. These directions are data reconstruction for testing purposes and further exploration of the phase space

through local dynamics and switching threshold interactions, which may lead to more complex dynamics than the ones

here demonstrated.

4.3. Discussion

In this section, we showed how the introduction of financial convexities in the form of risk premia on holdings of

foreign assets/debt may lead to cycle dynamics along a long run growth path. This is an important argument towards

open capital markets as risk premium adjustment dynamics might lead to stable situations and allow for long run growth.

This conclusion is reinforced by the possibility of infinite cycle dynamics arising from the interaction of saddle points

and state dependent control switching dynamics. Our numerical analysis suggested that for economic feasible regions

this extreme amplitude boom and bust dynamics are not stable in the long run and system dynamics eventually leave the

degenerate cycle region and explode. This result could be considered as reassuring, if we consider that an economy

which allows for such dynamics will eventually collapse in the long run, leaving no room for such macroeconomic

outcomes11. Still, as we discuss in section 2.3. of the appendix, such dynamics might be possible for economic feasible

regions under different parameter combinations and uncertainty on risk premium might lead to stable cyclical dynamics,

but with alternating moments of different boom and bust amplitudes. Nevertheless, the main conclusion of this proposal

holds: risk premium regulates financial openness and access to foreign capital markets through the existence of cycle

dynamics, while still allowing for long run growth.

Finally, we would like to finish this discussion on the debit/credit economy by putting forward a conceptual issue that

might be subject to discussion on the aims of our conceptual proposal. Is the credit/debit economy model more

appropriate for micro agents based modelling purposes or is it still an appropriate macro-model for policy decision?

Since switching control state dependent financial position dynamics are not expected to occur at a macro level, it is

possible that this proposal is more appropriate to consider in an agent-based level, where the individual decisions could

be portrayed in a differential fashion and would be connected to a macro outcome to reproduce some sort of

evolutionary dynamics. On the other hand, if we put aside the specific model mechanics and take into account the

dynamic outcomes, the credit/debit card model is able to reproduce interesting dynamics, which can be easily tied to

macroeconomic outcomes, therefore it is not clear what should be the more convenient path for future extensions

relating to this specific proposal.

11By economic collapse, we assume dynamic outcomes that lead to time paths diverging to infinity in both directions, taking into
account that such trajectories should be bounded by transversality conditions, (8) and (9), which our simulation routine do not
account for. Since we assume that dynamical stability to long run growth must be given by economically feasible parameter
restrictions in substitution of trajectories bounded by transversality conditions, such outcomes in numerical experiments should be
considered as economic collapses, for the specific parameter space considered.
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5. Dynamic analysis of an open economy with investment adjustment costs: Transitions and long run

endogenous growth

In this section, we introduce the hypothesis of convex adjustment costs for investment in units of domestic capital. This

type of configuration is commonly used to impose stable dynamic transitions in macroeconomic policy models of

endogenous growth for economies with open capital markets. We shall define it as being dynamic economies with

transitions a la Turnovsky, following the early and extensive application of this methodology by the famous

contemporary mathematical economist. Examples of such applications in early works on the mathematics of endogenous

growth can be found in Turnovsky (1996a,199b, 1999, 2002), among others. Further applications following this

methodology can be widely found in endogenous growth theory literature, yet we restrict this introduction to the papers

referred in order to keep this presentation as concise as possible and leave to the reader the opportunity to explore this

literature trend in continuous time economic growth theory based on these main references.

Following the intuition described in the previous section, we set the conditions for defining the meaningful Keynes-

Ramsey conditions for consumption dynamics in a setup where there is no risk premium associated with the holdings of

foreign assets/debt,  , 1B K  . First, we redefine the optimal control conditions (4), (5) and (6) for the respective co-

state and state conditions of this problem:

 2 2q q r  (33)

     ' '
1 1 2 ,K Kq q q I I K Y K         (34)

   ,B C I I K rB Y K     (35)

Repeating the steps taken in section 4., in order to define the Keynes-Ramsey consumption rule arising from the

optimality condition in consumption and taking into account the co-state condition (23), for foreign holdings

accumulation, we obtain:

 
 

 
'

''

c
B

c

U C
C r

U C
  (36)

Recall now that the optimality condition for investment activities comes as

 1
1 2 1q q hIK    (37)

  ' 1
1 1cq U C hIK   (38)

Taking the time derivative we obtain:

 1 1 2
1 2 2 21q q hIK q hK I q hIK K         (39)

       '' 1 ' 1 ' 2
1 1c c cq U C C hIK U C hK I U C hIK K        (40)

Recall that after substituting by the relevant functional forms and the optimality condition (2), the co-state condition (34)

is now given by:

   
2

'
1 1

2
c

h I
q q U C A

K
 

  
      

   
 (41)

Substituting conditions (38) and (40) in the co-state condition (41) we obtain the second Keynes-Ramsey consumption

rule:

 
 

    
2'

11 1 2 1

''
1 1

2
c

K

c

U C h I
C hIK hK I hIK K hIK A

U C K
 

   
  

          
   

   (42)

Again, we can use the indifference condition described in the previous sections, by equalizing (36) and (42), in order to

define the relevant dynamical expression for indifference in assets accumulation for this economy. After some algebra,

we obtain a differential equation for investment decisions:

 
21

2

I K K
I r I r A

K K h
 

 
        

 


 (43)
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Recall that from state condition for capital accumulation, (7), we can obtain the relation defined for 3Z in (21), for the

domestic capital growth rate. Substituting in (43), we obtain the quadratic differential equation for investment that

guarantees indifference in accumulation in this economy:

 
21

2

I K
I rI r A

K h
     (44)

This dynamical relation for investment guarantees that both Keynes-Ramsey consumption rules for this economy are

identical and there is a dynamical determined path of indifference in assets accumulation, satisfying our modelling

condition for state dynamic adjustment through investment decisions. Taking that in consideration, we can define the

meaningful dynamical system, which will be composed by equations (7), (35), (36) and (44). We shall not consider the

possibility of switching threshold dynamics as in the previous economy. The reason for this decision lies on the

existence of a dynamical rule that adjusts domestic assets accumulation, but still allows for consumption through debt

accumulation always. Assuming the scaling rule defined in the previous section, i
i

X
Z

K
 , it is possible to reduce this

system to three dimensions, without imposing any additional conditions on this dynamical problem. We can redefine the

dynamical system in scaled variables and reduce one dimension from this dynamical system, as capital scaled dynamics

are always defined by scaled investment dynamics and play no role in the dynamics of the remaining variables. The

meaningful equations for this dynamical system are described below:

  4
1 1

1

1

r Z
Z Z

  



     
  

 

 (45)

