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Abstract

In this paper we present new results on the NoVaS transformation approach for volatility

modeling and forecasting, continuing the previous line of research by Politis (2003a,b, 2007)

and Politis and Thomakos (2008a, b). Our main contribution is that we extend the NoVaS

methodology to modeling and forecasting conditional correlation, thus allowing NoVaS to

work in a multivariate setting as well. We present exact results on the use of univariate

transformations and on their combination for joint modeling of the conditional correlations:

we show how the NoVaS transformed series can be combined and the likelihood function

of the product can be expressed explicitly, thus allowing for optimization and correlation

modeling. While this keeps the original “model-free” spirit of NoVaS it also makes the new

multivariate NoVaS approach for correlations “semi-parametric”. We also present a number of

auxiliary results regarding the empirical implementation of NoVaS based on different criteria

for distributional matching. We illustrate our findings using simulated and real-world data.
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1 Introduction

Joint modeling of the conditional second moments, volatilities and correlations, of a vector of

asset returns is considerably more complicated (and with far fewer references) than individual

volatility modeling. With the exception of realized correlation measures, based on high-frequency

data, the literature on conditional correlation modeling is plagued with the “curse of dimensional-

ity”: parametric or semi-parametric correlation models are usually dependent on a large number

of parameters (always greater than the number of assets being modeled). Besides the, always

lurking, misspecification problems one is faced with the difficult task of multi-parameter nu-

merical optimization under various constraints. Some recent advances, see for example Ledoit

et al. (2003) and Palandri (2009), propose simplifications by breaking the modeling and opti-

mization problem into smaller, more manageable, sub-problems but one still has to make ad-hoc

assumptions about the way volatilities and correlations are parametrized.

In this paper we present a novel approach for modeling conditional correlations building

on the NoVaS transformation approach introduced by Politis (2003a,b, 2007) and significantly

extended by Politis and Thomakos (2008a, b). Our work has both similarities and differences

with the related literature. The main similarity is that we also begin by modeling the volatilities

of the individual series and estimate correlations using the standardized return series. The main

differences are that (a) we do not make distributional assumptions for the distribution of the

standardized returns, (b) we assume no “model” for the volatilities and the correlations, (c) we

use a correctly specified likelihood function for the correlations and (d) calibration-estimation of

parameters requires only one-dimensional optimizations in the unit interval and simple numerical

integration.

The main advantages of using NoVaS transformations for volatility modeling and forecasting,

see Politis and Thomakos (2008b), are that the method is data-adaptable without making any a

prior assumptions about the distribution of returns (e.g. their degree of kurtosis) and it can work

in a multitude of environments (e.g. global and local stationary models, models with structural

breaks etc.) These advantage carry-over to the case of correlation modeling. In addition to our

main results on correlations we also present some auxiliary results on the use of different criteria

for distributional matching thus allowing for a more “automated” application of the NoVaS

methodology.

The related literature on conditional correlation modeling is focused on finding parsimonious,

easy to optimize, parametric and semi-parametric representations of volatilities and correlations,

and on approaches that can handle the presence of excess kurtosis in asset returns. Early refer-

ences for parametric multivariate models of volatility and correlation include Bollerslev, Engle
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and Woolridge (1988) (the VEC model), Bollerslev (1990) (the constant conditional correlation,

CCC model), Bollerslev and Woolridge (1992) and Engle and Kroner (1995) (the BEKK model).

Engle (2002) introduced the popular dynamic conditional correlation DCC model, which was

extended and generalized by various authors: see, among others, Tse and Tsui (2002), Sheppard

(2002), Pelletier (2006), Silvennoinen and Terasvirta (2005, 2009) and Hanfner and Frances

(2009). For a review of the class of multivariate GARCH-type models see Bauwens et al. (2006)

and for a review of volatility and correlation forecast evaluation see Patton and Sheppard (2008).

A recent paper linking BEKK and DCC models is Caporin and McAleer (2010).

Part of the literature treats the problem in a semi-parametric or non-parametric manner, such

as in Long and Ullah (2005) and Hafner et al. (2004). Ledoit et al. (2003) and Palandri (2009)

propose simplifications to the modeling process, both on a parametrization and optimization

level.

The NoVaS approach we present in this paper also has some similarities with copula-based

modeling where the marginal distributions of standardized returns are specified and then joined

to form a multivariate distribution; for applications in the current context see Jondeau and

Rockinger (2006) and Patton (2006). Finally, see Andersen et al. (2006) for the realized corre-

lation measures.

The rest of the paper is organized as follows: in Section 2 we briefly review the general

development of the NoVaS approach; in Section 3 we present the new results on NoVaS -based

modeling and forecasting of correlations; in Section 4 we present a proposal for “model” selection

in the context of NoVaS ; in Section 5 we present some limited simulation results while in Section

6 we present an illustrative empirical application; section 7 offers some concluding remarks.

2 Review of the NoVaS Methodology

In this section we present a brief overview of the univariate NoVaS methodology: the NoVaS

transformation, the implied NoVaS distribution and the methods for distributional matching.

For brevity we do not review the NoVaS volatility forecasting methodology, which can be found

along with additional discussion in Politis and Thomakos (2008b).

2.1 NoVaS transformation and implied distribution

Consider a zero mean, strictly stationary time series {Xt}t∈Z corresponding to the returns of a

financial asset. We assume that the basic properties of Xt correspond to the ‘stylized facts’1 of

1Departures from the assumption of these ‘stylized facts’ have been discussed in Politis and Thomakos (2008a,

b)
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financial returns:

1. Xt has a non-Gaussian, approximately symmetric distribution that exhibits excess kurtosis.

2. Xt has time-varying conditional variance (volatility), denoted by h2t
def
= E

[
X2

t |Ft−1

]
that

exhibits strong dependence, where Ft−1
def
= σ(Xt−1, Xt−2, . . . ).

