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Abstract

Recent empirical studies report predictable dynamics in the volatil-

ity surfaces implied by observed index option prices, as prescribed by

general equilibrium models. Using an extensive data set from the

over–the–counter options market, we document similar predictability

in the factors that capture the daily variation of surfaces implied by

options on 25 different foreign exchange rates. We proceed to demon-

strate that simple vector autoregressive specifications for the factors

can help produce accurate out–of–sample forecasts of the systematic

component of the surface at short horizons. Profitable delta–hedged

positions can be set up based on these forecasts; however profits dis-

appear when transaction costs are increased and when trading rules

on wide segments of the surface are sought.
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1 Introduction

Observed option prices implicitly contain information about the volatility

expectations of market participants. Using an option pricing model, these

volatility expectations can be extracted, and if market participants are ra-

tional, then these implied volatilities should contain all the information that

is relevant for the pricing, hedging and management of option contracts and

portfolios.

Contrary to the Black–Scholes–Merton assumption of constant (or deter-

ministically time–dependent) volatility (Black and Scholes (1973), Merton

(1973)), the empirical pattern of option–implied volatilities has two features

that have attracted the interest of researchers and practitioners in financial

modeling. First, the volatilities implied from observed contracts systemati-

cally vary with the options’ strike prices and their time to expiration, giving

rise to an instantaneously non–flat implied volatility surface (hereafter IVS).1

The second feature is that the IVS changes dynamically over time, as prices in

the options market respond to new information that affects investors’ beliefs

and expectations.2

Three popular approaches to modeling this empirically observed profile

of the IVS can be identified in the literature. The no–arbitrage approach,

inspired by the stochastic interest rate literature, where stochastic volatil-

ity models are calibrated to today’s IVS so as to preclude arbitrage, with

prominent examples offered by Dupire (1993), Derman and Kani (1998) and

Ledoit and Santa–Clara (1998) among others.

Secondly, there is the approach of fitting linear parametric specifications

in the cross section of options available at a point in time, linking implied

volatility to time to maturity and option “moneyness” (see Dumas, Fleming

and Whaley (1998), Peña, Rubio and Serna (1999), Gonçalves and Guidolin

(2006), etc.).

Finally, there has been a number of recent papers (David and Veronesi

(2000), Guidolin and Timmermann (2003), Garcia, Luger and Renault (2003))

that advocate a general equilibrium approach to the investigation of the

stylised facts regarding implied volatility surface dynamics. There, investors’

uncertainty and learning (from option prices) about the processes of funda-

1See Canina and Figlewski (1993) and Rubinstein (1994) for evidence on the implied

volatility ‘smile’ or ‘skew’, and Heynen et. al. (1994), Xu and Taylor (1994) and Campa

and Chang (1995) for the ‘term structure’ of implied volatilities.
2See, for example Heston and Nandi (2000) that report significant path dependency in

the volatility of the S&P 500 index returns.
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mentals (the state of the economy, dividends growth, etc.) give rise to an

IVS, whose dynamics are driven by latent factors. If the processes describing

these latent factors are persistent, these models imply IVS predictability.

Despite the relative success of these approaches for pricing and hedging

purposes, surprisingly little has been said regarding the practical problem of

predicting the implied volatility surface. The no–arbitrage literature has little

to say about forecasting, as it is concerned primarily with fitting the IVS at a

point in time and producing plausible surface dynamics. Moreover, although

several studies have identified latent (statistical) factors in the dynamics of

surfaces implied from equity index options (Skiadopoulos et. al. (1999),

Cont and da Fonseca (2002), Mixon (2002)), none is concerned with whether

these factors can be exploited for accurate out–of–sample predictions of the

IVS.

Naturally, being able to forecast the entire IVS, and thus all future option

prices, would imply inefficiency of the options market. However, it might be

reasonable to expect that segments of the IVS, due to non–uniform trading

across the surface, adjust to new information at different speeds, making

some segments more predictable than others. This would be in line with the

general equilibrium models, where predictability in the IVS dynamics arises

as a consequence of investors’ uncertainty and learning, and it would imply

the existence of predictable systematic factors that affect the shape of the

IVS.

In this paper, we take an explicitly out–of–sample forecasting approach,

in an attempt to demonstrate that such predictable systematic factors are

present, and can be exploited in an economically significant way for risk and

portfolio decision–making. Using an extensive data set of daily volatility sur-

faces implied from over–the–counter options on 25 different exchange rates,

we first demonstrate that–in accordance with the existing literature–a few

static factors completely characterise IVS variation in–sample. These static

factors, although statistical in nature, are shown to have a natural interpre-

tation in the law of motion of the IVS and exhibit significant time variation

and persistence.

This leads us to examine whether modeling the time series properties of

the factors can improve our ability to forecast implied volatility and hence

option prices out of sample. Simple vector autoregressive (VAR) specifica-

tions are first shown to achieve remarkable fit of the factors’ dynamics, and

subsequently used to forecast the entire surface by forecasting the factors for-

ward. Both statistical and economic criteria are used to assess the forecasting

ability of the VAR factor models examined.
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In a statistical sense, we measure the ability of the VAR factor model to

accurately predict the level and the direction of change of 1 to 5–day ahead

implied volatilities across each of the 25 surfaces. Results are very promising,

in that forecasting accuracy is found to be very good, at least up to 3 days

ahead, both in absolute terms and relatively to natural benchmarks such as

a random walk for implied volatilities.

In accordance with existing literature, for short–term predictions, the

VAR factor model’s performance is comparable (but not statistically supe-

rior) to hard–to–beat benchmarks on an aggregate level across the whole

surface; however it outperforms on many (and in many cases in most) seg-

ments of the surfaces. Thus, although modeling the latent factors driving

IVS dynamics cannot lead to superior surface forecasts in a statistical sense,

it can identify the most predictable segments of the surface, whose existence

is dictated by general equilibrium models.

In order to establish the economic relevance of identifiable predictable

IVS segments, we examine whether surface forecasts produced by the VAR

factor model can support profitable trading decisions. We simulate out–of–

sample, recursive, one–day strategies that construct delta–hedged straddles

on the IVS segments that our VAR factor model predicts substantial 1–day–

ahead deviations from the observed surface. The simulated trading strategies

generate positive and statistically significant out–of–sample returns, even

when low to moderate transaction costs are incurred in trades. However

profit returns disappear as transaction costs are increased and as trading

rules on wider segments of the surface are sought.

Although the predictability patterns we document hardly represent rejec-

tions of the informational efficiency of OTC FX options market (since profits

disappear with transaction cost levels that speculators might realistically

face and bid–ask spread considerations are ignored), it should be stressed

that they are in line with the general equilibrium models, where predictabil-

ity in the IVS dynamics arises as a consequence of investors’ uncertainty and

learning. Our simple VAR specifications of static latent factors—that seem

to act as reduced–form analogs of such more sophisticated models, exploit-

ing this predictability—can nevertheless improve volatility forecasting and

support risk management and portfolio decisions.

A few existing papers are related to ours, with Diebold and Li (2006)

and Gonçalves and Guidolin (2006) closest in spirit. Both papers first apply

parametric specifications at the cross–sectional level, and then fit time series

models on the coefficients estimated from the first step. Moreover, both

papers are concerned with forecasting: the yield curve and the IVS of S&P
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500 index options respectively.

In contrast to the aforementioned papers that estimate the factors by

imposing structure on the factor loadings, we estimate common factors and

their loadings by the method of asymptotic principal components (Connor

and Korajzcyk (1986)). The method and its variants has a long tradition

in finance (see for example the references in Wilson (1994)) and has been

used for the examination of IVS dynamics (by Skiadopoulos et. al. (1999),

Tompkins (2001) among others), and more recently in the context of macroe-

conomic forecasting (Stock and Watson (2002), Boivin and Ng (2005)).

One of the main contributions of this paper is that static factors, identified

in the IVS dynamics by several authors, can be used quite successfully for

forecasting purposes in an economically significant way. This is demonstrated

with a use of a very extensive data set, encompassing options on both very

liquid and less–traded exchange rates. Moreover, and to the best of our

knowledge, no other study has examined the predictability of the IVS from

the OTC FX options market.

The rest of the paper is organised as follows: Section 2 describes the data,

presents the methodology for decomposing the implied volatility surface into

approximate static factors that exhibit intuitive interpretation, and presents

the estimation results. In Section 3 we estimate a VAR–type model that

can capture the time–series dynamics of the factors identified in the previous

section. Sections 4 and 5 are devoted to the assessment of the out–of–sample

forecasting performance of our VAR factor model and its ability to support

trading strategies respectively, while Section 6 concludes the paper.

2 The implied volatility surface

2.1 The data

The data used in this study consist of daily time–series of implied volatilities

for a cross–section of OTC currency options on 25 different currencies quoted

against the Euro, kindly supplied by one of the largest global market makers.

The time series are from 1/1/1999 to 21/5/2007, a total of 2,184 weekdays.

The currencies examined and some exchange rate statistics are reported in

Table 1.