 2 1 4 4 4 21
2

h
Z Z Z Z r Z Z A

 
       

 
 (46)

3 4Z Z   (47)

     
2

4 4 4

1 1

2
Z Z r Z r A

h
        (48)

5.1. Phase Space dynamics and equilibrium

Recall that this setup of convex investment adjustment costs is usually introduced to guarantee steady-state stability by

solving the differential system of state and co-state variables. Nevertheless, the system proposed here will allow for a

complete bifurcation analysis of the control variable dynamics, following our assumptions described in the previous

section. This is important since little is still known in the literature about the adjustment cost parameter h and the full

dynamical implication of convex adjustment costs in investment for open economy models. Fortunately, the dynamical

system proposed allows for a full qualitative analytical analysis following the usual procedure of linearization in the

neighbourhood of the fixed points. We start by defining the fixed point with no economic interpretation obtained by

setting scaled consumption to zero:

     

* *
4 4

*
2 **

41

2*
4

1
2

0

2

h
A Z Z

Z
r ZZ

Z r r r A
h



  

  
  

      

      




(49)

In order to obtain a steady state with an meaningful economic interpretation, **
iZ , we need to impose an endogenous

relation that guarantees scaled consumption dynamics to be positive. As scaled investment dynamics are defined

independently by the quadratic differential equation (48), we need to impose the following endogenous parameter

expression to guarantee feasible scaled consumption outcomes:

   
2** *

1 4 4

2
0

1 1

r r
Z Z Z r r r A

h

 
  

 

 
         

 
  (50)
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To obtain the steady-state for this system we need to solve first for 2 0Z  and obtain an expression for **
4Z defined in

**
1Z and **

2Z :

 
    

2** ** ** **
2 2 1 2** ** **

4 1 2

1 1 2
,

Z Z h Z r Z A
Z Z Z

h

      
 (51)

The steady states for scaled consumption and debt/assets are obtained by solving the system of equations given by

  ** ** **
1 4 1 2, 0Z Z Z Z  and   ** ** **

4 4 1 2, 0Z Z Z Z  . This final set of conditions is expressed below:

    

    
     

2** ** ** **
2 2 1 2

2** ** ** **
2 2 1 2 2

1 1 2

1

1 1 2 2

Z Z h Z r Z A r

h

Z Z h Z r Z A
r r r A

h h

 





  

       
 



      
     

(52)

Intuitively, we can follow a different path in order to define the dynamics of this system. Assuming that an endogenous

equilibrium defined by (50) is feasible, the dynamics of  1Z t are given by:

   
  **

4 4
0

1 1 0
Z Z t dt

Z t Z e


 (53)

This result implies that the long run dynamics of scaled consumption and debt/assets are only dependent on initial

conditions and on the rate of convergence of scaled investment to equilibrium. Assuming that there are a feasible set of

parameters that allow for a positive outcome in  for scaled consumption, we can use this result to evaluate

qualitatively the linearized dynamics of this dynamical system.

First, we start by defining the Jacobian matrix and characteristic polynomial for this system:

 

4 1

2

4 4 2 4 4

4

-
- 0 -

-1

1 - 1 - , 0
1

0 0 -

i iZ Z

r
Z Z

r
J r Z hZ Z Z r Z

r Z







    






 
 

   
            

   
  

(54)

Conditions for stability of this dynamical system can be given generically by the following pair of expressions:

   
2

4

2

1 1

r r
Z r r r A

h

 
  

 

 
     

 
   (55)

   
2

4

2
0Z r r r A

h
          (56)

This set of conditions imply that only the positive root of scaled investment, 4,Z  , assuming 4Z  , can be a stable

fixed point for this system. As there are no eigenvalues with imaginary parts due to the restrictions imposed and we

know that only condition (56)12 matters for the dynamics of the economic meaningful steady state, the dynamics of this

system can be described by the following table, taking into account the endogenous parameter restriction (50) for the

economic feasible steady state and assuming that domestic net investment is always bigger than the exogenous

international interest rate, 4Z r  :

12Since transitions for scaled consumption are endogenously given by scaled investment dynamics only the Jacobian matrix
elements describing scaled debt/assets and investment dynamics,

2 ,2J and
3,3J , are relevant for the solution of the characteristic

equation of the reduced two dimensional system.
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4,Z  4,Z 

1 0Z 

Node- 4
1

r
Z












Saddle point index 1- 4
1

r
Z












Saddle point index 2- 4
1

r
Z












Repellor- 4
1

r
Z












1 0Z  Node Repellor

Table 3- Global qualitative dynamics for economy with investment adjustment costs13

5.2. Numerical analysis: Investment adjustment costs and endogenous bifurcation

Following the analytical description of this system provided in the previous section, we conclude the analysis of the

economy with investment adjustment costs with a numerical exploration of feasible values for the investment costs

parameter, h , which allow for endogenous transitions to long-run equilibrium, as described in expression (50), for the

economic feasible scaled investment steady state, **
4,Z  , defined by (56). For this purpose, we decided to evaluate

condition (50) by varying the two-dimensional parameter space for exogenous technology, A , and intertemporal

elasticity of substitution in consumption,  . We maintain fixed the parameters r and  , following the values attributed

in the previous experiences for the credit/debit card economy, while presenting in the main text the border case arising

when 0.03  . Table 4 summarizes the parameter values and intervals for this numerical exploration.

 r   A

0.03 0.05 0.05 [0.01,0.99] [0.01,1.5]

Table 4- Parameter values for economic feasible regions for the economy with investment adjustment costs

Figures 8 and 9, below, illustrate the feasible outcomes in color for economically feasible values of investment

adjustment costs, *h , and steady state values of **
4,Z  . The regions with only a black surface representation illustrate non-

feasible regions in the parameter space  ,A  , while the colored regions illustrate the feasible outcomes that satisfy the

stable endogenous long run solution of this system.

Fig. 8- Economically feasible values for *h parameter Fig. 9- Economically feasible equilibrium for scaled investment

A quick inspection of these three dimensional images allows us to define the main conclusions regarding this system

dynamics. First, only positive values for investment adjustment costs satisfy the feasible endogenous equilibrium.