3. Xt is dependent although it possibly exhibits low or no autocorrelation which suggests

possible nonlinearity.

The first step in the NoVaS transformation is variance stabilization to address the time-

varying conditional variance of the returns. We construct an empirical measure of the time-

localized variance of Xt based on the information set Ft|t−p
def
= {Xt, Xt−1, . . . , Xt−p}

γt
def
= G(Ft|t−p;α,a) , γt > 0 ∀t (1)

where α is a scalar control parameter, a
def
= (a0, a1, . . . , ap)

⊤ is a (p + 1) × 1 vector of control

parameters and G(·;α,a) is to be specified.The function G(·;α,a) can be expressed in a variety

of ways, using a parametric or a semi-parametric specification. For parsimony assume that

G(·;α,a) is additive and takes the following form:

G(Ft|t−p;α,a)
def
= αst−1 +

p∑
j=0

ajg(Xt−j)

st−1 = (t− 1)−1
∑t−1

j=1 g(Xj)

(2)

with the implied restrictions (to maintain positivity for γt) that α ≥ 0, ai ≥ 0, g(·) > 0 and

ap ̸= 0 for identifiability. The “natural” choices for g(z) are g(z) = z2 or g(z) = |z|. With these

designations, our empirical measure of the time-localized variance becomes a combination of an

unweighted, recursive estimator st−1 of the unconditional variance of the returns σ
2 = E

[
X2

1

]
, or

of the mean absolute deviation of the returns δ = E|X1|, and a weighted average of the current2

and the past p values of the squared or absolute returns.

Using g(z) = z2 results in a measure that is reminiscent of an ARCH(p) model which was

employed in Politis (2003a,b, 2007). The use of absolute returns, i.e. g(z) = |z| has also been

advocated for volatility modeling; see e.g. Ghysels and Forsberg (2007) and the references therein.

Robustness in the presence of outliers in an obvious advantage of absolute vs. squared returns.

In addition, note that the mean absolute deviation is proportional to the standard deviation

for the symmetric distributions that will be of current interest. The practical usefulness of the

absolute value measure was demonstrated also in Politis and Thomakos (2008a, b).

2The necessity and advantages of including the current value is elaborated upon by Politis (2003a,b,2004,2007).
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The second step in the NoVaS transformation is to use γt in constructing a studentized

version of the returns, akin to the standardized innovations in the context of a parametric (e.g.

GARCH-type) model. Consider the series Wt defined as:

Wt ≡Wt(α,a)
def
=

Xt

ϕ(γt)
(3)

where ϕ(z) is the time-localized standard deviation that is defined relative to our choice of g(z),

for example ϕ(z) =
√
z if g(z) = z2 or ϕ(z) = z if g(z) = |z|. The aim now is to choose the NoVaS

parameters in such a way as to make Wt follow as closely as possible a chosen target distribution

that is easier to work with. The natural choice for such a distribution is the normal—hence the

‘normalization’ in the NoVaS acronym; other choices (such as the uniform) are also possible in

applications, although perhaps not as intuitive–see e.g. Politis and Thomakos (2008a, b). Note,

however, that the uniform distribution is far easier to work with in both the univariate and

multivariate context.

Remark 1. The above distributional matching should not only focus on the first marginal distri-

bution of the transformed series Wt. Rather, the joint distributions of Wt should be normalized

as well; this can be accomplished by attempting to normalize linear combinations of the form

Wt+λWt−k for different values of the lag k and the weight parameter λ; see e.g. Politis (2003a,b,

2007). For practical applications it appears that the distributional matching of the first marginal

distribution is quite sufficient.

A related idea is the notion of an implied model that is associated with the NoVaS transfor-

mation that was put forth by Politis (2004). For example, solving for Xt in eq. (3), and using

the fact that γt depends on Xt, it follows that:

Xt = UtAt−1 (4)

where (corresponding to using either squared or absolute returns) the two terms on the right-hand

side above are given by

Ut
def
=

 Wt/
√

1− a0W 2
t if ϕ(z) =

√
z

Wt/(1− a0|Wt|) if ϕ(z) = z

 (5)

and

At−1
def
=


√
αst−1 +

∑p
j=1 ajX

2
t−j if g(z) = z2

αst−1 +
∑p

j=1 aj |Xt−j | if g(z) = |z|

 (6)

If one postulates that the Ut are i.i.d. according to some desired distribution, then eq. (4)

becomes a bona fide model.3 For example, if the distribution of Ut is the one implied by eq. (4)

3In particular, when g(z) = z2, then (4) is tantamount to an ARCH(p) model.
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with Wt having a (truncated) normal distribution, then eq. (4) is the model that is ‘associated’

with NoVaS. The appendix has details on the exact form and probabilistic properties of the

resulting implied distributions for Ut for all four combinations of target distributions (normal

and uniform) and variance estimates (squared and absolute returns).

2.2 NoVaS distributional matching

2.2.1 Weight selection

We next turn to the issue of optimal selection—calibration—of the NoVaS parameters. The

objective is to achieve the desired distributional matching with as few parameters as possible

(parsimony). The free parameters are p (the NoVaS order), and (α,a). The parameters α and

a are constrained to be nonnegative to ensure the same for the variance. In addition, motivated

by unbiasedness considerations, Politis (2003a,b, 2007) suggested the convexity condition α +∑p
j=0 aj = 1. Finally, thinking of the coefficients ai as local smoothing weights, it is intuitive to

assume ai ≥ aj for i > j.