In comparison to exchange–traded currency options, the OTC market is

far more liquid. According to a Bank of International Settlements survey

(2007), the outstanding notional amount of OTC currency options on the
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Code Currency Average Min-Max

AUD Australian $ 1.679 1.504-1.915

BRL Brazilian Real 2.678 1.395-3.977

CAD Canadian $ 1.496 1.256-1.804

CHF Swiss Franc 1.544 1.444-1.656

CLP Chilean Peso 648.5 459.6-849.3

CZK Czech Koruny 32.17 27.48-38.68

GBP British £ 0.658 0.571-0.724

HKD Hong Kong $ 8.564 6.463-10.68

HUF Hungarian Forint 253.5 234.5-284.6

IDR Indonesian Rupiahs 9916.9 6726.9-13220.4

INR Indian Rupees 49.90 38.65-60.03

JPY Japanese U 126.2 89.34-164.1

KRW South Korean Won 1236.9 943.4-1517.8

MXN Mexican Peso 11.41 7.576-15.31

NOK Norwegian Kroner 8.058 7.228-8.947

NZD New Zealand $ 1.961 1.638-2.302

PLN Polish Zlotych 4.064 3.351-4.900

RUB Russian Ruble 31.21 23.13-37.85

SEK Swedish Kronor 9.064 8.070-9.937

SGD Singapore $ 1.863 1.453-2.233

SKK Slovakian Koruny 40.89 32.83-48.30

TRY Turkish (New) Lira 1.341 0.370-2.139

TWD Taiwanese (New) $ 36.32 26.48-45.47

USD United States $ 1.100 0.829-1.366

ZAR South African Rand 8.013 6.099-12.09

Table 1: Average, minimum and maximum middle exchange rates of 25

different currencies against the Euro from January 1999 to May 2007. Source:

European Central Bank.
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Euro in December 2006 was approximately 3.65 trillion US$ (2.54 trillion

Euros). The corresponding amount of exchange–traded currency options

was 78.64 million US$ (54.77 million Euros), far less than 1% of the notional

amount outstanding in the OTC market.

As is typical in such markets, dealers do not quote option prices de-

nominated in currency units but rather implied volatilities, which are then

conventionally converted into prices using the Garman and Kohlhagen (1983)

version of the Black and Scholes (1973) option pricing formula:

c = Se−rfTN (d) − Ke−rdTN
(
d − σ

√
T

)
(1)

p = Ke−rdTN
(
−d + σ

√
T

)
− Se−rf TN (−d) (2)

where

d =
ln (S/K) + (rd − rf + σ2/2) T

σ
√

T
(3)

with rd, rf the risk–free interest rate in the domestic and the foreign country

respectively, S the spot exchange rate, K the strike price of the option, T the

time to option maturity in years, σ the exchange rate’s volatility and N (.)

the standard cumulative normal distribution.

The moneyness of the option is measured by its (Black–Scholes) delta:

∆BS =
∂O

∂S
=






e−rfTN (d), if the option O is a call

e−rfT [N (d) − 1], if the option O is a put

(4)

The industry convention is to quote, for each maturity, implied volatilities

for portfolios of options such as delta–neutral straddles and risk reversals or

butterfly spreads of a certain ∆BS . From these, the implied volatility for

at–the–money (ATM) options and for out–of–the–money (OTM) calls and

puts can be inferred.3

Our data–set consists of implied volatilities for the following fourteen

expirations: 1 week, 1 month, 2 months, 3 months, 6 months, 9 months,

12 months, 18 months, 2–5 years, 7 years and 10 years. For each of these

maturities, the implied volatility is observed for options with five different

Black–Scholes deltas: OTM puts with ∆BS = −0.10 and ∆BS = −0.25,

ATM calls/puts and OTM calls with ∆BS = 0.10 and ∆BS = 0.25. Hence,

3Carr and Wu (2007a) and Malz (1996) demonstrate this in detail, in their excellent

discussions on OTC currency option quoting and trading conventions.
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for each exchange rate and on each observation date, a vector of 70×1 implied

volatilities is observed.

Of course, not all currencies in our sample and not all option expirations

are of equal trading intensity and variation. A few necessary exclusionary

criteria are applied to all surfaces, to ensure that thinly–traded segments and

misrecordings do not influence our results.

First, sample days with [a] at least one of the 70 implied volatilities

missing or [b] flat implied volatility profiles (i.e. no “smile” or “skew”) for

all 14 maturities are excluded as misrecordings. Secondly, maturities for

which the implied volatility does not change from day to day in more than

30% of the weekdays in our sample are excluded, as thinly–traded. These

are in most cases the very long–term option maturities (7 and 10 years)

of the surface. Finally, to ensure that each IVS is continuous in the time

domain, we discard parts of the sample that cause gaps of missing values

longer than 4 weekdays. Applying the above three criteria ensures that in

our reduced (both in maturities and in eligible weekdays) sample the entire

surface under consideration is active. Table 2 reports the starting date, the

number of weekdays and the longest option expiration (in years) remaining

in our sample after the above criteria have been applied, as well as some

descriptive statistics of the implied volatility surfaces.

Several different profiles of implied volatility surfaces are observed in our

sample. As an indication, in Figures 1–4 the average IVS profile and the

daily standard deviation of the IVS from EUR/USD and HUF/EUR options

are plotted. In the EUR/USD case, the implied volatility surface exhibits

a clear symmetric “smile” with an increasing term structure on average,

and a fair amount of variability around this average profile (ranging from a

fourth to a tenth of its typical value). In contrast, the HUF/EUR implied

volatility surface exhibits a “skew”, with either an increasing or a humped–

shaped term structure, and a significantly asymmetric variability for short

maturities. Similar patterns emerge in all currencies examined; to conserve

space the corresponding figures for the remaining 25 currencies are relegated

to Appendix C (available from the authors upon request).4

Given the origin of the data, one possible criticism is that idiosyncratic

effects, specific to the market participant supplying the quotes, could influ-

ence the analysis. There are however reasons to believe that such effects

(if any) are not strongly affecting our analysis. First, our focus here is on

4In all figures, the “moneyness” metric used is ∆ =
∣∣∣∣∆BS

∣∣ − 1∆BS<0

∣∣×100, with ∆BS

as in (4) and 1x an indicator function that takes the value of one if condition x is true,

and zero otherwise. It is simply a transformation of ∆BS ∈ [−1, 1] to ∆ ∈ [0, 100].
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Currency Start No. of Longest Implied Volatility (%)

Code Date weekdays maturity Min. Max. Mean Median St. Dev. Skewness Kurtosis

AUD 08-Sep-2000 1729 5 4.122 19.264 10.049 9.955 2.256 0.410 3.166

BRL 08-Apr-2003 1064 3 5.138 52.450 18.046 17.366 4.941 0.642 3.486

CAD 03-Nov-2003 883 5 5.227 14.428 9.050 9.101 1.009 0.075 3.466

CHF 11-Jul-2000 1783 7 2.130 11.221 4.323 4.247 1.043 0.528 2.972

CLP 08-Dec-2004 638 1.5 5.152 22.882 11.746 11.333 2.848 0.704 3.261

CZK 05-Sep-2000 1744 10 2.550 20.757 6.130 6.051 1.462 0.988 6.144

GBP 05-Sep-2000 1744 5 2.953 13.961 7.099 6.938 1.701 0.744 3.573

HKD 05-Dec-2005 381 5 4.235 11.474 8.292 8.590 1.374 -0.263 1.989

HUF 05-Dec-2005 381 5 4.247 19.090 9.405 8.796 2.347 0.665 2.922

IDR 05-Apr-2005 555 1.5 4.225 20.830 11.448 11.194 2.921 0.348 2.633

INR 05-Dec-2005 381 5 5.432 14.596 8.692 8.876 1.208 -0.130 2.259

JPY 04-Sep-2000 1745 5 4.028 22.730 10.414 9.848 2.610 0.967 3.643

KRW 27-Apr-1999 2082 1.5 4.300 31.312 12.287 12.092 3.942 0.810 4.392

MXN 02-Jan-2006 361 5 6.633 19.163 11.341 11.000 2.053 0.706 3.410

NOK 04-Sep-2000 1745 1.5 3.819 12.993 6.509 6.299 0.990 0.980 4.386

NZD 05-Dec-2005 381 5 6.919 15.232 10.009 9.925 0.931 0.573 3.813

PLN 05-Dec-2005 381 5 4.596 16.428 8.473 8.400 1.523 0.413 3.130

RUB 03-Jan-2006 359 10 3.256 13.686 7.985 8.110 1.823 0.063 2.902

SEK 05-Sep-2000 1744 5 2.738 16.865 6.019 5.808 1.336 0.682 3.620

SGD 05-Dec-2005 381 5 4.049 9.433 6.957 7.138 1.110 -0.218 2.043

SKK 08-Apr-2003 1064 1.5 1.574 12.478 6.008 5.865 1.275 0.377 3.309

TRY 14-Nov-2000 1688 1.5 4.725 50.007 22.435 21.414 9.445 0.560 2.583

TWD 05-Dec-2005 381 5 4.203 11.610 7.845 7.863 1.248 0.025 2.665

USD 04-Sep-2000 1745 5 4.681 18.498 10.442 10.383 1.936 0.156 3.420

ZAR 05-Dec-2005 381 5 8.000 35.843 14.500 13.723 3.126 1.159 4.631

Table 2: For each of the twenty five different currency options in our sample, the table reports the starting date,

the number of trading days in the time series, the longest option expiration of the surface (in years), and descriptive

statistics of the implied volatilities. The end date in all time series is 21/5/2007.
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Figure 1: Average implied volatility surface from EUR/USD options, for the

period 4/9/2000–21/5/2007.
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Figure 2: Daily standard deviation of EUR/USD implied volatilities as

a function of moneyness and time to maturity for the period 4/9/2000–

21/5/2007.
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Figure 3: Average implied volatility surface from HUF/EUR options, for the

period 5/12/2003–21/5/2007.
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Figure 4: Daily standard deviation of HUF/EUR implied volatilities as

a function of moneyness and time to maturity for the period 5/12/2005–

21/5/2007.
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systematic factors in the volatility surface, not on specific events or outliers

of the surface. Secondly, given the liquidity of the market and the size of the

market participant supplying the data, it should be fairly unlikely that our

data are substantially away from typical values. Cross–checking a randomly

selected sub–sample of our data set with the implied volatility quotes from

another data vendor (Bloomberg) reveals that this is indeed the case.