Second, the parameter space is divided in two main regions. For regions where A r  , only very large values of 

13By saddle point index 1, we consider the three dimensional linearized dynamics with one eigenvalue with only positive real part
and two eigenvalues with only negative real parts. In this case, trajectories approach the saddle point on a surface (the in-set) and
diverge along a curve (the out-set). By saddle point index 2 we consider the three dimensional linearized dynamics with two
eigenvalues with only positive real parts and one eigenvalue with only negative real part. In this case, trajectories approach the
saddle point on a curve (the in-set) and diverge from the saddle point on a surface (the out-set). This description for saddle dynamics
in three dimensional systems can be found on pages 126 to 128 in Hilborn (2000) book.
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allow for economic feasible outcomes. For regions where A r  , only the set of values of  that did not allow for

economic feasible outcomes in the previous discussed region are admissible. The region where A r   does not allow

for the existence of adjustment costs in investment and determines the main frontier regions of this system as expected,

following expression (56). The distinctive regions have a simple economic interpretation since the exogenous

technology parameter represents the marginal productivity of capital for this economy. The parameter value defining the

space frontier region represents outcomes where the net marginal productivity of domestic capital is equal to the

international interest rate, which can be interpreted as the net marginal revenue of foreign assets. Following the intuition

provided in the previous section for net investment in domestic assets to be always bigger than net investment in foreign

assets, this further rule implies that economic feasible equilibrium is most likely to occur in these regions, where we can

assume reasonable values for  and, where the outcomes obtained for scaled investment steady state are not

unreasonably high, **
4 0.5Z  . Finally, we can draw one final conclusion from this numerical experiment, which relates

to values of A in the most likely region discussed. As A increases, the feasible parameter values for *h become

increasingly high. This outcome should be considered rather unlikely if we take into account the parameter interpretation

when only values for *h  are feasible. In this specific case, higher investment adjustment costs impose an increasing

cost on investing in units of domestic capital as opposed to foreign assets. Such outcomes, although plausible if we take

into account certain specific macroeconomic conditions, are rather unlikely to occur in real economies, as they suggest

that rather successful open economies could only sustain long run growth dynamics if investment adjustment costs in

domestic capital are extraordinarily relevant to impose a shift on investment and consumption decisions towards foreign

assets/debt14.

5.3. Discussion

This section served the purpose of introducing investment adjustment costs as a macroeconomic feasible assumption to

impose transitions in classical endogenous growth optimal control setups such as ours. By following the methodology of

defining consumption indifference dynamical rules and scaling the system in this fashion, we were able to fully describe

the dynamics and bifurcations arising from this proposal analytically. Our first conclusion is that transitions to long run

feasible outcomes in economies with investment adjustment costs can only occur through endogenous parameter

combinations on regions with positive outcomes for investment adjustment costs parameter, meaning that sustained long

run growth dynamics can only be achieved if there are costs on domestic capital installation, when an economy faces

perfectly open capital markets. Further our numerical analysis suggests that reasonable outcomes are more likely to

occur when the net marginal productivity of domestic capital is slightly higher than the net marginal revenue of foreign

assets for reasonable values of the intertemporal elasticity of consumption, invalidating the hypothesis of increasing

returns on domestic capital through exogenous technology and the hypothesis of adjustment through investment costs in

open economies, where domestic capital performance is smaller than the performance of foreign assets. Therefore, it is

our conclusion that the introduction of non-linearities in this fashion should be only considered in modeling setups that

account for further non-linearities, as the investment adjustment costs hypothesis by itself, is not able to guarantee the

existence of feasible dynamic transitions to long run, without the requirement of specific endogenous parameter

combinations. We shall discuss this possibility in the following section, where we demonstrate that investment

adjustment costs mechanics can play an important role in the macrodynamics of open economies, when considering

further non-linearities, such as our risk premia on holdings of foreign assets/debt hypothesis, discussed in section 4..

6. Dynamic analysis of an open economy with convex adjustment on foreign debt/assets and

investment: Endogenous cycles and global bifurcations

For the complete optimal control problem, (1), described in conditions (2) to (7), we follow the same strategy considered

in the previous section to obtain the meaningful dynamical system. Again, we obtain a differential equation for

investment arising from the indifference in assets accumulation condition, following the strategy defined in the previous

sections. We show in this section how the introduction of both convex adjustment on holdings of foreign assets/debt and

14We provide further numerical parameter results in section 2. of the appendix, by varying intertemporal discount rate parameter,  ,

which has influence on the numerical frontier region for feasible outcomes. Still, these outcomes have no impact on the main
conclusions we discussed in this section and serve the purpose of presenting a further in-depth analysis on the parameter space
implications arising from this economy dynamics.
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domestic capital investment will allow for dynamic adjustment without resorting to state-dependent switching control

dynamics, and long-run dynamics will not depend on endogenous parameter combinations. On the other hand, the

outcome will be a three-dimensional non-linear dynamical system with limited analytical tractability. This demonstrates

that the introduction of both convexities is necessary to allow for full dynamical adjustment without the burden of a

posteriori rules that are always a reflection of the modeller subjectivity or limited model dynamics.

We start as usual by defining the Keynes-Ramsey consumption rule arising from the optimality condition in consumption

and taking into account the co-state condition (4), for foreign holdings accumulation. We obtain the same condition as in

the credit/debit economy for the credit economy case, (17). Next, we use the relations already defined for the optimal

control on investment decisions and its time derivative defined in conditions (37) to (40), but now we use the original

co-state condition (5), in order to obtain the second Keynes-Ramsey consumption equation:

 
 

    
2 2'

11 1 2 1

''
1 1

2 2
c

K

c

U C rd B h I
C hIK hK I hIK K hIK A

U C K K
 

   
    

             
     

   (57)

Again, we can use the indifference condition described in the previous sections, by equalizing (17) and (57) to define the

relevant dynamical expression for indifference in holdings accumulation for this economy. After some algebra, we

obtain a differential equation for investment decisions:
2 21

2 2

I B rd B B K
I r rd I r rd A

K K h K K h


   
          

   
 (58)

This system can also be reduced to three dimensions, when assuming the scaling rule, (21), we defined in the previous

sections, which renders the capital growth rate dynamics not meaningful for the remaining variables during transitions.

We shall proceed with the analysis of phase space dynamics in the final sub sections, taking into account that due to the

non-linearities suggested in (59) to (62), much of the results obtained will have to be based on numerical analysis.

Following the strategy in the previous sections for scaling economies with convex adjustment costs, we obtain the

following dynamical system corresponding to the optimal control problem defined in section 3..