We discuss the case when α = 0; see Politis and Thomakos (2008a, b)for the case of α ̸= 0.

The simplest scheme that satisfies the above conditions is equal weighting, that is aj = 1/(p+1)

for all j = 0, 1, . . . , p. These are the ‘simple’ NoVaS weights proposed in Politis (2003a,b, 2007).

An alternative allowing for greater weight to be placed on earlier lags is to consider exponential

weights of the form:

aj =

 1/
∑p

j=0 exp(−bj) for j = 0

a0 exp(−bj) for j = 1, 2, . . . , p

 (7)

where b is the rate; these are the ‘exponential’ NoVaS weights proposed in Politis (2003a,b, 2007).

Both the ‘simple’ and ‘exponential’ NoVaS require the calibration of two parameters: a0

and p for ‘simple’, and a0 and b for ‘exponential’. Nevertheless, the exponential weighting

scheme allows for greater flexibility, and will be our preferred method. In this connection, let

θ
def
= (p, b) 7→ (α,a), and denote the studentized series asWt ≡Wt(θ) rather thanWt ≡Wt(α,a).

For any given value of the parameter vector θ we need to evaluate the ‘closeness’ of the marginal

distribution of Wt with the target distribution. To do this, an appropriately defined objective

function is needed, and discussed in the next subsection.

2.2.2 Objective functions for optimization

To evaluate whether the distributional matching to the target distribution has been achieved,

many different objective functions could be used. For example, one could use moment-based

matching (e.g. kurtosis matching as originally proposed by Politis [2003a,b, 2007]), or complete
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distributional matching via any goodness-of-fit statistic like the Kolmogorov-Smirnov statistic,

the quantile-quantile correlation coefficient (Shapiro-Wilks type of statistic) and others. All

these measures are essentially distance-based and the optimization will attempt to minimize the

distance between empirical (sample) and target values.

Consider the simplest case first, i.e., moment matching. Assuming that the data are approx-

imately symmetrically distributed and only have excess kurtosis, one first computes the sample

excess kurtosis of the studentized returns as:

Kn(θ)
def
=

∑n
t=1(Wt − W̄n)

4

ns4n
− κ∗ (8)

where W̄n
def
= (1/n)

n∑
t=1

Wt denotes the the sample mean, s2n
def
= (1/n)

n∑
t=1

(Wt − W̄n)
2 denotes the

sample variance of the Wt(θ) series, and κ∗ denotes the theoretical kurtosis coefficient of the

target distribution. For the normal distribution κ∗ = 3.

The objective function for this case can be taken to be the absolute value, i.e., Dn(θ)
def
=

|Kn(θ)|, and one would adjust the values of θ so as to minimize Dn(θ).
4 Politis [2003a, 2007]

describes a suitable algorithm that can be used to optimize Dn(θ).

Alternative specifications for the objective function that we have successfully used in previous

applied work include the QQ-correlation coefficient and the Kolmogorov-Smirnov statistic. The

first is easily constructed as follows. For any given values of θ compute the order statistics W(t),

W(1) ≤ W(2) ≤ · · · ≤ W(n), and the corresponding quantiles of the target distribution, say Q(t),

obtained from the inverse cdf. The squared correlation coefficient in the simple regression on

the pairs
[
Q(t),W(t)

]
is a measure of distributional goodness of fit and corresponds to the well

known Shapiro-Wilks test for normality, when the target distribution is the standard normal.

We now have that:

Dn(θ)
def
= 1−

[∑n
t=1(W(t) − W̄n)(Q(t) − Q̄n)

]2[∑n
t=1(W(t) − W̄n)2

]
·
[∑n

t=1(Q(t) − Q̄n)2
] (9)

In a similar fashion one can construct an objective function that is based on the Kolmogorov-

Smirnov statistic as:

Dn(θ)
def
= sup

t

√
n|Ft − F̂W,t| (10)

Note that for any choice of the objective function we have that Dn(θ) ≥ 0 and the optimal values

4As noted by Politis (2003a,b, 2007) such an optimization procedure will always have a solution in view of the

intermediate value theorem. To see this, note that when p = 0, a0 must equal 1, and thus Wt = sign(Xt) that

corresponds to Kn(θ) < 0 for any choice of the target distribution. On the other hand, for large values of p we

expect that Kn(θ) > 0, since it is assumed that the data have large excess kurtosis. Therefore, there must be a

value of θ that will make the sample excess kurtosis approximately equal to zero.
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of the parameters are clearly determined by the condition:

θ∗
n

def
= argmin

θ
Dn(θ) (11)

with the final studentized series given by W ∗
t ≡Wt(θ

∗
n).

Remark 2. While the above approach is theoretically and empirically suitable for achieving

distribution matching in a univariate context the question about its suitability in a multivariate

context naturally arises. For example, why not use a multivariate version of a kurtosis statistic

(e.g. Mardia [1970], Wang and Serfling [2005]) or a multivariate normality statistic (e.g. Roys-

ton [1982], Villasenor-Alva and Gonzalez-Estrada [2009])? This is certainly possible, and follows

along the same arguments as above. However, it also means that multivariate numerical opti-

mization (in a unit hyperplane) would need to be used thus making the multivariate approach

unattractive for large scale problems. Our preferred method is to perform univariate distribu-

tional matching for the individual series and then model their correlations, as we show in the

next section.