Of course using OTC data has many advantages in comparison to exchange–

traded data. Besides superior liquidity, OTC currency options are avail-

able for longer maturities than the currency options traded in exchanges.

Moreover, OTC options have a constant time–to–maturity, unlike exchange–

traded options whose maturity varies from day to day. In practical terms,

this alleviates the need for grouping options into maturity bins (see for ex-

ample Skiadopoulos et. al. (1999)) or for creating synthetic fixed–maturity

series via interpolation (as in Alexander (2001)). This should translate to less

noisy IVS’s and more precision in the identification of factors affecting their

dynamics. Similar OTC currency options data have been used in previous

studies by Campa and Chang (1995), (1998), Carr and Wu (2007a), (2007b)

and Christoffersen and Mazzotta (2005); the latter study actually concludes

that OTC currency options data are of superior quality for volatility fore-

casting purposes.

2.2 Factor representation of the implied volatility sur-

face

For each exchange rate, we have τ time series observations of N cross–section

units of implied volatility, each unit referring to an option with a different

“moneyness” and time–to–maturity.

We consider a static factor representation of the implied volatilities σit

(i = 1, . . . , N, t = 1, . . . τ),

σit = λi1F1t + · · · + λirFrt + eit = λ′
iFt + eit (5)

where Ft is a vector of r common factors, λi is the corresponding vector of

loadings for implied volatility i, and eit is an idiosyncratic error. In the sense

of Chamberlain and Rothschild (1983) “approximate factor model”, it is as-

sumed that factors and idiosyncratic disturbances are mutually uncorrelated,

E (Fteis) = 0 for all t, s, but weak cross–section correlation in eit is allowed,

as long as 1

N

∑N

i=1

∑N

j=1
|E (eitejt)| is bounded. In this static representation,

dynamics can be entertained by allowing both factors and idiosyncratic errors
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to be serially correlated.5

As established by Stock and Watson (2002) and Bai and Ng (2002),

the method of asymptotic principal components (see Connor and Korajzcyk

(1986)) can be used to consistently estimate the common factors. Starting

with an arbitrary number of factor k < min (τ, N), estimates of λk and F k

can be obtained by solving

J (k) = min
Λk,F k

1

Nτ

N∑

i=1

τ∑

t=1

(
σit − λk

i F
k
t

)2
(6)

subject to the normalisation Λk′Λk/N = Ik, with Λk =
[
λk

1 . . . λk
N

]
the k×N

matrix of loadings when k factors are allowed in the estimation.

One solution of the above optimisation is given by
(
Λ̂k, F̂ k

)
, where Λ̂k is

√
N times the eigenvectors corresponding to the k largest eigenvalues of the

N × N matrix [σit]
′ [σit] ≡ V ′V , and F̂ k = V Λ̂k/N .6

The design of appropriate formal tests that can determine the number of

static approximate factors in panel data is still an open research question.

Bai and Ng (2002) have proposed a number of information criteria for this

purpose; however these require stationarity of the panel data–which is not

the case in most of the surfaces in our sample–and tend to overestimate the

number of factors in small panels.

Since our focus is mainly on out–of–sample predictions of the IVS and not

in–sample fitting performance, we have decided to follow a simple, common

rule of setting the number of factors r̂ = k = 3 across all surfaces. Although

an ad hoc choice, several studies in the literature have offered evidence of 2 to

3 static factors driving the dynamics of surfaces implied from index options

(Skiadopoulos et. al. (1999), Mixon (2002)) or options on futures contracts

(Tompkins (2001)).

Estimation results are summarised in Table 3, that reports the propor-

tion of the total variance of V ′V explained by three factors in–sample. As

an indication of the adequacy of three factors, the Table also reports the

5This static factor representation is to be distinguished from the dynamic factor model

of Forni, Hallin, Lippi and Reichlin (2005); however, any dynamic factor model admits a

static representation like equation (5), and Bai and Ng (2007) make precise the relationship

between dynamic and static factor representations.
6As the factors and loadings cannot be separately identified, the solution

(
Λ̂k, F̂ k

)
of

(6) is not unique, although the minimum J (k) is. As suggested by Bai and Ng (2002)

however, this solution is efficient and computationally less costly when τ > N , which holds

for all the implied volatility surfaces in our sample.
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Currency Total Variance % Variance Explained G–K

Code Explained (%) F̂1 F̂2 F̂3 λ

AUD 90.82 74.44 10.81 5.57 1

BRL 91.06 69.32 12.42 9.32 2

CAD 92.00 74.88 11.85 5.27 3

CHF 91.69 73.49 10.16 8.04 4

CLP 88.17 60.54 17.72 9.91 2

CZK 86.04 64.21 13.67 8.16 4

GBP 89.29 70.39 13.26 5.64 2

HKD 94.77 83.54 7.91 3.32 3

HUF 95.69 71.10 16.09 8.50 3

IDR 91.18 73.42 10.63 7.13 3

INR 95.52 73.03 17.45 5.04 2

JPY 91.67 75.84 10.27 5.56 2

KRW 85.76 57.27 18.59 9.90 2

MXN 90.39 67.23 13.43 9.73 2

NOK 91.36 68.52 13.75 9.09 3

NZD 93.38 78.93 10.49 3.96 2

PLN 93.93 78.13 9.89 5.91 2

RUB 95.90 84.02 8.53 3.35 3

SEK 85.91 60.81 14.45 10.65 3

SGD 91.32 74.10 12.18 5.04 3

SKK 86.36 62.44 16.13 7.79 3

TRY 89.66 57.39 25.19 7.08 2

TWD 83.85 49.61 27.51 6.73 2

USD 92.87 75.18 13.38 4.31 2

ZAR 91.99 78.35 7.59 6.05 2

Average 91.00 70.20 14.08 6.72 2.5

Table 3: For each of the 25 different currency options in our sample, the table presents the proportion of the total

variance of implied volatility surface explained by the variation of a given factor. Under G–K, the mean eigevalue

rule of thumb λ of Guttman and Kaiser is reported.
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Guttman–Kaiser criterion (also known as the mean eigenvalue rule of thumb)

which sets k equal to the number of eigenvalues of V ′V that are larger that

the average of all eigenvalues.

On average, three factors can explain 91% of the variance in the daily

volatility surface implied by currency options. The proportion of variance

explained ranges from a minimum of 83.85% for options on TWD/EUR to a

maximum of 95.90% in the RUB/EUR case.

The first factor accounts for 70.20% of the IVS variation across currencies

on average; it can range from 49.61% (TWD/EUR) to 84.02% (RUB/EUR).

In all but three of the currency options examined it can explain more than

60% of the IVS. The second and third factors contribute, on average, an

additional 14.08% and 6.72% respectively.

To get a better feeling of the results, the estimated three–factor loadings

are plotted against moneyness and time–to–maturity in Figure 5 for two rep-

resentative cases: options on the EUR/USD (upper panels) and HUF/EUR

(lower panels) exchange rates.

The character of the factors seems intuitive. Factor 1 in Panels (a) and

(d) represent shocks that affects all maturities and deltas of the surface in

the same direction (same sign). The effect is strongest at the short horizons

and it dampens over time. It can be interpreted as a level effect, and it

is consistent with a mean–reverting model of stochastic volatility. Factor

1 affects OTM and ATM volatility differently. This is consistent with the

notion that a change in volatility alters the steepness of the “smile” and

correspondingly the skewness of the implied risk neutral density.

Factor 2 affects short–term and long–term impled volatility with different

signs (it appears to change sign around the 6–month and the 3–month op-

tion maturity for EUR/USD and HUF/EUR respectively). Thus, this factor

separates between different ends of the volatility term structure, i.e. it is

a term–structure effect. The effect is almost uniform across the moneyness

dimension.

Finally, the third factor appears to change sign ATM. It separates the

effect between OTM puts and calls and it is present in all maturities. However

its effect is more pronounced for short–dated options. Changes along this

factor alter the steepness of the implied volatility smile; it can be interpreted

as a jump–fear effect. Similar factors emerge in all currency options examined

and have also been reported in investigations of surfaces from index options

(e.g. Mixon (2002)) and futures options (e.g. Tompkins (2001)).

Examination of the factors suggests that they fluctuate significantly over

time and are persistent. Descriptive statistics of the factors from all currency
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Figure 5: Loadings of the three static factors that are identified in the daily time series of the volatility surface implied

by options on the EUR/USD (Panels (a)–(c)) and the HUF/EUR (Panels (d)–(f)) exchange rates respectively.
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Figure 6: Factors identified in the daily time series of the volatility surface implied by options on the EUR/USD

exchange rate from 4/9/2000–21/5/2007, and their autocorrelation (ACF) for up to 25 lags. The blue and red

horizontal lines in the ACF graphs correspond to the α = 5% significance level.
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Figure 7: Factor identified in the daily time series of the volatility surface implied by options on the HUF/EUR

exchange rate from 5/12/2005–21/5/2007, and their autocorrelation (ACF) for up to 25 lags. The blue and red

horizontal lines in the ACF graphs correspond to the α = 5% significance level.
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options in our sample are relegated in Appendix A. However, an indica-

tion of the factors and their persistence is offered by Figures 6 and 7 (from

EUR/USD and HUF/EUR options again) that plot the factors over time and

their sample autocorrelations. In the next section, we turn our attention to

the in–sample modeling of the time–series dynamics of the factors, with a

view towards forecasting future implied volatility out–of–sample.