    2 4
1 1

1 1

1

r dZ Z
Z Z

  



      
  

 

 (59)

2 1 4 4 2 4 21
2 2

h rd
Z Z Z Z r Z Z Z A

   
          

   
 (60)

3 4Z Z   (61)

       
2 2

4 4 2 4 2 2

1 1

2 2

rd
Z Z r rdZ Z Z r rdZ A

h h
           (62)

6.1. Phase space dynamics and equilibrium

Following the organization of the previous sections, we shall start this subsection by defining the set of fixed points for

the economy arising from the complete set of conditions defined in our original optimal control problem. As usual, the

sets of fixed points can be divided in two distinct sets, the ones with possible economic meaning and the sets of steady

states which do not suggest any meaningful economic intuition at all. Still, one should take into account the likelihood of

bifurcations arising from the interactions of local vector fields in the three dimensional field, which may lead to global

bifurcations that have important macroeconomic meanings. Also, one should take into account possible local

bifurcations leading to endogenous cycles. As our main research proposal lies on finding such global or local dynamics

with a limited set of macroeconomic assumptions, we shall use the next paragraphs to define the full set of conditions

that will allow for a further analysis of the phase space dynamics. We start by defining the sets of fixed points with no

economic meaning arising from setting scaled consumption to zero, 1 10 0Z Z   . We shall define this set of fixed

points as *
iZ for distinction purposes. Steady states for 2Z and 4Z under this conditions are obtained from the following

system of equations:
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* * * * *
4 4 2 4 21 0

2 2

h rd
Z Z r Z Z Z A
   
         

   
(63)

       
2 2* * * * *

4 2 4 2 2

1 1
0

2 2

rd
Z r rdZ Z Z r rdZ A

h h
           (64)

As is straightforwardly observed from expressions (63) and (64), this fixed point can only be easily dealt with

numerically. This is also true for the economic meaningful fixed point. The final system defining the solution for *
2Z and

*
4Z , when *

1 0Z  , is given by:

   
2* * * *

4 4 4 4

*
2

2 1
2

h
r Z r Z rd Z Z A

Z
rd

 
  

          
  

 (65)

       
2 2* * * * *

4 2 2 2 2

1
2

2

rd
Z r rdZ r rdZ Z r rdZ A

h h
  

 
           

 
 (66)

The sets of fixed points with possible economic meaning are obtained by considering 1Z  . We shall define this set

of steady states as **
iZ . This set of fixed points is governed by the relation obtained from 1 0Z  for **

2Z and **
4Z , which

can be found below:

 **
2**

4

1

1

r dZ
Z






 
 


(67)

The set of stable fixed points for scaled consumption and debt/assets are obtained by substituting this expression in

4 0Z  and solving for **
2Z .

     
2

2** ** ** **
4 4 4 4

**
2

2 1 1

2

rd rd rd
rdZ rdZ Z r Z r A

h h h h
Z h

rd

 
     

               
     




(68)

Then, after solving the system given by (67) and (68), we can substitute the pair of fixed points obtained for scaled

investment and debt/assets in 2 0Z  and solve for **
1Z :

** ** ** ** ** **
1 4 4 2 4 21

2 2

h rd
Z A Z Z r Z Z Z

   
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   
(69)

In order to be able to describe the qualitative dynamics of this economy, we will require the use of numerical methods,

since both fixed points and the characteristic equation only allow for limited analytical tractability. For this purpose we

leave below the generalized Jacobian and characteristic polynomial for this system:

    

 
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2 4
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i iZ Z

r dZ Z rd
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J r rdZ Z hZ Z
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J J J J J J J J J J
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



    



      
  

  
      
 
      
 
 

        

(70)

A final simplification may be assumed for each pair of fixed points, since we know 1,3 0J  for the set of fixed points

defined by *
1 0Z  and 1,1 0J  for the set of economic feasible fixed points defined by relation (67), **

i iZ Z .

As this brief presentation demonstrated, the proposed dynamical system in 3 does not render straightforward strategies

to be tackled analytically in a simple and intuitive fashion. We stop the analytic discussion of this system here, having
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defined the main conditions for performing numerical computations in order to continue our quest for cycles through

local Hopf bifurcations. In the next section, we discuss a simple algorithm for this purpose and extend it to define a

feasible economic parameter space in  ,d h , where this system undergoes local Hopf bifurcations, in the vicinity of the

economically feasible steady states, defined by both **
,iZ  solutions to the system of equations described in (67) to (69),

for different sets of reasonable parameter values with economic interpretation.

6.2. Numerical analysis: Endogenous Cycles and Global Bifurcations

We finish the analysis of this economy with the discussion, implementation and demonstration of a simple algorithm for

determining regions with economic interpretation for the economy with convex adjustment costs in the form of risk

premia on holdings of foreign assets/debt and investment decision bias in domestic assets. The definition of Hopf

bifurcation for systems in 3 can be summarized by the parameter combinations intervals that allow for the complex

conjugate pair of eigenvalues to cross the imaginary axis in the complex plane. The Hopf bifurcation is the exact

parameter values that correspond to the point where the real part of the complex conjugate pair is equal to zero. We

follow this definition and define a algorithm to determine the existence of such regions, in the form of parameter

intervals, and extend it to the definition of economic feasibility, 1 4 2,Z Z Z    . The parameter space we are

interest in investigating is given by combinations of risk premium and investment adjustment costs parameters,  ,d h ,

for regions in the vicinity of the two economic feasible steady-states, **
iZ , expressed in the system defined by equations

(67) to (69). This computation is not straightforward since the calculation of the fixed points and eigenvalues implies the

use of non-linear numerical techniques15, which are always prune to accuracy errors and convergence problems.

Nevertheless, the results obtained suggested that the regions determined correspond to Hopf bifurcation regions, which

lead us to believe that further exploration of this system, can be undertaken using relatively sophisticated numerical

techniques and limited computational resources.

We proceed to the description of our routine implementation by describing the specific experiments undertaken to define

Hopf bifurcation regions in the parameter space for d and h . Preliminary numerical experiments led us in the direction

of assuming 0h  , since we imposed the parameter constraint 0d  . We discuss the economic implications of this

outcome/decision in the end of this section. Following this outcomes, we focused our numerical exploration for the

economic reasonable parameter space defined by  0.001,10d  and  10, 0.001h   assuming different combinations

of parameters A and  , while maintaining fixed the remaining parameters given in table 4. We present these results in

section 4.1. of the appendix and leave the remaining of this section to the demonstration of our numerical procedure and

the cycle dynamics for this economy. For this purpose, we use a feasible set of parameter values given in table 4 and

grid search just parameter d , using a interval equal to 0.001, to determine a numerical interval for hopfd with limits

determined by the last value computed before the complex conjugate pair of eigenvalues crosses the imaginary axis and

the first value after the crossing of the imaginary axis. We follow this path because it is more intuitive to demonstrate the

outcome of our two parameter bifurcation search routine in this fashion, which is demonstrated in section 4.1. of the

appendix, describing numerically the relation between parameters d and h for Hopf bifurcation outcomes. Figure 10

shows the output for the eigenvalues in the complex plane near the bifurcation interval and table 5 gives the computed

intervals for risk premium and **
,iZ  steady-state. In this experiment, we dismiss all computed **