3 Multivariate NoVaS & Correlations

We now turn to multivariate NoVaS modeling. Our starting point is similar to that of many

other correlation modeling approaches in the literature. In a parametric context one first builds

univariate models for the volatilities and then uses the fitted volatility values to standardize the

returns and use those for building a model for the correlations. We can do the same here after

having obtained the (properly aligned) studentized series W ∗
t,i and W ∗

t,j , for a pair of returns

(i, j). There are two main advantages with the use of NoVaS in the present context: (a) the

individual volatility series are potentially more accurate since there is no problem of parametric

misspecification and (b) there is only one univariate optimization per pair of returns analyzed.

To fix ideas first remember that the studentized return series use information up to and including

time t. Note that this is different from the standardization used in the rest of the literature where

the standardization is made from the model not from the data, i.e. from Xt/At−1 in the present

notation. This allows us to use the time t information when computing the correlation measure.

Second, there are some interesting properties concerning the product of two studentized series

which we summarize in the following proposition.

Proposition 1. Consider a pair (i, j) of studentized returns W ∗
t,i and W ∗

t,j , which have been

scaled to zero mean and unit variance, and let Zt(i, j) ≡ Zt
def
= W ∗

t,iW
∗
t,j denote their product.

Under the assumptions of strict stationarity and distributional matching we can show that the
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following hold.

1. ρ
def
= E [Zt] = E

[
W ∗

t,iW
∗
t,j

]
is the constant correlation coefficient between the returns and

can be consistently estimated by the sample mean of Zt as ρ̂n
def
= n−1

n∑
t=1

Zt.

2. ρt|t−s
def
= E [Zt|Ft−s] = E

[
W ∗

t,iW
∗
t,j |Ft−s

]
, for s = 0, 1, is the conditional correlation coeffi-

cient between the returns.

3. Assuming that both studentized series were obtained using the same target distribution

then the (conditional or unconditional) density function of Zt can be obtained from the

result of Rohatgi (1976) and has the generic form of:

fZ(z)
def
=

∫
D
fWi,Wj (wi, z/wi)

1

|wi|
dwi

where fWi,Wj (wi, wj) is the joint density of the studentized series. In particular:

(a) If the target distribution is normal, and using the unconditional correlation ρ, the

density function of Zt is given by Craig (1936) and has the following form fZ(z; ρ) =

I1(z; ρ)− I2(z; ρ) where:

I1(z; ρ) =
1

2π
√

1− ρ2

∫ ∞

0
exp

{
− 1

2
√
1− ρ2

[
w2
i − 2ρz + (z/wi)

2
]} dwi

wi

and I2(z; ρ) is the integral of the same function in the interval (−∞, 0).

(b) If the target distribution is uniform, and again using the unconditional correlation ρ,

the density function of Zt can be derived using the Karhunen-Loeve transform and is

given (apart from a constant) as:

fZ(z; ρ) =
1√

1− ρ2

∫ +β(ρ)

−β(ρ)

dwi

|wi|

where β(ρ)
def
=

√
3(1 + ρ).

4. A similar result as in 3 above holds when we use the conditional correlation ρt|t−s, for

s = 0, 1.

Remark 2. Proposition 1 allows us a straightforward interpretation of unconditional and con-

ditional correlation using NoVaS transformations on individual series. Moreover, note how we

can make use of the distributional matching, based on the marginal distributions, to form an

explicit likelihood for the product of the studentized series; this is different from the copula-based

approach to correlation modeling where from marginal distributions we go to a joint distribu-

tion – the joint distribution is just not needed in the NoVaS context. We can now use the
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likelihood function of the product Zt to obtain an estimate of the conditional or unconditional

correlation. Since the unconditional correlation can be estimated by the sample mean of Zt, the

only remaining task is, therefore, to propose a suitable form for the conditional correlation and

calibrate/estimate its parameters using maximum likelihood.

There are many options in setting up an estimable form for the conditional correlation. We

opt for parsimony, computational simplicity and compatibility with other models in the related

literature. The easiest scheme is one that follows an autoregressive model as in:

ρt|t−s
def
= λρt−1|t−1−s + (1− λ)Zt−s

≈ (1− λ)
∑L−1+s

j=s λj−sZt−j

(12)

for s = 0, 1, λ ∈ (0, 1) the smoothing parameter and L a (sufficiently high) truncation parameter.

This is of the form of a local average so different weights can be applied. An alternative general

formulation could, for example, be as follows:

ρt|t−s
def
=

L−1+s∑
j=s

wj(λ)B
jZt ≡ w(B;λ)Zt (13)

with B the backshift operator. Choosing exponential weights, as in univariate NoVaS , we can

have wj(λ)
def
= e−λ(j−s)/(L − 1 + s). For any specification similar to the above, we can impose

an “unbiasedness” condition (similar to other models in the literature) where the mean of the

conditional correlation matches the unconditional correlation as follows:

ρt|t−s
def
= w(B;λ)Zt + [1− w(1, λ)] ρ̂n (14)

Other specifications are, of course, possible but they would entail additional parameters

and move us away from the NoVaS smoothing approach. For example, at the expense of one

additional parameter we could account for asymmetries in the correlation in a standard fashion

such as:

ρt|t−s
def
= (λ+ γdt−s)ρt−1|t−1−s + (1− λ− γdt−s)Zt−s (15)

with dt−s
def
= I(Zt−s < 0) the indicator function for negative returns.