3 Modeling the time–variation of implied vo-

latility surfaces in sample

In this section we model the time variation in the IVS as captured by the

dynamics of factors identified in the cross–sectional analysis that preceded.

As Bai and Ng (2004) point out, the principal components estimators of

Ft and λi reported in the previous section are consistent, as long as eit in

(5) is I (0) (and regardless of whether all or some of the factors are I (0)).

They actually go on to establish how consistent estimation of the factors can

be accomplished through a “differencing and recumulating” procedure that

can accommodate I (0) and I (1) errors. Thus, for our purposes, it suffices

to establish stationarity of the idiosyncratic errors from (5) for the factors to

be consistent.

Several tests for common and individual unit roots in the idiosyncratic

errors are performed; to conserve space, results are reported in Table B.1 in

Appendix B. The uniform conclusion that can be drawn is that the idiosyn-

cratic disturbances from the factor representation of the IVS in our sample

are stationary, and hence the identified factors are consistently estimated.

In order to model the dynamics of the factors, we consider a vector au-

toregressive (VAR) model for the time series of F̂t =
(
F̂1,t, F̂2,t, F̂3,t

)′

of the

form:

F̂t = c +

d∑

j=1

ΦjF̂t−j + vt (7)

where vt ∼ Ni.i.d. (0, Ω).7 If the state variables that control the dynamics

7In results unreported here, several alternative specifications for the factors and their

first differences have been examined. These include error–correction models for the fac-

tors, VAR models of factor first–differences, as well as simple univariate autoregressive

specifications of the factors and of the factor first–differences. The VAR factor model in

(7) that we employ in the remainder of the paper, performs best across all surfaces, both

in–sample and in terms of out–of–sample short–term forecasting. More details, as well as
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underlying the fundamentals in general equilibrium option pricing models

are persistent, then a VAR specification of the factors might be a reasonable

parsimonious way of capturing the predictability in the IVS that these models

imply.

It should be stressed that the unrestricted VAR model that we propose

and estimate for the factors does not impose any no–arbitrage restrictions

on the resulting, factor–based, implied volatilities. Although such restric-

tions could potentially improve the fitting and forecasting performance of

the model, imposing them would require specification of a structural model

of implied volatilities, which is beyond the scope of the present paper.8

Equation (7) is estimated for all surfaces by OLS, equation by equation,

with d selected by the Bayesian Information Criterion of Schwarz (1978),

starting with a maximum value of d = 15.

The results, summarised in Table 4, suggest that in all currencies a fairly

parsimonious VAR specification can achieve an extremely good in–sample

fit. The adjusted R2’s range from 54.26% (NZD/EUR Factor 3) to 98.67%

(GBP/EUR Factor 1), with an average of 87.81%. Across currencies, the

average adjusted R2’s are 93.16%, 86.61% and 83.67% for factor 1, 2 and 3

respectively. The Ljung–Box LB (d) lack–of–fit statistic in Table 4 suggests

that in the majority of cases the in–sample fit is fairly good, with uncorrelated

residuals. More specifically, in 4/5 of the cases the fit seems adequate at the

5% level; in 11 out of the 75 equations fitted is the null rejected at the 1%.

Table 5, that reports Granger–causality tests as implied by the VAR

estimation, provides evidence of significant (at the 1%) off–diagonal elements

of Φj in (7). For example, the tickmarks in JPY suggest that both the “level”

and the “jump–fear” factor is Granger–caused by the “term–structure” of the

IVS. In only one surface (INR) are the off–diagonal terms in Φj redundant

when compared with simple univariate autoregressive specifications of the

factors. This suggests that lagged realisations of one factor (e.g. the “jump–

fear”) might influence the current realisation of another factor (e.g. the

“level”), and is consistent with empirical observations regarding the IVS,

indications regarding the relative performance of all examined specifications can be found

in Chalamandaris and Tsekrekos (2009) that attempt an extensive comparison of short

and long–term forecasting methods.
8Moreover, since our focus here is on identifying economically significant short–term

predictability of segments of the IVS, the time horizons for which such predictability is

detected can be thought of as indications of the time period required for the whole surface

to reach its no–arbitrage equilibrium state, as new information is incorporated to the IVS

through trading across the surface at different intensities.
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Factor Code d R2
adj. LB (d) Code d R2

adj. LB (d) Code d R2
adj. LB (d)

1 AUD 2 0.9579 0.0209∗ IDR 2 0.9443 0.0380∗ RUB 4 0.8138 0.0460∗

2 2 0.8883 0.4911 2 0.9348 0.0087∗ 4 0.6188 0.0076∗

3 2 0.9167 0.6498 2 0.9635 0.7876 4 0.8762 0.7248

1 BRL 2 0.9603 0.8232 INR 2 0.9285 0.8156 SEK 3 0.9695 0.0660

2 2 0.8926 0.0008∗ 2 0.8470 0.6199 3 0.9369 0.1557

3 2 0.7827 0.0319∗ 2 0.8415 0.0530 3 0.9127 0.0000∗

1 CAD 3 0.9215 0.7634 JPY 2 0.9774 0.0749 SGD 2 0.8398 0.8513

2 3 0.8051 0.9997 2 0.9600 0.8978 2 0.8538 0.4445

3 3 0.7253 0.9683 2 0.9103 0.5446 2 0.8803 0.6633

1 CHF 3 0.9438 0.9590 KRW 3 0.9782 0.7274 SKK 2 0.9514 0.0374∗

2 3 0.8997 0.2282 3 0.9607 0.9871 2 0.9081 0.0643

3 3 0.9403 0.0975 3 0.9118 0.1470 3 0.6863 0.0018∗

1 CLP 6 0.9061 0.9969 MXN 2 0.9620 0.7380 TRY 3 0.9753 0.9926

2 6 0.8788 0.4361 2 0.7747 0.5424 3 0.9033 0.5372

3 6 0.9573 0.9970 2 0.7057 0.0095∗ 3 0.6863 0.0018∗

1 CZK 3 0.9574 0.9996 NOK 6 0.9699 0.6234 TWD 2 0.7255 0.0280∗

2 3 0.9090 0.9958 6 0.8245 1.0000 2 0.7513 0.9841

3 3 0.9323 0.0081∗ 6 0.8717 0.8506 2 0.7975 0.5843

1 GBP 2 0.9867 0.5498 NZD 2 0.9343 0.3477 USD 2 0.9754 0.0000∗

2 2 0.9440 0.0001∗ 2 0.8100 0.1670 2 0.8703 0.9509

3 2 0.9325 0.0001∗ 2 0.5426 0.9853 2 0.9574 0.6501

1 HKD 2 0.9081 0.6536 PLN 2 0.9329 0.9111 ZAR 2 0.9423 0.8177

2 2 0.8751 0.6940 2 0.8978 0.8261 2 0.9274 0.3140

3 2 0.6605 0.5487 2 0.7269 0.9332 2 0.7435 0.3302

1 HUF 2 0.9280 0.8787

2 2 0.8728 0.3112

3 2 0.8416 0.6479

Table 4: For the volatility surface implied by the 25 different currency options in our sample, the table reports the

results from the estimation of the VAR model (equation (7)) on the identified factors. The lag length, d, is selected

by the Bayesian Information Criterion of Schwarz (1978), starting with a maximum value of d = 15. Under LB (d),

p–values for the Ljung–Box statistic (H0 : absence of autocorrelation up to lag d in the residuals) are reported. The

length of the time series for each currency is reported in Table 2.

An ∗ denotes that the null is rejected at the α = 5% significance level.
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F̂1,t F̂2,t F̂3,t

Currency is Granger–caused at α = 1% by

Code F̂2,t F̂3,t F̂1,t F̂3,t F̂1,t F̂2,t

AUD X

BRL X X X X X

CAD X X X

CHF X X

CLP X

CZK X X X X

GBP X

HKD X

HUF X

IDR X X X

INR

JPY X X

KRW X

MXN X X X

NOK X X X

NZD X

PLN X X

RUB

SEK X X X X

SGD X

SKK X X X X X

TRY X X X X

TWD X X X

USD X

ZAR X

Table 5: For the volatility surface implied by the 25 different currency options

in our sample, the table reports the results of Granger–causality tests from

the estimation of the VAR factor model (equation (7)). A X denotes evidence

of Granger–causality at the α = 1% significance level.
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such as that when the level increases, the steepness of the smile decreases,

etc.

4 Out–of–sample forecasting performance

A simple factor decomposition of the implied volatility surface like equa-

tion (5), and a parsimonious model of its factor dynamics like equation (7)

should not only fit well in–sample, but also produce accurate out–of–sample

forecasts.

From equation (5), it is clear that predictability of σit requires that ei-

ther the factors, Ft, and/or the idiosyncratic errors, eit are predictable. In

this section we investigate whether the VAR factor model estimated in the

previous section can produce accurate out–of–sample forecasts of the whole

implied volatility surface h–periods ahead, i.e. σ̂it+h. If these predictions are

accurate, then modeling the systematic component of the IVS, as captured

by approximate static factor representations, can lead to better risk manage-

ment and portfolio formation decisions as we show in the next section.

We set up this forecasting exercise as follows: For each IVS, starting from

the dates in Table 2, the first 100 daily surfaces are employed to extract the

factors F̂t and loadings Λ̂ =
[
λ̂1 . . . λ̂N

]
, as in equation (6). Again, three

factors, k = 3, are used in all surfaces.