2,Z  steady-state values of

having a Hopf bifurcation region, following our routine restrictions, which were imposed by considering the mean value

of the fixed point interval for this purpose. Using the information obtained, we simulated this system dynamics in the

vicinity of the Hopf bifurcation region, assuming 1.2765d  for  0,1000t . Figures 11 to 15 portray the cycle

dynamics for this economy.

 r  h  A d

0.05 0.05 0.05 -0.001 0.3 0.11 [0.001,10]

Table 5- Parameter values for bifurcation analysis of cycles in
3

15We used fzero Matlab routine to compute the steady states and controlled the convergence of the algorithm for determination of
possible Hopf bifurcation regions. To determine the eigenvalues we used the Matlab routine eig.
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 1 0Z  2 0Z  4 0Z **
1,Z 

**
2,Z 

**
4,Z 

hopfd

1.1*10-5 1.81 0.21 [-1.1549*10-5, 2.4263*10-5] [1.8281,1.8283] [0.2166,0.2168] [1.276,1.277]

Table 6- Computed intervals for Hopf bifurcation and initial values for simulation of cycles in
3

Fig. 10- Eigenvalues in the complex plane for **
,iZ  Hopf bifurcation region Fig. 11- Phase space dynamics for cycle region

Fig. 12- Phase space dynamics for cycle region Fig. 13- Cycle dynamics for  1Z t

Fig. 14- Cycle dynamics for  2Z t Fig. 15- Cycle dynamics for  4Z t

This brief description of cycles in 3 for a growing economy had the main purpose of demonstrating our routine

potential to detect cycle regions numerically, rather than proposing a specific applied case for economic reasoning.

Nonetheless, we finish this short introduction on cycles for the full optimal control problem by describing some of the

implications arising from this specific application. First, the parameters chosen for this experiment describe an economy

with a relatively low technology level, facing a relevant risk premium on foreign debt and with almost no home bias on

investment in domestic assets. Second, the computed steady states reveal a highly indebted economy with a very low
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level of consumption relative to domestic assets and a high level of domestic investment. Finally, cycle dynamics

suggest small cycles for scaled foreign debt but very wide ones for scaled investment. Scaled consumption cycles are

almost negligible. All this evidence suggests that such dynamics match the observed outcomes of economies at the

lowest development stage, such as almost all economies from the African continent and many in Latin America and

Asia, where institutional arrangements led to an historical outcome governed by foreign indebtedness and slow growth.

Still, two puzzles arise from this experiment, the low level of consumption to domestic assets and the cycle amplitude

for scaled investment seem to be unrealistic. One explanation could be that such economies have relevant domestic

assets, such as natural resources, but as their investment is mainly financed through foreign financial resources the

incomes are transferred abroad leading to slow growth and low consumption levels. The large cycle amplitude of

investment dynamics, which could help explaining the high volatility of investment time series, could just be a symptom

of weak financial position for this open economy, since a quick inspection to  2Z t and  4Z t cycles portrayed in

figures (14) and (15) suggest a negative relation between cycle dynamics of the variables. The economic intuition is

straightforward, as the peak for the investment cycle is reached, debt dynamics are driven to the lowest cycle outcome

by payments arising from domestic production, at this point the pressure of foreign debt payments drives investment

down the cycle because of the low marginal productivity of domestic capital, which does not allow for an improvement

on the overall financial position of this economy. As this dynamics dominate the system, few resources can be dedicated

to consumption and the remaining majority of resources are used to remunerate foreign financial obligations, in order to

maintain the fragile financial position of this economy through foreign financed investment that can only sustain slow

economic growth.

6.3. Discussion

We conclude this brief presentation for the open economy facing risk premium and investment adjustment costs, defined

by the full optimal control problem introduced in section 3., with a short discussion on the main issues that arise from

our proposal and numerical outcomes obtained. Although, both our analytical and numerical exploration were much

more limited for this model, compared to the extensive discussion dedicated to each particular non-linear case, we were

still able to demonstrate the existence of Hopf bifurcations for economically feasible regions in this system numerically.

The parameter combinations leading to such outcomes are wide and allow for different economic interpretations, still

one stable pattern relating risk premium and investment adjustment costs arises from our numerical explorations, which

allows for the coexistence of endogenous cycles and long run growth. This pattern implies a negative relation between

risk premium and investment adjustment costs, when assuming home bias on investment decisions for domestic capital

and risk premia on foreign debt/assets, on the vast majority of the cases we explored numerically, as it becomes obvious

after a quick inspection of the graphical outcomes presented in section 4.1. of the appendix. This result relating the level

of financial openness with institutional pressure driving investment bias has a context in economic history, theory and

literature, since it was one of the main causes leading highly indebted economies to lower their institutional

protectionism, in order to access the benefits of international trade and the global economic expansion. In our proposal,

this specific relation drives the system to zones where endogenous growth and cycles coexist and that are feasible for a

wide variety of parameter combinations in the form of local Hopf bifurcations, when we consider the constant return

hypothesis for exogenous technology, 0 1A  . Of course exceptions always arise, even in our limited parameter space

exploration. For the case with the same technology level of the experiment in this section, but with an high intertemporal

elasticity of substitution in consumption, 0.9  , the relation changes to positive, as depicted by figure 41. Experiments

performed assuming low levels of technology, 0.07A  , and high levels of intertemporal substitution rates in

consumption, 0.7y  and 0.9  do not allow for a full definition of the relation involved as the slopes for this case

are one in the first case and almost zero in the second case, as portrayed in figures 35 and 36. This issue has to do with

the numerical simulation parameters and plotting decisions that still do not allow for a full description of these two

cases. One final remark for this specific regions is the possible coexistence of two economically feasible cycle regions

arising for each fixed point, **
,iZ  , in the case where 0.9  . Finally, the case with 0.2A  and 0.9A  , described in

figure 44, suggests the possibility of existence of period doubling for a specific region of the parameters, in the

neighbourhood of **
,iZ  . Both the cases described still require further numerical exploration, which is beyond the scope of

this proposal. Nevertheless, this initial numerical exploration on feasible Hopf bifurcation region is enough to serve as a

departure point for the exploration of regions with more complex dynamics. However, a numerical exploration of the
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planes arising from the steady states relation is required, in order to deepen the understanding of this economic system

and possible mechanics leading to global bifurcations.