Finally, to ensure that the estimated correlations lie within [−1, 1] it is convenient to work

with an (optional) scaling condition, such as the Fisher transformation and its inverse. For

example, we can model the series:

ψt|t−s =
1

2
log

1 + ρt|t−s

1− ρt|t−s
(16)

and then transform and recover the correlations from the inverse transformation:

ρt|t−s =
exp (2ψt|t−s)− 1

exp (2ψt|t−s) + 1
(17)
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Given the form of the conditional correlation function, the truncation parameter L and the above

transformation we have that the smoothing parameter λ is estimated by maximum likelihood as:

λ̂n = argmax
λ∈[0,1]

n∑
t=1

log fZ(Zt;λ) (18)

4 Using NoVaS in applications

The NoVaS methodology offers many different combinations for constructing the volatility mea-

sures and performing distributional matching. One can mix squared and absolute returns, uni-

form and normal marginal target distributions and different matching functions (kurtosis, QQ-

correlation and KS-statistic). In applications one can either proceed by careful examination of

the properties of individual series and then use a particular NoVaS combination or we can think

of performing some kind of “model selection” by searching across the different combinations and

selecting the one that gives us the best distributional matching.

Consider fixing the type of normalization used (squared or absolute returns) and the target

distribution (normal or uniform) and then performing distributional matching using all three

measures (kurtosis, QQ-correlation and KS-statistic). Record the results in a (3× 1) vector, say

Dm(ν, τ), where m = kurtosis,QQ-correlation,KS-statistic, ν = squared, absolute returns and

τ = normal,uniform target distribution. Each element of Dm(ν, τ) corresponds to one of the

Dn(θ) objective functions from equations (8), (9) and (10). Then, repeat the optimizations with

respect to all three measures for all combinations of (ν, τ). The “optimal” combination is then

defined both for each measure m and across all possible combinations (m, ν, τ) as follows:

d∗m
def
= argmin(ν,τ)Dm(ν, τ)

d∗
def
= argmin(m)Dm(ν, τ)

(19)

Once a decision is made as to which combinations will be used to model volatility, the studen-

tized series W ∗
t,i are extracted, aligned, centered and scaled. If the selected target distributions

are the same then one can use the results from Proposition and equations (12) to (18) to es-

timate the conditional correlation. With this procedure there is always the potential that the

marginal target distributions that were selected in univariate modeling do no coincide, i.e. have

one series studentized with the normal and another series studentized with the uniform distri-

bution. In such a case a subjective decision has to be made as to which product distribution

from Proposition 1 should be used; from our preliminary experimentation there appears to be

more “robustness” in using the product distribution based on the uniform marginals. This is

something that needs to be further explored. The choice of the truncation parameter L can be

based on the chosen length on the individual NoVaS transformations (i.e. on p from (2)) or to
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a multiple of it or it can be selected via the AIC or similar criterion (since there is a likelihood

function available)

5 Simulation results

In this section we report results from a limited simulation study. We use a simple bivariate

model for the data generating process (DGP), as in Patton and Sheppard (2008), that allows for

DGP-consistent realized covariances and correlations to be computed. This is useful as in the

next section we will be using realized correlation measures to assess the performance of NoVaS

-based correlations. Letting Rt
def
= [Xt, Yt]

⊤ denote the (2 × 1) vector of returns, the DGP is

given as follows:

Rt = Σ
1/2
t ϵt

ϵt =
∑78

k=1 ξkt with ξkt ∼ N(0, 78−1)

Σt = 0.05Σ̄+ 0.90Σt−1 + 0.05Rt−1R
⊤
t−1 + γIARt−1R

⊤
t−1

(20)

with Σ̄ the unconditional covariance matrix, γ the asymmetry coefficient and IA
def
= (XtYt < 0)

the indicator function of negative returns.

We consider two versions of the same DGP, one without (γ = 0) and one with (γ = −0.03)

asymmetries. We use the “model selection” approach of the previous section and the original

NoVaS approach using squared returns and a normal target distribution, and we compute a total

of four (4) NoVaS -based correlations. Equationa (13) and (14) are used along with s = 0 and

exponential weights. Finally a standard DCC model is used for comparison. A sample size of

n = 200 in both cases. For each simulation run we compute the correlation coefficient between

the realized and fitted volatility and correlation values and the root-mean-squared error between

the realized and fitted volatility values. Note that the DGP for the conditional covariance is very

similar to that for a DCC model.

The results from these simulations are given in Tables 1 and 2. We can see that there is at

least one combination of NoVaS -based volatilities and correlations that are competitive to the

DCC ones, both in terms of fit and in terms of root-mean-squared error. In this context, and

given the nature of the DGP, it would be hard for a non-parametric and “model-free” method to

beat a parametric one, especially when using a normal distribution for constructing the model’s

innovations. In practice, when the DGP is unknown and the data have much more kurtosis, the

results between the NoVaS approach and the DCC can be more different. We explore this in the

next section.
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6 Empirical illustration

In this section we offer a brief empirical illustration of the NoVaS -based correlation estimation

using data from three series: the S&P500, the 10-year bond5 and the USD/Japanese Yen ex-

change rate. Daily data are obtained from the beginning of the series and then trimmed and

aligned. Daily log-returns are computed and from them we compute monthly returns, realized

volatilities and realized correlations. The final data sample is from 01/1971 to 02/2010 for a

total of n = 469 available observations.

Figures 2, 3 and 4 plot the monthly returns, realized volatilities and correlations and Table

3 has some descriptive statistics. From the table we can see that all three series have excess

kurtosis and appear to be non-normally distributed (bootstrapped p-values from the Shapiro-

Wilk normality test – not reported – reject the hypothesis of normality). In addition, there is

negative skewness for the S&P500 and the USD/JPY series. In Figure 5 we present normal

QQ-plots for all series, along with a chi-square plot for their joint normality. The figure provides

us with visual confirmation on the rejection of the hypothesis of normality and we next move on

to perform individual NoVaS transformations, using the model selection approach of section 4.