Estimates of the VAR specification in (7) on the time series of factors

F̂t are used to produce direct forecasts of F̂t+h (see Boivin and Ng (2005)):

Let β̂h

d̂
be the coefficients (including constant terms) of a projection of F̂t

on F̂t−h and d̂ of its lags. Obviously, for one–step ahead forecasts, h = 1,

the coefficients β̂1

d̂
include ĉ and Φ̂j , with j = 1, . . . , d̂. Analogously, h–step

ahead forecasts of the factors are produced by

F̂t+h = β̂h

d̂
F̂t, (8)

and since the entire IVS on day t + h depends on F̂t+h, forecasts of the IVS

can be produced by

σ̂it+h = λ̂′
iF̂t+h = λ̂′

iβ̂
h

d̂
F̂t (9)

These are then compared with σit+h, the actual IVS at time t + h. After

the comparison, the realised period is included in the estimation sample, and

the previous steps are repeated. In essence, this is the methodology of Stock

and Watson (2002) that has been successful in the context of macroeconomic

forecasting.
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We concentrate on short–horizon forecasts, h = 1, 2, . . . , 5 days ahead,

where predictable dynamics have been difficult to establish in related studies,

and use a “random walk” (RW) model of factors as a benchmark. This

corresponds to a special case of equation (7), with c = 0, d = 1, Φ1 = I3 a

3 × 3 identity matrix, Φj = 0 for j = 2, . . . , d and Ω a diagonal matrix.9 It

essentially implies that given the levels of factor estimates today, F̂t, the best

estimate of the IVS h–days ahead is σ̂it+h = λ̂′
iF̂t. If however factors exhibit

short–term predictability, the IVS predictions based on the VAR model factor

forecasts, F̂t+h, would exhibit lower errors relative to the ones produced by

the RW factor model.

To assess out–of–sample forecasting performance, the following three mea-

sures are computed each day t, for each model (VAR and RW):

[a] Mean squared error of implied volatility forecasts,

MSEt =
1

N

N∑

i=1

(σ̂it+h − σit+h)
2

i.e. the average squared deviations of observed implied volatilities from the

model’s predicted implied volatilities,

[b] Coefficient of determination

R2
t = R2

σit+h→σ̂it+h

i.e. the R2 from a univariate regression of the actual implied volatilities σit+h

of the surface on the model–predicted implied volatilities σ̂it+h, and

[c] Mean correct prediction of the direction of change in implied volatilities,

MCPt =
1

N

N∑

i=1

1sgn{σit+h−σit}=sgn{σ̂it+h−σit}

the percentage of the surface implied volatilities for which the model correctly

predicted the sign of change h–days ahead.

The average values of the performance measures [a]–[c] across all out–of–

sample days, i.e.

MSE =
1

τ − 100

τ∑

t=101

MSEt (10)

R2 =
1

τ − 100

τ∑

t=101

R2
t (11)

9Alternatively stated, this corresponds to setting d̂ = 1 and β̂h

d̂
= I3 in equation (8) for

all h.
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MCP =
1

τ − 100

τ∑

t=101

MCPt (12)

are summarised in Table 6, for one and two–day ahead predictions.

The VAR factor model performs notably better than the (special case)

random walk: average mean squared errors are most of the times two or

three–and in some occasions even six–times less those of the RW model. Con-

centrating on the most liquid currencies (USD, JPY, GBP, CAD, CHF) for

h = 1, the MSE of VAR is 0.0218, 0.0245, 0.0249, 0.0207, 0.0460, a marked

improvement over the performance of the random walk model (0.0356, 0.0431,

0.0409, 0.609, 0.0594). In all cases our approach outperforms, in terms of

average MSEs, the random walk benchmark.

A similar conclusion is reached when the second measure, the R2 from

univariate regressions of implied volatilities on the model–predicted ones, is

examined. There is a distinct improvement in explanatory power, ranging

from just 0.23% (KRW, h = 2) to an impressive 52.17% (NZD, h = 1).

Across all currencies, the average R2 improvement is 17.44% and 14.28%

for one and two–days ahead respectively. In terms of the MCP measure,

the VAR factor model performs better, by 2.5%–4% in most cases, than the

50% benchmark in correctly predicting the direction of change in the factors

driving the IVS dynamics. In only the CLP/EUR case does our approach

perform worse than flipping a coin. Taking into account that the MCPt’s

(like all other performance measures examined) are averaged across (in excess

of) 1500 days for some currencies (AUD, CHF, JPY, GBP, USD, NOK, etc.),

this constitutes a distinct improvement in terms of correctly–predicted days.

We also employ the equal predictive ability test of Diebold and Mariano

(1995), in order to formally assess the statistical significance of the superior

out–of–sample performance of the VAR model over the RW. The difference

in squared forecast errors of the two models is used as a performance indi-

cator for the test. This is conducted on all surface segments i = 1, . . . , N

separately.

In order to avoid cluttering the reader with tables, columns 7 and 13

in Table 6 report p–values for the Diebold and Mariano (1995) test for only

one segment of the surface, namely the 1–year ATM implied volatility.10 The

tabulated p–values indicate that with the exception of KRW and TRY, we can

reject the null hypothesis of equal forecasting ability between VAR and RW,

10Again, all unreported results of the test are available in Appendix C, which is available

from the authors upon request.
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One–day ahead forecasts Two–day ahead forecasts

Currency MSE R2 MCP Acc. MSE R2 MCP Acc.

Code VAR RW VAR RW VAR VAR VAR RW VAR RW VAR VAR

AUD .0216 .0388 .9852 .9571 52.42 .0492 .0260 .0384 .9784 .9576 53.40 .0587

BRL .0442 .0645 .9391 .8845 52.44 .0000 .0528 .0665 .9125 .8760 52.67 .0059

CAD .0207 .0609 .9324 .6812 52.82 .0000 .0250 .0556 .9004 .7046 52.92 .0000

CHF .0460 .0594 .9390 .9107 52.15 .0043 .0510 .0605 .9255 .9056 52.94 .0177

CLP .0345 .0684 .9006 .7592 48.23 .0000 .0383 .0637 .8753 .7733 49.17 .0004

CZK .0529 .0618 .9207 .9037 50.73 .0000 .0591 .0652 .9028 .8932 51.54 .0212

GBP .0249 .0409 .9793 .9516 51.89 .0314 .0292 .0404 .9725 .9525 52.42 .0471

HKD .0240 .0896 .9731 .7633 53.28 .0000 .0289 .0809 .9600 .7884 53.77 .0000

HUF .0309 .1190 .9065 .4486 53.65 .0000 .0380 .1081 .8575 .4698 57.44 .0000

IDR .0414 .0798 .9547 .8603 52.95 .0000 .0502 .0777 .9345 .8623 54.11 .0247

INR .0270 .1072 .9455 .5744 51.76 .0000 .0326 .0961 .9189 .6114 50.76 .0000

JPY .0245 .0431 .9839 .9549 52.18 .0322 .0298 .0430 .9766 .9552 52.52 .0153

KRW .0435 .0477 .9774 .9739 51.60 .4832 .0499 .0526 .9708 .9685 52.63 .3728

MXN .0302 .1039 .9489 .6491 53.32 .0000 .0346 .0937 .9363 .6813 53.83 .0004

NOK .0288 .0463 .9555 .8993 54.00 .0443 .0352 .0476 .9325 .8933 55.11 .0482

NZD .0175 .1069 .9484 .4267 54.93 .0000 .0237 .0951 .8984 .4543 57.03 .0000

PLN .0233 .1001 .9711 .6677 52.17 .0008 .0275 .0895 .9589 .7042 54.72 .0003

RUB .0225 .1010 .9022 .5447 51.95 .0000 .0249 .0890 .8898 .5757 53.76 .0007

SEK .0412 .0564 .9576 .9226 51.88 .0741 .0472 .0579 .9444 .9188 52.14 .0832

SGD .0238 .0918 .9668 .7252 54.40 .0000 .0288 .0826 .9495 .7525 55.36 .0001

SKK .0424 .0753 .9192 .7887 52.98 .0207 .0495 .0739 .8896 .7932 53.73 .0255

TRY .0606 .0681 .9735 .9675 51.82 .3826 .0702 .0758 .9642 .9595 51.62 .4305

TWD .0295 .0908 .9092 .6485 52.89 .0000 .0301 .0815 .9032 .6738 52.62 .0000

USD .0218 .0356 .9792 .9512 52.18 .0098 .0264 .0362 .9695 .9485 52.54 .0141

ZAR .0371 .1207 .8910 .4866 54.01 .0000 .0505 .1118 .8204 .4997 55.03 .0000

Table 6: For the volatility surface implied by the 25 different currency options in our sample, the table reports out–

of–sample average prediction errors for one and two–day ahead factor forecasts across models. VAR corresponds to

equation (7), with d selected by the BIC criterion on estimation of the model on the first 100 observations of the IVS

(starting with a maximum value of 15). RW stands for the random walk model that sets h–day’s ahead IVS equal to

today’s level and MSE, R2 and MCP are as in (10)–(12). Under Acc., p–values of the Diebold and Mariano (1995)

test of equal predictive ability (against the RW model) are reported for the 1–year ATM segment of the surface.
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both in one and in two–day ahead forecasts, for the 1–year ATM segment of

the surface. Similarly, the unreported results reveal a statistically–significant

superior predictive ability of the VAR factor model for many (if not most),

but not all segments of the surface. This provides statistical evidence that

the VAR factor model can better predict segments of the IVS from currency

options in the short–run.