These numerical results have important implications for macroeconomic theory since the assumption of institutional

arrangements leading to home bias on investment can easily be explained by a wide range of costs arising from

investment in foreign based assets. This assumption is also widely supported by economic theory and empirical research

on the subject, which relates information, cultural, bureaucratic and installation costs, along with exchange rate

uncertainty, as some of the main causes for this outcome. It is reasonable to believe that the continued dismantling of

commercial and investment barriers along with the investment banking revolution, arising from information technology

innovations and increasing international financial openness that led to relevant reductions on the costs associated with

investment in foreign assets, is driving this institutional parameter down and imposing a smaller home bias on

investment in domestic assets. Nevertheless, the market share of financial markets for foreign assets investment

decisions is still relatively small to accommodate the natural bias towards domestic assets and it is doubtful that such

epoch will arise in the near future. Taking this into account, we are able to link this evidence with our outcomes for

economically feasible regions that undergo Hopf bifurcations and allow for the coexistence of endogenous cycles and

growth. Our full proposal is also consistent with the strategy of not imposing a posteriori rules for the definition of

system dynamics, suggesting that the introduction of further non-linearities on macrodynamic proposals is one of the

paths to follow, in order to match the evidence suggested by empirical research, and also to allow for “cleaner”

modelling proposals that entail richer dynamical outcomes. Further numerical analysis suggests that this system

undergoes global bifurcations, such as the heteroclinic bifurcation portrayed in section 4.2. of the appendix. These

complex outcomes may pave the way for the introduction in the macrodynamics literature of important conceptual

themes already discussed in the recent field of macroeconomics phase transitions theory, by taking advantage of the

theoretical results provided by the mathematical field of non-linear dynamics. We finish this discussion here with the

conviction that our preliminary numerical findings for local Hopf bifurcations regions can open the door for the

definition of further relevant dynamical outcomes with economic interpretation. Nevertheless, we are fully aware that

further results will require a more global perspective of this system and to achieve them we have to aim on improving

both the numerical procedures employed and extend the limited initial analytical framework presented.

7. Conclusions and further research

We finish this paper with a brief overview of our main results and future topics of discussion. First, we would like to

highlight the role that risk premia on holdings of foreign assets/debt has on the introduction of transitions with

endogenous cycles and further interesting dynamics in models of endogenous growth. By assuming always dynamic

rules for adjustment in consumption decisions, we were able to propose a meaningful piecewise smooth ODE system16

in 2 , where Hopf bifurcations arise, and to determine that transitions to long run growth in the particular case with

investment adjustment costs, are only possible if we consider an additional endogenous rule. Therefore we dismiss the

claims that risk premia in the form of convex adjustment on foreign assets/debt is unable to introduce transitions in

growth models and that convex investment adjustment costs on its own is a plausible non-linearity to consider in order

to introduce transitions to long run growth, since we have to consider both endogenous transition rules and bias on

investment on foreign assets, which are unlikely. Finally, we showed how it is possible to obtain a meaningful

dynamical system, when both institutional non-linearities are considered, assuming just the dynamic adjustment rule for

indifference in accumulation in consumption decisions and no additional a posteriori modelling rules. By following this

path, we showed that this system is not only able to reproduce the coexistence cycles and growth in the form of local

Hopf bifurcations, but also we put forward some additional evidence suggesting that more complex dynamics with

possible economic interpretation exist in the form of global bifurcations. Finally, we were able to demonstrate

numerically that assuming both institutional non-linearities, we are able to solve the issue of bias on investment

decisions satisfactorily, which leads us into meaningful economic dynamic outcomes with transitions to coexist with

regions undergoing Hopf bifurcations in 3 , where there is home bias in investment decisions towards domestic assets.

We conclude this presentation by stating that it is our conviction that the path we followed will surely gain its ground on

the macrodynamics literature and fill some of the gaps existent in macroeconomic theory of development and growth

dynamics. The issues discussed in this paper are still too conceptual to be readily transposed to policy applications,

16See Di Bernardo et al (2007) for a detailed introduction to this theme.
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nevertheless it is our opinion that the introduction of further non-linearities in macro-models will allow for a better

comprehension of the reasons leading to boom/bust dynamics and phase transitions in economic systems. Finally, we

would like put a final comment on the issues regarding complexity science theory arising from our proposal. Since we

are proposing macro-models based on low dimensional nonlinear dynamics, it is doubtful that our simple proposal in
2 and even our complete proposal in 3 can be considered to fit into the contemporary research on complex

dynamics. Nevertheless, the testing of the hypotheses forwarded in this paper against empirical data will surely belong

to the field of statistical complexity, since the specific applications involved are not straightforward and will surely

involve a wide discussion on complex matters arising from economic macro-data and sophisticated methods of statistical

estimation, sampling and hypothesis testing.

Appendix

1. Threshold equilibrium dynamics for the economy facing risk premium

Assuming the only equilibrium possibly for the economy with risk premium on foreign assts/debt as the one satisfying

the threshold indifference condition 2 2
tZ Z , we can use the system described in (25) to obtain the meaningful

expressions that describe long run growth solutions arising from equilibrium in the scaled dynamical system describing

this economy. Briefly, the conditions for existence of long run growth on the indifference thresholds of debt/assets and

capital accumulation in this system are given by the following algebraic system of equations following (25):
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 
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Z Z A Z r rdZ Z Z
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   
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

 

(71)

From the algebraic system described in (71) it is straightforward to obtain a parameter constraint for the existence of

feasible equilibrium solutions for 2Z . This expression can be generically given by the following equality:

      
2

42 1rd rd rd r A r Z            (72)

Since existence of equilibrium in scaled assets/debt depends on a strict restriction given by static parameter

combinations, we can rule out the existence of transitional dynamics for this system without going through further

analysis on qualitative dynamics. Nevertheless, since there exists two equilibrium solutions arising from indifference in

accumulation threshold rule and long run growth solution implies that 1Z  ,

   
2

2

1
2 0

2
Z rd rd r A A r rd           and 3 4Z Z    , we can extend the general expressions

for the existence of a BGP given in (71) and (72), and describe the three possible economic feasible outcomes that may

arise as long run solutions to the economy with risk premium, assuming indifference on state accumulation as the steady

state solution for scaled investment, 4Z :

     
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


 (73)

Following (73) we can obtain by substitution the fixed points governing long run growth dynamics for scaled

consumption by substituting 2
tZ and 4Z in 1Z .

       
2

1 2 2 4 2 2 1 0t t t t
,Z Z A r rd Z r Z Z Z           (74)

Assuming these conditions for long run growth equilibrium, we can easily define the parameter restrictions that arise in

each of the three possible cases and that are relevant for the solution of this specific hypothesis.
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i. Parameter restrictions for economies on credit region- 2 1t
,Z  
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ii. Parameter restrictions for economies on credit region- 20 1t
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iii. Parameter restrictions for economies on debit region- 2 0t
,Z  
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The main economic intuition arising from these restrictions is that the marginal net revenue of capital, A  , as to be

smaller than the marginal revenue on foreign debt plus the exogenous risk premium,
1

2
r rd , to allow for the existence

of meaningful economic regions. Further, in the cases where the net marginal revenue on domestic capital is small

enough, then it is possible to consider as solutions to this problem regions where countries accumulate foreign assets.