The results from the individual NoVaS model selection are given in Table 4. All possible

combinations of target distributions and squared and absolute returns are considered for each of

the three objective functions used for distributional matching (kurtosis, QQ-correlation and KS-

statistic). The results in the table suggests that all series can be NoVaS -transformed using the

uniform target distribution and squared returns. Applying the individual NoVaS transformation

to each of the series we obtained the studentized returns. Although the results of Table 4 suggest

that the transformations are successful we can see this by repeating the QQ plots from Figure

5; in Figure 6 we present the QQ-plots for the studentized series, using the uniform distribution.

We can see that there is a very close match between the order statistics and the theoretical

quantiles, with almost all of the values falling on a straight line.

Using now the studentized series we move on to compute the NoVaS -based correlations. We

use exponential weights as in equations (13) and (14) with s = 0 and L set to a multiple of the lags

used in the individual NoVaS transformations (results are similar when we use s = 1). We assess

the performance of our approach using the same measures as in the case of our simulations, and

compare our results with the DCC model as a benchmark. Table 5 holds the results and Figure

7 plots the realized correlations along with the fitted values from the NoVaS -based correlations

and the DCC-based correlations. Both the table entries and the figure show that the NoVaS

approach provides us with far better results, for both the volatilities and the correlations, than

510-year Treasury constant maturity rate series
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the DCC model. The fit is better in all cases and the root-mean-squared error is either better

or on par with the DCC. All in all, the NoVaS approach appears to be able to outperform the

popular DCC benchmark.

Our results are, of course, conditional to both the data being used and the single benchmark-

ing model. However, we should note that one of the advantages of NoVaS is data-adaptability and

parameter parsimony. There are different, more complicated, types of correlation models that

include asymmetries, regime switching, factors etc. All these models operate on distributional

assumptions, parametric assumptions and are far less parsimonious that the NoVaS approach

suggested in this paper. In addition, they are computationally very hard to handle even when

the number of series used is small (this is true even fro the sequential DCC model of Palandri

[2009]). NoVaS -based correlations do not suffer from these potential problems and they can be

very competitive in applications.

7 Concluding remarks

In this paper we extend the univariate NoVaS methodology for volatility modeling and forecast-

ing, put forth by Politis (2003a,b, 2007) and Politis and Thomakos (2008a, b), to a multivariate

context. Our main is that we show how the individual NoVaS -transformed series can be com-

bined and derive explicit expressions for likelihood function of their product. Using a simple,

parsimonious parametrization and smoothing arguments similar to the univariate case, we show

how the conditional correlation can be estimated and predicted. A limited simulation study and

an empirical application using real data show that the NoVaS approach to correlation modeling

can be very competitive, possibly outperform, a popular benchmark as the DCC model. An im-

portant advantage of the whole NoVaS approach is data-adaptability and lack of distributional

or parametric assumptions. This is particularly important in a multivariate context where most

of the competitive models are parametric and much more difficult to handle in applications,

especially when the number of assets is large.

There are, of course, open issues that we do not address in this paper but are important

both in terms of further assessing the NoVaS approach to correlation modeling and in terms of

practical usefulness. Some of them are: (a) evaluation of the forecasting performance of NoVaS -

based correlations; (b) evaluation of NoVaS -based correlations in the context of portfolio and risk

management; (c) additional comparisons of NoVaS -based correlations with other benchmarking

models. We are currently pursuing these issues in ongoing research.
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Appendix

To understand the implied distribution of Ut first note that the range of Wt is bounded.

Using equation (3) it is straighforward to show that |Wt| ≤ 1/
√
a0, when g(z) = z2, whereas

|Wt| ≤ 1/a0, when g(z) = |z|. This, however, creates no practical problems. With a judicious

choice for a0 the boundedness assumption is effectively not noticeable. Take, for example, the

case where the target distribution for Wt is the standard normal and g(z) = z2. A simple

restriction would then be a0 ≤ 1/9, which would make Wt to take values within ±3 that cover

99.7% of the mass of the standard normal distribution. Similarly, when g(z) = |z| then a0 can

be chosen as a0 ≤ 1/3.

On the other hand, if the target distribution for Wt is the uniform then our choice of a0

determines the length of the interval on whichWt would be defined: different choices of a0 would

imply different intervals of the form
[
−1/

√
a0,+1/

√
a0
]
, for g(z) = z2, and [−1/a0,+1/a0], for

g(z) = |z|. Notice that the use of the uniform target distribution is, in this respect, less restrictive

than the use of the standard normal distribution: we do not have to impose any constraints in

a0 for using the uniform distribution as we have to do when using the standard normal.

Taking into account the boundedness in Wt the implied distribution of Ut can be derived

using standard methods. With two target distributions and two options for computing γt we

obtain four different implied densities that should be more than adequate to cover problems of

practical interest. For the case where the target distribution is the standard normal we have the

following implied distributions for Ut:

f1(u, a0) = c1(a0)× (1 + a0u
2)−1.5 exp

[
−0.5u2/(1 + a0u

2)
]

when g(z) = z2

f2(u, a0) = c2(a0)× (1 + a0|u|)−2 exp
[
−0.5u2/(1 + a0|u|)2

]
when g(z) = |z|

(21)

whereas for the case where the target distribution is the uniform we have:

f3(u, a0) = c3(a0)× (1 + a0u
2)−1.5 when g(z) = z2

f4(u, a0) = c4(a0)× (1 + a0|u|)−2 when g(z) = |z|
(22)

The densities from the use of the uniform target distribution are new, in this and related contexts.