Similar in nature, although less encouraging results are reported in Ta-

ble 7, that summarises the out–of–sample performance of the models when

three and five–day ahead forecasts of the factors are attempted. The VAR

factor model continues to outperform the RW benchmark for 3–day ahead

forecasts, although its absolute performance declines. For example, in all

cases the VAR factor model MSE’s are lower, but only in 16 out of the

25 cases is this superiority statistically significant at conventional levels for

the reported IVS segment (the 1–year, ATM implied volatility, and only in

CAD, JPY and CHF among the most liquid currencies). It is not until 5–

day ahead forecasts are attempted that our approach is not better than a

simple random walk in MSE’s. However, although the accuracy of the VAR

forecasts deteriorates with the forecasting horizon, the model continues to

better predict the direction of the change in the surface even 5–days ahead

as the MCP in Tables 6 and 7 demonstrate.

Taken together, the results of the out–of–sample forecasting exercise sug-

gest that the factors driving the dynamics of the volatility surfaces implied by

OTC currency options exhibit moderate predictability in the short–run, that

can be captured by a reduced–form vector autoregressive specification. How-

ever, whether the superior ability of the VAR factor model to better predict

the systematic component of the IVS can actually lead to better forecasts of

all implied volatilities σi of the surface critically depends on the magnitude

of the idiosyncratic errors ei.

It appears that in the short–run, some segments of the surface are more

accurately predicted than others by the VAR factor model, since new in-

formation is incorporated into the IVS at different speeds, through different

trading activity across the surface. As the next section demonstrates, being

able to better predict the systematic surface component captured by the iden-

tified factors (and thus the “least idiosyncratic” IVS segments) can actually

lead to better risk management and portfolio decisions.
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Three–day ahead forecasts Five–day ahead forecasts

Currency MSE R2 MCP Acc. MSE R2 MCP Acc.

Code VAR RW VAR RW VAR VAR VAR RW VAR RW VAR VAR

AUD .0299 .0379 .9715 .9580 53.79 .1123 .0357 .0356 .9594 .9606 54.37 .4875

BRL .0601 .0678 .8846 .8687 52.82 .0319 .0730 .0698 .8237 .8530 52.79 .3296

CAD .0275 .0494 .8775 .7372 53.78 .0006 .0318 .0304 .8352 .8570 53.49 .3987

CHF .0551 .0608 .9132 .9025 52.85 .0819 .0636 .0618 .8844 .8941 53.79 .3074

CLP .0419 .0583 .8464 .7905 49.39 .0497 .0500 .0449 .7783 .8360 46.46 .2270

CZK .0648 .0684 .8840 .8823 52.49 .2713 .0745 .0738 .8464 .8617 53.80 .4036

GBP .0331 .0396 .9656 .9537 52.54 .1108 .0396 .0376 .9518 .9565 52.77 .3372

HKD .0330 .0703 .9472 .8224 53.94 .0000 .0403 .0394 .9210 .9244 51.84 .4283

HUF .0432 .0943 .8117 .5131 58.65 .0000 .0530 .0540 .7016 .7336 57.33 .1074

IDR .0603 .0768 .9065 .8597 55.00 .0964 .0795 .0759 .8386 .8466 56.35 .3719

INR .0374 .0834 .8913 .6608 51.63 .0007 .0450 .0446 .8382 .8534 47.62 .4472

JPY .0346 .0428 .9688 .9552 52.63 .0566 .0426 .0415 .9533 .9564 52.39 .4874

KRW .0549 .0563 .9648 .9638 53.08 .4014 .0633 .0626 .9531 .9551 53.06 .4924

MXN .0386 .0812 .9232 .7262 55.45 .0018 .0457 .0451 .8996 .8864 56.09 .4671

NOK .0407 .0485 .9075 .8874 55.32 .2981 .0494 .0490 .8573 .8776 55.89 .4572

NZD .0289 .0812 .8358 .4994 57.68 .0066 .0370 .0361 .6893 .7972 56.76 .4926

PLN .0308 .0766 .9473 .7555 56.02 .0034 .0378 .0381 .9170 .9222 58.19 .3036

RUB .0268 .0756 .8788 .6155 54.53 .0078 .0294 .0289 .8594 .8689 58.18 .2844

SEK .0529 .0591 .9299 .9153 51.91 .3518 .0613 .0596 .9044 .9125 52.26 .4193

SGD .0324 .0717 .9346 .7901 55.28 .0075 .0373 .0375 .9064 .9164 56.46 .4013

SKK .0560 .0715 .8559 .8020 54.78 .1486 .0657 .0648 .7915 .8285 55.27 .4721

TRY .0769 .0801 .9571 .9553 51.57 .4582 .0905 .0893 .9403 .9448 52.31 .3813

TWD .0332 .0706 .8790 .7088 50.94 .0164 .0358 .0379 .8516 .8567 44.13 .4712

USD .0308 .0370 .9588 .9447 52.98 .1769 .0376 .0373 .9398 .9396 53.41 .4190

ZAR .0631 .1006 .7467 .5294 55.31 .0318 .0909 .0691 .5870 .6959 58.12 .3201

Table 7: For the volatility surface implied by the 25 different currency options in our sample, the table reports out–

of–sample average prediction errors for three and five–day ahead factor forecasts across models. VAR corresponds

to equation (7), with d selected by the BIC criterion on estimation of the model on the first 100 observations of

the IVS (starting with a maximum value of 15). RW stands for the random walk model that sets h–day’s ahead

IVS equal to today’s level and MSE, R2 and MCP are as in (10)–(12). Under Acc., p–values of the Diebold and

Mariano (1995) test of equal predictive ability (against the RW model) are reported for the 1–year ATM segment of

the surface.
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5 Economic significance of factor forecasts

The results of Section 4 suggest that the latent factors driving the dynamics

of volatility surfaces implied by OTC currency options are predictable in

a statistical sense. In this section we ask whether any profitable trading

strategies could be devised based on these forecasts of the systematic IVS

component captured by the factors.

To accomplish this, we examine whether certain trading rules, based on

forecasts F̂t+h by the VAR model, may generate significant profits for a hy-

pothetical speculator.

The trading strategies we consider are based on out–of–sample forecasts

of implied volatility, as produced by out–of–sample forecasts of the factors

by the VAR model (described in the previous section). For a given exchange

rate and on a given day, if the next–day, model–based implied volatility

of contract i, σ̂it+1 = λ̂′
iF̂t+1, is predicted to increase (decrease) relative to

today’s observed level σit, contract i is considered for purchasing (sale). More

specifically, each day, depending on the sign of σ̂it+1 − σit, a net investment

of 1,000 euros is made in long and short positions of straddles, struck at

a volatility of σit, for the time–to–maturity that corresponds to contract i,

and held for one trading day. The exercise price of each straddle executed

is chosen so to make the position delta–neutral, thus any computed profits

truly reflect profits in “trading volatility”.

The following trading rules are considered: First, following Harvey and

Whaley (1992), we consider a trading rule (henceforth trading rule A) that

always trades in the closest–to–maturity, ATM segment of the IVS, i.e. one

straddle is only executed. Second, we consider a strategy (trading rule B),

where again only one straddle is executed, at contract arg maxi |σ̂it+1 − σit|,
i.e. the contract for which the model predicts the largest implied volatility

absolute deviation. The last strategy considered (trading rule C) buys a

straddle in contract arg maxi (σ̂it+1 − σit) and sells a straddle in contract

arg mini (σ̂it+1 − σit), i.e. the contracts for which the “buying” and “selling”

signals are the largest.

Two benchmarks are considered. One is the “underlying buy and hold”

strategy, where each day the 1,000 euros is simply invested in the underlying

exchange rate. The second one (trading rule R) is a random option strategy:

every day a delta–neutral straddle at σit, i = 1, . . . , N has a chance of 1/N

of being executed, and if selected, the position (long or short) is decided by

a flip of a coin.

Tables 8 and 9 present summary statistics, in the absence of transactions
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Trading Rule A Trading Rule B

Mean Mo- Mean Mean Daily % Mean Mo- Mean Mean Daily %

Currency neyness Maturity Profit standard t-ratio neyness Maturity Profit standard t-ratio

Code S/K (in years) (%) Deviation S/K (in years) (%) Deviation

AUD .999 .019 .396 .043 9.275 .964 1.047 .497 .034 14.586

BRL .999 .019 .350 .070 4.967 .955 .845 1.229 .077 15.978

CAD .999 .019 .335 .041 8.267 .966 .931 .540 .031 17.546

CHF .999 .019 .779 .064 12.159 .900 3.317 1.218 .060 2.348

CLP .999 .019 .719 .047 15.450 .977 .531 .795 .038 2.762

CZK .999 .019 .645 .052 12.523 .888 3.763 .909 .046 19.833

GBP .999 .019 .686 .047 14.605 .951 1.521 .941 .035 27.048

HKD .999 .019 .209 .038 5.555 .955 1.032 .683 .031 22.369

HUF .999 .019 .692 .049 14.272 .955 .965 .666 .036 18.329

IDR .999 .019 .395 .046 8.521 .963 .791 .295 .034 8.787

INR .999 .019 .535 .068 7.845 .945 1.248 .573 .054 1.663

JPY .999 .019 .250 .048 5.154 .950 1.416 .629 .039 15.934

KRW .999 .019 .506 .044 11.424 .983 .444 .525 .039 13.349

MXN .999 .019 .289 .043 6.686 .911 1.787 .767 .034 22.374

NOK .999 .019 .678 .051 13.343 .992 .235 .903 .042 21.290

NZD .999 .019 .416 .041 1.167 .996 .083 .635 .035 18.090

PLN .999 .019 .221 .044 4.984 .970 .716 .654 .034 19.334

RUB .999 .019 .380 .036 1.562 .923 1.742 .640 .026 24.779

SEK .999 .019 .936 .058 16.234 .976 .753 1.011 .047 21.588

SGD .999 .019 .577 .044 13.272 .935 1.540 .707 .029 24.653

SKK .999 .019 .432 .068 6.353 .990 .275 .918 .054 17.098

TRY .999 .019 .393 .072 5.482 .965 .521 1.018 .073 13.944

TWD .999 .019 .508 .044 11.415 .945 1.279 .763 .034 22.251

USD .999 .019 .608 .046 13.195 .985 .416 .578 .039 14.822

ZAR .999 .019 .317 .058 5.472 .968 .613 .649 .047 13.730

Table 8: From the starting dates in Table 2 and using the first 100 daily observations of the IVS, factors and loadings

are estimated using (6). The VAR factor model in (7) is estimated on the factor dynamics (with d, selected by the