This can be seen as a substitution effect arising from the differences in net marginal revenue between foreign and

domestic assets, which lead this economy to assume a net creditor position, when domestic revenues are structurally

low.

In order to evaluate the conditions described for the existence of economic feasible outcomes in this economy, we

evaluated numerically the outcomes for scaled consumption and debt/assets steady states assuming the restrictions

described in (75) to (77), for each of the three possible situations described. Fixing the parameters 0 5.   and

setting for each evaluation feasible values of  and r , we explored interval regions for parameters A and d , where

reasonable outcomes for the steady state values of iZ exist. These results are a mere illustration of some outcomes

arising from a broader numerical exploration performed with the purpose of defining which parameter combinations

would be more likely to produce reasonable economic outcomes. Figures (16) to (24) below summarize some results

from this experiment for each of the possible threshold equilibrium solutions:

Steady- state outcomes for 2 1t
,Z   assuming 0 05r . and 0 7. 

Fig. 16- 1Z steady-state surface Fig. 17- 2Z steady-state surface Fig. 18- 4Z steady-state surface
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Steady- state outcomes for 20 1t
,Z   assuming 0 05r . and 0 3. 

Fig. 19- 1Z steady-state surface Fig. 20- 2Z steady-state surface Fig. 21- 4Z steady-state surface

Steady- state outcomes for 2 0t
,Z   assuming 0 06r . and 0 3. 

Fig. 22- 1Z steady-state surface Fig. 23- 2Z steady-state surface Fig. 24- 4Z steady-state surface

2. Linearized dynamics, numerical analysis and experiments for the Credit/Debit Economy

2.1. Credit/Debit Economy linearized dynamic analysis

For the universal fixed point region, both economies will share the second eigenvalues obtained from (31):

     

     
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2 2, 4 4
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2 2, 4 4
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    

     

(78)

Assuming the condition given in expression (79), to guarantee that the universal fixed point has only real parts, it is

sufficient to guarantee that there are no eigenvalues with only imaginary parts and this fixed point is hyperbolic. We can

assume that the signs for each common eigenvalues depend only on the sign of the root of *
2Z and from here, determine

the remainder conditions for obtaining a sketch of the qualitative dynamics involved in this specific region through

linearization.

   
12

4 42d r Z r Z A


     (79)

For the credit economy case, the eigenvalues for the universal fixed point dynamics can be simplified to:

       
21

1 4 4 41 2Z r Z rd Z A     
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(80)

       
21

1 4 4 41 2Z r Z rd Z A     
            

(81)

Assuming now that condition (79) holds and recalling that 1 0   , we summarize the qualitative dynamics for the

credit economy case in the region of the universal fixed point in table 7:
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*
2,Z 

*
2,Z 

Repellor -

     
2

4 4 42 0Z r Z rd Z A          

Saddle point -

     
2

4 4 42 0Z r Z rd Z A          

node-

     
2

4 4 42 0Z r Z rd Z A          

Saddle point-

     
2

4 4 42 0Z r Z rd Z A          

Table 7- Qualitative dynamics of universal fixed point in credit economy region

For the debit economy case, it is also possible to define the qualitative dynamics of this system following the same

assumptions given for the credit economy. Still, it is not possible to obtain simplified expressions as given in table 7, for

this economy. Nevertheless, we can assume the general expression given in (31) for
*

2 2

* 1
1

1 Z Z

dZ

dZ
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

and describe the

qualitative dynamics for this system in the same fashion. Table 8 summarizes the qualitative dynamics for this economy

in the vicinity of the universal fixed point, assuming that
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and condition (79) hold, in order to

guarantee the universal fixed point is hyperbolic in the debit economy case:
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Table 8- Local linearized dynamics for universal fixed point in debit economy region

We conclude this appendix section with the meaningful conditions that describe the specific fixed point dynamics for the

credit/debit economy. First, we start by defining the set of conditions for existence of hyperbolic specific fixed points.

These conditions can be defined generically for both economies following the eigenvalues expression given in (32) in a

intuitive fashion. Expression (82) summarizes these conditions:

**

** 4 1
2

2

0

i iZ Z

Z r dZ
Z

rd dZ





 
 


 (82)

For the credit economy case it is straightforward to observe that the economic feasible region of steady states, **
1 0Z 

described in (30) is sufficient condition to guarantee both hyperbolicity and saddle path dynamics. This intuition is best

observed using the determinant and trace of the general specific Jacobian matrix given in (32):

   
**

** ** **1
2 4

2

,

i iZ Z

dZ
Det J tr J r rdZ Z

dZ




     


(83)

For this specific case the hyperbolicity condition and the determinant of the Jacobian matrix expressed below are

completely determined by the restriction for the economic meaningful region of steady states,
* ,** * ,**
2, 2 2, 1 0B BZ Z Z Z     , which is a saddle point under the Grobman-Hartman theorem conditions, since 1  .

 
,**

1 1

,** ,** ,**1
1 1

2

0 0
1 1B B

B
b B b

B

Z Z

dZ rd rd
Z Det J Z

dZ  


   
 


  (84)

Finally, we describe the linearized dynamics for the debit economy. In this specific case, it is not straightforward to

define the conditions to describe the qualitative dynamics following the Grobman-Hartman theorem. Assuming that the

general conditions for hyperbolicity, given in (82), hold for this case also, the specific determinant for this economy is

given by the following expression:

   
1,** ,** ,**

1 21K K KDet J rd Z Z


  (85)
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Under the strict assumptions that       
1,**

2 4Re 0 2 1 0KZ rd A Z   

          and

,** * ,** *
1 2, 2 2,0K KZ Z Z Z    , we can easily summarize the dynamic varieties in the vicinity of the debit economy fixed

points. These results are summarized in table 9 bellow:

,**
2,
KZ 

,**
2,
KZ 

Saddle point

node- ,** 4
2,
K Z r

Z
rd




 


Repellor- ,** 4
2,
K Z r

Z
rd




 


Hof bifurcation-

,** 4
2,
K Z r

Z
rd




 


Table 9- Local linearized dynamics for specific fixed points of debit economy

The dynamics near the ,**
2,
KZ  fixed point will be dominated by net flow of capital scaled by the exogenous risk premium

combination of parameters, rd . For economies where the net flow of financial capital is positive, 4Z r  , this fixed

point is always a node. For economies where the net flow of capital is negative this fixed point can be a node or a

repellor. Nevertheless, the existence of a Hopf bifurcation point means that this specific fixed point might pave the door

for an infinite cycle region, through interaction with the universal fixed points. This could mean that within specific

regions of the plane arising from specific restrictions on parameters and dominated by debit economy dynamics, might

create the conditions for degenerate cycle regions with stability to occur and the existence homoclinic bifurcations. Such

dynamics are only possible in economies where the net flow of financial capital is exogenously defined as negative and

the specific fixed point for positive foreign assets interacts with the universal fixed points.