The constants ci(a0), for i = 1, 2, 3, 4, ensure that the densities are proper and integrate to

one. As was noted in Politis (2004), the rate at which f1(u, a0) tends to zero is the same as

in the t(2) distribution, although it has practically lighter tails.6 Also note that the use of the

uniform as the target distribution gives us two densities that have the limiting form (for large

u) of the densities that use the standard normal as the target distribution - this affects the tail

behavior of f3(u, a0) and f4(u, a0) compared to the tail behavior of f1(u, a0) and f2(u, a0).

6Basically, f1(u, a0) looks like a N (0, 1) distribution for small u but has a t(2)-type tail.

18



0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

N(0, 1)  against  t(2)  and  f1(u, 0.1)

x

N(0, 1)
t(2)

f1(u, 0.1)

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

N(0, 1)  against  t(2)  and  f2(u, 0.3)

x

N(0, 1)
t(2)

f2(u, 0.3)

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

N(0, 1)  against  t(2)  and  f3(u, 0.55)

x

N(0, 1)
t(2)

f3(u, 0.55)

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

N(0, 1)  against  t(2)  and  f4(u, 0.75)

x

N(0, 1)
t(2)

f4(u, 0.75)

Figure 1: Implied NoVaS distributions compared to the N (0, 1) and the t(2) distributions
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We graphically illustrate the differences among the implied densities in equations (21) and

(22) and compare them with the standard normal and t(2) densities. In Figure 1 we plot, on four

panels, the standard normal density, the t(2) density and the four implied NoVaS densities. We

choose the parameter a0 so as to show the flexibility of these new distributions. On the top left

panel of Figure 1 we compare the standard normal and t(2) density with f1(u, 0.1) and we see

that its tails are in-between the tails of the normal and the t distributions. On the top right panel

of Figure 1 we make the same comparison with f2(u, 0.3) and we can clearly see that this NoVaS

distribution approximately matches the tail behavior of the t(2) distribution, although it appears

that the f2(u, 0.3) distribution has slightly fatter tails. On the bottom left panel of Figure 1 we

plot the f3(u, 0.55) distribution and now we see an almost complete match with the almost the

whole of the t(2) distribution - this was to be expected as a0 = 0.55 matches the inverse of the

degrees of freedom of the t(2) distribution. Finally, on the bottom right panel of Figure 1 we

plot the f4(u, 0.75) distribution, which exhibits the most ‘extreme’ behavior being much more

concentrated around zero and with substantially fatter tails than the t(2) distribution.

Note that all fi(u, a0) distributions lack moments of high order. In particular, f1(u, a0) and

f3(u, a0) have finite moments of order a if a < 2, whereas f2(u, a0) and f4(u, a0) have finite

moments of order a if a < 1. In the terminology of Politis (2004), f1(u, a0) and f3(u, a0) have

‘almost’ finite second moments, and f2(u, a0) and f4(u, a0) have ‘almost’ finite first moments.

Table A. Absolute Moments of Implicit NoVaS Distributions

Ej |u|a ≈
∫ 100
−100 |u|

afj(u, a0)du for j = 1, 2, 3, 4

a = 1 a = 2 a = 3 a = 4

N (0, 1) 0.80 1.00 1.59 3.00

t(2) 1.39 7.90 194.4 9975.3

f1(u, 0.1) 0.92 1.98 20.27 875.5

f2(u, 0.3) 1.50 10.08 302.8 17559.4

f3(u, 0.55) 1.33 7.27 176.96 9070.2

f4(u, 0.75) 4.46 119.7 6339.6 427326.1

Notes: fi(u, a0) correspond to the implied NoVaS distributions of equations (21) and (22)

To see how the fi(u, a0) distributions compare with the standard normal and the t(2) dis-

tributions, we report in Table A the absolute moments of orders 1 through 4, using the same

values for a0 as in Figure 1. We take a finite but large range to perform the integration so as to

clearly show the differences among the distributions. The results in Table A tell the same story

as Figure 1, although the points made for Figure 1 are now abundantly evident: the use of the
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uniform target distribution f4(u, a0) has the most ‘extreme’ behavior, as noted above, and can

considered to be the most flexible when one has to deal with a ‘difficult’ time series that does not

possess finite moments. The novelty of NoVaS in introducing Xt in the time-localized measure

of variance used in studentizing the returns allows us a great deal of flexibility in accounting for

any degree of not only tail heaviness but also for the possible non-existence of second (or higher)

moments.

Politis (2003b, 2004, 2007) makes the case that financial returns seem to have finite second

moment but infinite 4th moments. In that case, the normal target does not seem to be compatible

with the choice of squared returns–and the same is true of the uniform target–as it seems that

the case g(z) = |z| might be better suited for data that do not have a finite second moment.

Nevertheless, there is always the possibility of encountering such extremely heavy-tailed data,

e.g. in emerging markets, for which the absolute returns might be helpful.
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Table 1. Simulation results on the performance of NoVaS -based correlations

DGP is given in equation (20), no asymmetries used (γ = 0)

Model Corr(hx, ĥx) Corr(hy, ĥy) Corr(ρx,y, ρ̂x,y) RMSE(ρ̂x,y)

NoVaS #1 0.48 0.47 0.52 0.04

NoVaS #2 0.48 0.48 0.51 0.04

NoVaS #3 0.54 0.54 0.36 0.03

NoVaS #4 0.52 0.51 0.35 0.02

DCC 0.62 0.63 0.57 0.02

– Corr(hx, ĥx) denotes the sample correlation coefficient between the realized and fitted values

for the volatility of the Xt series; Corr(ρx,y, ρ̂x,y) denotes the sample correlation coefficient

between the realized and fitted values for the correlation between Xt and Yt; RMSE(ρ̂x,y)

denotes the root-mean-squared error between the realized and fitted values for the correlation

between Xt and Yt.