BIC, starting with a maximum value of d = 15) and used to produce one–day ahead forecasts of the factors, F̂t+1,

and of the IVS, σ̂it+1 = λ̂′
iF̂t+1. Each day, estimation of factors, loadings and VAR coefficients is repeated. The sign

and the magnitude of the model–predicted IVS deviations, σ̂it+1 − σit is used to identify contracts i that should be

purchased or sold. A 1,000 euros are invested daily in each trading rule. Trading rule A refers to a delta–neutral

straddle executed only at the ATM, closest–to-maturity contract, while Trading rule B executes a delta–neutral

straddle at the implied volatility with the highest predicted absolute deviation. No transaction costs are imposed.
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Trading Rule C Trading Rule R Buy & Hold Underlying

Mean Mo- Mean Mean Daily % Mean Daily % Mean Daily %

Currency neyness Maturity Profit standard t-ratio Profit standard t-ratio Profit standard t-ratio

Code S/K (in years) (%) Deviation (%) Deviation (%) Deviation

AUD .954 1.328 .319 .011 29.928 -.047 .019 -2.557 -.010 .006 -1.716

BRL .951 .900 .973 .047 2.626 -.128 .035 -3.637 .034 .008 4.095

CAD .955 1.236 .369 .010 36.530 .029 .015 1.925 -.010 .005 -2.201

CHF .904 3.161 .694 .045 15.520 -.038 .030 -1.270 .018 .003 5.852

CLP .977 .514 .268 .015 18.365 .037 .022 1.713 .018 .005 3.462

CZK .893 3.579 .575 .029 19.868 .013 .034 .393 .005 .004 1.046

GBP .948 1.610 .451 .015 3.163 -.010 .020 -.513 -.011 .005 -2.035

HKD .942 1.324 .296 .012 23.904 -.011 .020 -.537 -.034 .003 -11.135

HUF .933 1.446 .418 .018 23.176 .013 .026 .504 .000 .006 .027

IDR .966 .713 .234 .017 13.954 .025 .030 .838 .070 .007 1.122

INR .940 1.349 .173 .011 15.221 -.314 .047 -6.624 .020 .005 4.005

JPY .937 1.790 .371 .014 26.097 -.016 .021 -.742 .032 .006 5.307

KRW .979 .545 .372 .022 17.226 -.072 .027 -2.669 .002 .007 .287

MXN .924 1.524 .304 .014 22.287 -.035 .022 -1.613 .014 .005 2.978

NOK .985 .443 .537 .017 32.288 -.075 .024 -3.075 .004 .004 .789

NZD .975 .545 .360 .010 35.563 -.050 .018 -2.788 -.021 .006 -3.701

PLN .953 1.105 .391 .015 26.584 .003 .021 .149 -.005 .005 -1.046

RUB .930 1.577 .273 .013 21.724 -.086 .017 -5.033 .010 .003 3.518

SEK .967 1.037 .598 .024 25.068 -.179 .031 -5.727 -.010 .004 -2.463

SGD .938 1.459 .315 .013 24.839 -.033 .018 -1.874 -.018 .003 -6.477

SKK .986 .412 .685 .032 21.533 -.003 .037 -.076 .006 .004 1.524

TRY .963 .559 .690 .040 17.196 -.044 .050 -.879 .026 .013 1.942

TWD .946 1.238 .359 .020 17.690 -.086 .027 -3.238 -.014 .004 -3.520

USD .964 1.025 .300 .011 27.226 -.012 .018 -.648 .024 .006 4.221

ZAR .939 1.149 .318 .015 21.554 -.111 .024 -4.635 -.082 .009 -9.013

Table 9: From the starting dates in Table 2 and using the first 100 daily observations of the IVS, factors and loadings

are estimated using (6). The VAR factor model in (7) is estimated on the factor dynamics (with d, selected by the

BIC, starting with a maximum value of d = 15) and used to produce one–day ahead forecasts of the factors, F̂t+1,

and of the IVS, σ̂it+1 = λ′
iF̂t+1. Each day, estimation of factors, loadings and VAR coefficients is repeated. The sign

and the magnitude of the model–predicted IVS deviations, σ̂it+1 − σit is used to identify contracts i that should be

purchased or sold based on the model predictions. A 1,000 euros are invested daily in each trading rule. Trading

rule C executes two delta–neutral straddles at the implied volatilities with the highest and the lowest predicted

deviations, while Trading rule R executes random straddles on the IVS. No transaction costs are imposed.
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costs, from profits derived from trading rules A–C and the two benchmarks

considered. All trading rules yield statistically significant positive profits,

ranging from 0.173% (INR, rule C) to 1.229% (BRL, rule B), and all outper-

form in comparison to the two benchmarks considered.

Turning our attention to the comparison of trading rules, trading rules A,

B, C, R and B&H yield mean profits of 0.49%, 0.75%, 0.426%, 0.049% and

0.003% on average, across all surfaces. It is apparent that in almost all cases

rule B (that invests only in the largest absolute IVS predicted deviation)

produces higher mean profits than rules A and C.11

Interestingly, rules B and C that are not restricted in terms of contracts

that can be selected, tend to take positions in maturities that are normally

not available to investors in exchange–traded currency options. A final re-

mark worth making is that trying to exploit more segments of the IVS fore-

casts, as rule C attempts in comparison to rules A and B, does not necessar-

ily mean higher profits: in the vast majority of surfaces, restricting to one

volatility trade leads to higher profits.

Tables 10 and 11 report results that take transaction costs into account.

Rates of return for trading rules are recomputed, this time imposing trans-

action costs of 20 volatility basis points per traded contract.12

As expected, profits after transaction costs are lower on average, but

the ranking of rules is the same: across all currencies, rules A, B, C, R

and B&H yield on average 0.453%, 0.559%, -0.021%, -0.235% and -0.010%

respectively. Trading rule C that attempts to exploit more segments of the

surface (its highest positive and negative predicted deviations) appears to

suffer the most in terms of mean profits from transaction costs. In only

one third of the surfaces examined can rule C now yield statistically positive

mean returns; however mean profits are negative for the most liquid currency

surfaces.

Trading rules A and B continue to yield significant positive mean prof-

its in most cases. Rule B can lead to mean profits ranging from virtually

zero (0.045% in IDR, with t = 1.347) to 1.03% (BRL). For the most liq-

uid currencies, the average mean profit is 0.528%.13 As the mean maturity

11With the exception of HUF, IDR and USD where rule A yields marginally higher

profits.
12For rule B&H that trades the underlying exchange rate, transaction costs of 0.10 euros

are charged.
13This corresponds to approximately one fourth of the mean profits that Goncalves and

Guidolin (2006, Table 7) report, when a similar trading strategy on the S&P 500 IVS

dynamics is followed.
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Trading Rule A Trading Rule B

Mean Mo- Mean Mean Daily % Mean Mo- Mean Mean Daily %

Currency neyness Maturity Profit standard t-ratio neyness Maturity Profit standard t-ratio

Code S/K (in years) (%) Deviation S/K (in years) (%) Deviation

AUD .999 .019 .354 .043 8.293 .964 1.047 .318 .034 9.278

BRL .999 .019 .309 .070 4.378 .955 .845 1.030 .077 13.405

CAD .999 .019 .291 .041 7.185 .966 .931 .343 .031 11.099

CHF .999 .019 .733 .064 11.449 .900 3.317 .817 .060 13.621

CLP .999 .019 .684 .046 14.700 .977 .531 .638 .038 16.608

CZK .999 .019 .601 .052 11.662 .888 3.763 .495 .046 1.726

GBP .999 .019 .650 .047 13.844 .951 1.521 .728 .035 2.758

HKD .999 .019 .187 .038 4.976 .955 1.032 .563 .031 18.440

HUF .999 .019 .662 .049 13.643 .955 .965 .522 .036 14.363

IDR .999 .019 .354 .046 7.629 .963 .791 .045 .034 1.347

INR .999 .019 .509 .068 7.461 .945 1.248 .418 .054 7.757

JPY .999 .019 .190 .048 3.914 .950 1.416 .306 .040 7.696

KRW .999 .019 .468 .044 1.583 .983 .444 .382 .039 9.698

MXN .999 .019 .262 .043 6.059 .911 1.787 .548 .034 15.930

NOK .999 .019 .637 .051 12.537 .992 .235 .799 .042 18.827

NZD .999 .019 .387 .041 9.463 .996 .083 .583 .035 16.615

PLN .999 .019 .191 .044 4.310 .970 .716 .537 .034 15.939

RUB .999 .019 .335 .036 9.331 .923 1.742 .310 .026 11.846

SEK .999 .019 .901 .058 15.632 .976 .753 .880 .047 18.751

SGD .999 .019 .543 .043 12.494 .935 1.540 .454 .029 15.598

SKK .999 .019 .393 .068 5.778 .990 .275 .807 .054 15.045

TRY .999 .019 .353 .072 4.927 .965 .521 .849 .073 11.639

TWD .999 .019 .484 .044 1.890 .945 1.279 .610 .034 17.749

USD .999 .019 .557 .046 12.093 .985 .416 .447 .039 11.419

ZAR .999 .019 .289 .058 4.994 .968 .613 .548 .047 11.601

Table 10: From the starting dates in Table 2 and using the first 100 daily observations of the IVS, factors and

loadings are estimated using (6). The VAR factor model in (7) is estimated on the factor dynamics (with d, selected

by the BIC, starting with a maximum value of d = 15) and used to produce one–day ahead forecasts of the factors,

F̂t+1, and of the IVS, σ̂it+1 = λ̂′
iF̂t+1. Each day, estimation of factors, loadings and VAR coefficients is repeated.