2.2. Local Hopf bifurcation feasible economic regions

Fig. 25- Feasible parameter space 0.1  Fig. 26- Feasible parameter space 0.3 

Fig. 27- Feasible parameter space 0.5  Fig. 28- Feasible parameter space 0.7 
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2.3. Further relevant simulations and data reconstruction for Debit/Credit economy

Data reconstruction assuming uncertainty on exogenous risk premium

As discussed in section 4.3., we put forward in this short appendix section the two main developments that we consider

crucial in future research for the proposed model of a debit/credit card economy. First, we suggest the introduction of

risk premium uncertainty of the form,    ,0.01hopfd t N d , where there is no memory from the past moments in each

time period. This proposal is reasonable since we already discussed the critical transitions for the Hopf bifurcation, so

the outcomes all lie in explored regions of the plane. Further, regarding uncertainty in exogenous risk premium in this

fashion resembles the information asymmetries faced by the financial sector and the institutional framework that

determines risk premium on international debt markets. We experiment on this hypothesis following the same simulation

parameters forwarded in table 1 of section 4.3.. Figures 28 to 31 portrait the outcome of this speculative experiment for

20000t  . Although, we didn’t follow the usual path of sampling our trials due to time limitations and scope of this

paper, this simple experiment shows how uncertainty on risk premium is capable of maintaining cycle stability and

reproduce alternating cycle periods with different amplitudes.

Fig. 28- Two dimensional phase space for risk premium uncertainty Fig. 29- Three dimensional phase space for risk premium uncertainty

Fig. 30-  1Z t time path for risk premium uncertainty Fig. 31-  2Z t time path for risk premium uncertainty

Degenerate infinite period cycles and global switching threshold dynamics for non economic regions

This last experiment on the dynamics of the debit/credit economy deals with the possibility of local fixed point

interaction leading to infinite period cycles. This hypothesis was already discussed in the main text and its interest to

long run growth macroeconomics argued. The dynamics depicted on this section cannot be directly transposed to

economic reasoning since the infinite cycle region portrayed is located in the second and third quadrant of the plane.

Nevertheless, we believe that improved intuition on this specific cycle region may allow for further comprehension of

the credit/debit economy global dynamics, which in turn will lead to further results with economic meaning. Table 10

summarises the parameters necessary to run this simulation and figures 32 to 35 portray the dynamic outcome of this

simulation, which impose four passages on the two control switching state thresholds.

 r  4Z  A d  1 0Z  2 0Z

0.05 0.05 0.05 0.15 0.35 0.06 0.5 -0.1 0.5

Table 10- Simulation parameters for negative infinite period cycles
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Fig. 32- Two dimensional phase space for negative cycle dynamics Fig. 33- Three dimensional phase space for negative cycle dynamics

Fig. 34-  1Z t time path for negative cycle Fig. 35-  2Z t time path for negative cycle

3. Numerical results for parameter outcomes in the economy with investment adjustment costs

Fig. 36- Economic feasible values for *h parameter ( 0.05  ) Fig. 37- Economic feasible equilibrium for scaled investment ( **
4,Z  )

Fig. 38- Economic feasible values for *h parameter ( 0.07  ) Fig. 39- Economic feasible equilibrium for scaled investment ( **
4,Z  )
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4. Numerical analysis for the economy facing risk premium and investment adjustment costs

4.1. Risk premium and investment adjustment costs feasible cycle economic regions in 3

In this section, we present the computed parameter combinations for economically feasible regions with Hopf

bifurcations, following our numerical proposal discussed in detail in section 6.3. of the main text. For different values of

exogenous technology,  0.07;0.11;0.2;1.05A , and intertemporal elasticity of substitution in consumption,

 0.1;0.3;0.5;0.7;0.9  , we loop through  0.001,10d  and  10, 0.001h   , using a simple grid search procedure

with a search interval equal to 0.01, to define parameter combinations where local Hopf bifurcations with possible

economic interpretation occur in the neighbourhood of both fixed points of the system, depicted by **
,iZ  (-) and **

,iZ  (-).

The graphics depicting the results obtained for parameter regions that fit into the constraints described in the main text

follow below, where the value considered for parameter d is given by the average value of the parameter interval

defined when the complex conjugate pair of eigenvalues crosses the imaginary axis17. We dismiss for obvious reasons

the empty sets obtained from this numerical parameter space exploration, which include all sets with 1.05A  :

Fig. 40- 0.07 & 0.1A   Fig. 41- 0.07 & 0.3A   Fig. 42- 0.07 & 0.5A  

Fig. 43- 0.07 & 0.7A   Fig. 44- 0.07 & 0.9A   Fig. 45- 0.11 & 0.1A  

Fig. 46- 0.11 & 0.3A   Fig. 47- 0.11 & 0.5A   Fig. 48- 0.11 & 0.7A  

17By assuming a wider iteration interval, to limit the computation time of our routine and allow for a wider parameter space
exploration, some of the figures show discontinuities arising from this decision and the use of the described value for d .
Nevertheless, such discontinuities and further numerical errors that may occur in our steady state computations, are already small
enough to allow the main patterns governing the adjustment costs parameter relation for regions with Hopf bifurcations to arise.
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Fig. 49- 0.11 & 0.9A   Fig. 50- 0.2 & 0.1A   Fig. 51- 0.2 & 0.3A  

Fig. 52- 0.2 & 0.9A  

4.2. Further numerical experiments and extensions

The last section of this appendix is dedicated to the introduction of further relevant dynamics arising for the economy

facing risk premium and investment adjustment costs, which we came about while performing preliminary numerical

simulations with this system or from the numerical outcomes obtained for the previous section. This section will not

focus on the specific causes leading to the dynamic outcomes we present below, but has the intention of introducing the

analysis of global bifurcations for this specific system, in order to promote the introduction of more complex dynamic

outcomes in the macrodynamics economic theory.

Global bifurcations, crisis and heteroclinic connections of cycles

 r  h  A d  1 0Z  2 0Z  4 0Z

0.03 0.05 0.05 -0.01 0.7 0.06 0.4 0.1 -1 0.2596

Table 11-Parameter values for Heteroclinic bifurcation

Fig. 53- Phase space for heteroclinic connection of cycles Fig. 54- Phase space for heteroclinic connections of cycles
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Fig. 55- Scaled dynamics for heteroclinic bifurcation
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