– NoVaS #1 denotes results from NoVaS -based correlations when individual NoVaS trans-

formations are performed using the kurtosis for distributional matching; NoVaS #2 denotes

results from NoVaS -based correlations when individual NoVaS transformations are performed

using the QQ-correlation for distributional matching; NoVaS #3 denotes results from No-

VaS -based correlations when individual NoVaS transformations are performed using the

KS-statistic for distributional matching; NoVaS #4 denotes results from NoVaS -based cor-

relations when individual NoVaS transformations are performed using the kurtosis for distri-

butional matching with squared returns and a normal target distribution.

– Sample size is n = 200.

Table 2. Simulation results on the performance of NoVaS -based correlations

DGP is given in equation (20), no asymmetries used (γ = −0.03)

Model Corr(hx, ĥx) Corr(hy, ĥy) Corr(ρx,y, ρ̂x,y) RMSE(ρ̂x,y)

NoVaS #1 0.40 0.41 0.45 0.04

NoVaS #2 0.40 0.42 0.46 0.04

NoVaS #3 0.45 0.46 0.32 0.03

NoVaS #4 0.42 0.42 0.28 0.02

DCC 0.49 0.51 0.52 0.02

– See notes in Table 1.
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Table 3. Descriptive Statistics for monthly data

sample size is n = 469 months from 01/1970 to 02/2010

S&P500 Bonds USD/JPY S&P500 Bonds USD/JPY S&P500 S&P500 Bonds

ret. ret. ret. vol. vol. vol. Bonds USD/JPY USD/JPY

corr. corr. corr.

Mean 0.004 -0.002 -0.003 0.040 0.040 0.025 -0.172 0.036 0.068

Median 0.007 -0.003 -0.001 0.035 0.035 0.024 -0.238 0.027 0.076

Std.Dev. 0.045 0.049 0.031 0.023 0.024 0.012 0.383 0.286 0.322

Skewness -1.213 0.054 -0.449 4.247 2.070 0.878 0.597 0.115 -0.160

Kurtosis 9.149 5.799 5.730 33.938 10.134 5.550 2.631 2.588 2.436

SW-test 0.936 0.971 0.969 0.683 0.844 0.956 0.959 0.994 0.991

Note: SW denotes the Shapiro-Wilks test for normality; all other statistics have their standard meanings

Table 4. Univariate NoVaS Model Selection

S&P500

Normal Target Normal Target Uniform Target Uniform Target

squared returns absolute returns squared returns absolute returns

Kurtosis 1e-4 2e-4 3e-6 6e-6

QQ-correlation 8e-3 1e-2 3e-3 7e-3

KS-statistic 0.33 0.11 0.32 0.02

Bonds

Normal Target Normal Target Uniform Target Uniform Target

squared returns absolute returns squared returns absolute returns

Kurtosis 1e-4 1e-4 7e-6 2e-5

QQ-correlation 2e-3 3e-2 2e-3 6e-3

KS-statistic 0.69 0.08 0.76 0.04

USD/JPY

Normal Target Normal Target Uniform Target Uniform Target

squared returns absolute returns squared returns absolute returns

Kurtosis 2e-4 2e-5 9e-6 8e-5

QQ-correlation 7e-3 8e-3 4e-3 7e-3

KS-statistic 0.26 0.19 0.23 0.03

– Table entries correspond to the value of the objective function used for distributional matching

– Column correspond to combinations of different target distributions with squared or absolute returns

– Rows correspond to the type of objective function used for distributional matching.

– For the kurtosis and QQ-correlation measures smaller values indicate better matching.

– For the KS-statistic higher values indicate better matching.
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Table 5. Correlation Modeling Results

NoVaS -based correlations estimated using parameters from univariate optimization

(Xt, Yt) pair Corr(hx, ĥx) Corr(hy, ĥy) Corr(ρx,y, ρ̂x,y) RMSE(ρ̂x,y)

S&P500-Bonds 0.749 0.770 0.664 0.091

DCC 0.494 0.665 0.568 0.101

S&P500-USD/JPY 0.749 0.629 0.272 0.105

DCC 0.494 0.448 0.205 0.081

Bonds-USD/JPY 0.770 0.629 0.379 0.104

DCC 0.665 0.448 0.285 0.104

– Corr(hx, ĥx) denotes the sample correlation coefficient between the realized and fitted values

for the volatility of the Xt series; Corr(ρx,y, ρ̂x,y) denotes the sample correlation coefficient

between the realized and fitted values for the correlation between Xt and Yt; RMSE(ρ̂x,y)

denotes the root-mean-squared error between the realized and fitted values for the correlation

between Xt and Yt.

– For each pair of variables the first line indicates the NoVaS -based results and the second

line indicates the DCC-based results.

– NoVaS -based correlations computed using exponential weights as in equations (13) and

(14) with s = 0 and L set to a multiple of the lags used in individual NoVaS transformations.
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Figure 2: Monthly returns
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Figure 3: Monthly realized volatilities
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Figure 4: Monthly realized correlations
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Figure 5: Normal QQ-plots, original data
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Figure 6: Uniform QQ-plots, transformed data

29



−0
.5

0.
0

0.
5

Year

1980 1990 2000 2010

Monthly correlation for S&P500 and Bonds

realized
NoVaS
DCC

−0
.5

0.
0

0.
5

Year

1980 1990 2000 2010

Monthly correlation for S&P500 and USD/JPY

−0
.5

0.
0

0.
5

Year

1980 1990 2000 2010

Monthly correlation for Bonds and USD/JPY

Figure 7: Monthly realized correlations and fitted values
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