The sign and the magnitude of the model–predicted IVS deviations, σ̂it+1 − σit is used to identify contracts i that

should be purchased or sold based on the model predictions. A 1,000 euros are invested daily in each trading rule.

Trading rules as in Table 8. Transaction costs of 20 volatility basis points per trade are imposed.
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Trading Rule C Trading Rule R Buy & Hold Underlying

Mean Mo- Mean Mean Daily % Mean Daily % Mean Daily %

Currency neyness Maturity Profit standard t-ratio Profit standard t-ratio Profit standard t-ratio

Code S/K (in years) (%) Deviation (%) Deviation (%) Deviation

AUD .954 1.328 -.145 .011 -12.805 -.230 .019 -12.348 -.022 .006 -3.894

BRL .951 .900 .539 .047 11.410 -.379 .038 -1.072 .021 .008 2.573

CAD .955 1.236 -.140 .011 -12.928 -.288 .016 -18.000 -.023 .005 -4.874

CHF .904 3.161 -.139 .045 -3.104 -.301 .024 -12.351 .005 .003 1.737

CLP .977 .514 -.057 .015 -3.928 -.204 .024 -8.372 .005 .005 1.036

CZK .893 3.579 -.239 .029 -8.103 -.317 .032 -9.821 -.008 .004 -1.815

GBP .948 1.610 -.023 .015 -1.488 -.261 .021 -12.220 -.023 .005 -4.446

HKD .942 1.324 -.011 .012 -.921 -.170 .021 -8.275 -.046 .003 -15.244

HUF .933 1.446 .000 .018 .024 -.168 .021 -8.062 -.012 .006 -2.219

IDR .966 .713 -.250 .017 -14.712 -.209 .032 -6.547 .058 .007 8.323

INR .940 1.349 -.178 .011 -15.676 -.376 .028 -13.330 .007 .005 1.467

JPY .937 1.790 -.442 .015 -29.008 -.369 .020 -18.540 .019 .006 3.214

KRW .979 .545 .047 .022 2.178 -.110 .027 -4.040 -.011 .007 -1.536

MXN .924 1.524 -.112 .014 -8.178 -.148 .021 -7.132 .001 .005 .287

NOK .985 .443 .228 .017 13.547 -.092 .029 -3.175 -.009 .004 -2.025

NZD .975 .545 .127 .010 12.389 -.226 .016 -13.847 -.034 .006 -5.881

PLN .953 1.105 .042 .014 2.904 -.176 .018 -9.556 -.017 .005 -3.706

RUB .930 1.577 -.405 .013 -3.166 -.428 .014 -31.211 -.002 .003 -.733

SEK .967 1.037 .254 .024 1.597 -.248 .027 -9.043 -.023 .004 -5.501

SGD .938 1.459 -.205 .013 -15.298 -.150 .017 -8.647 -.030 .003 -11.017

SKK .986 .412 .393 .032 12.372 -.261 .032 -8.170 -.007 .004 -1.759

TRY .963 .559 .325 .040 8.114 -.064 .054 -1.189 .013 .013 .990

TWD .946 1.238 .042 .020 2.044 -.049 .029 -1.717 -.027 .004 -6.656

USD .964 1.025 -.173 .012 -14.647 -.375 .018 -2.711 .012 .006 2.047

ZAR .939 1.149 -.010 .015 -.666 -.270 .036 -7.568 -.094 .009 -1.388

Table 11: From the starting dates in Table 2 and using the first 100 daily observations of the IVS, factors and

loadings are estimated using (6). The VAR factor model in (7) is estimated on the factor dynamics (with d, selected

by the BIC, starting with a maximum value of d = 15) and used to produce one–day ahead forecasts of the factors,

F̂t+1, and of the IVS, σ̂it+1 = λ̂′
iF̂t+1. Each day, estimation of factors, loadings and VAR coefficients is repeated.

The sign and the magnitude of the model–predicted IVS deviations, σ̂it+1 − σit is used to identify contracts i that

should be purchased or sold based on the model predictions. A 1,000 euros are invested daily in each trading rule.

Trading rules as in Table 9. Transaction costs of 20 volatility basis points per trade are imposed.
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of options chosen by this strategy demonstrates, restricting trading to one

position chosen by the VAR factor model can yield statistically significant

trading profits, even if one concentrates on the short–end of the surface (as

rule A does) that is the most volatile. However, profits disappear when trad-

ing rules on wide segments of the surface are sought and as higher transaction

costs are incurred.

Before leaving this section, it should be stressed that the trading profits

reported hardly represent rejections of the informational efficiency of OTC

FX options market, since we have abstracted from bid–ask spread consider-

ations and other measurement error/microstructure effects that might offer

alternative explanation for these profits. The results of the trading strategies

however demonstrate that the systematic component of the IVS, as captured

by (latent static) factors identified before us by several authors, do exhibit

short–term predictability that is economically significant: simple parsimo-

nious econometric specifications like the VAR considered here can capture

this predictability and provide investors with forecasts useful for portfolio

decisions and risk assessment.

6 Concluding remarks

When plotted against time–to–maturity and “moneyness”, the volatility of

contracts in the options market describe non–flat surfaces that exhibit sig-

nificant time–variation.

General equilibrium option pricing models have proposed economic jus-

tifications for the existence and the empirical characteristics of the implied

volatility surface. When persistent latent variables drive the pricing funda-

mentals, time–varying surfaces can be derived in equilibrium, and based on

information related to the latent factors the IVS can be forecasted.

In this paper, we attempt to examine whether this predictability can be

exploited in an economically significant way, by building on the vast literature

that has identified latent static factors in the dynamics of implied volatility

surfaces.

Using an extensive data set from the over–the–counter options market, we

first demonstrate that–in accordance with the existing literature–a few static

statistical factors, with an intuitively clear interpretation, can completely

characterise IVS variation in–sample. These factors exhibit significant time

variation and persistence, and can be successfully modeled through parsimo-

nious vector autoregressive specifications.
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The VAR factor model is shown to generate accurate out–of–sample fore-

casts of the surface, at least up to three days ahead, both in absolute terms

and relatively to natural benchmarks such as a random walk for implied

volatilities. Although, superiority in short–term predictions across the whole

surface is difficult to establish, we show that the VAR factor model is suc-

cessful in identifying the predictable segments of the surface, whose existence

is prescribed by general equilibrium models.

We demonstrate that this ability can be economically exploited for portfo-

lio decision–making by performing volatility–based trading based on one–day

ahead predictions of the IVS. In the absence of transaction costs, statistically

significant profits are generated via a number of alternative trading strategies

that use the IVS forecasts of the VAR factor model; however, profits decrease

or even disappear completely when transaction costs are increased and when

trading rules on wider segments of the surface are sought. Although bid–ask

spreads and other market frictions might explain the remaining profits of the

VAR factor model after transaction costs, we feel that our findings estab-

lish that the IVS predictability suggested by equilibrium models is present

in the OTC FX options market, and can significantly improve our portfolio

decisions and the management of risk exposures.
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A Appendix: Descriptive statistics of identi-

fied factors

Table A.1 that follows, reports descriptive statistics of the factors that are

identified in the implied volatility surfaces from the 25 different currency

options in our sample. By construction the factors have a mean of zero.

Table A.1: Descriptive statistics of the factors identified

in the volatility surfaces implied by options on 25 differ-

ent exchange rates. ρ̂ (l) denotes the sample autocorre-

lation coefficient of lag l.

Code Min. Max. St. Dev. Skew. Kurt. ρ̂ (1) ρ̂ (12) ρ̂ (25)

AUD F̂1 -15.02 20.20 5.25 0.42 3.92 .977 .742 .592

F̂2 -5.07 7.93 2.05 0.53 3.57 .941 .578 .414

F̂3 -4.20 5.30 1.29 0.45 3.28 .956 .712 .608

BRL F̂1 -35.64 76.58 17.93 0.82 3.70 .979 .786 .575

F̂2 -51.82 15.38 7.77 -1.37 7.68 .941 .620 .324

F̂3 -21.84 24.20 3.50 2.39 19.01 .873 .446 .057

CAD F̂1 -8.03 20.33 3.85 0.09 3.64 .956 .752 .580

F̂2 -6.66 5.00 1.50 -0.33 3.68 .892 .450 .300

F̂3 -4.22 2.32 0.80 -0.67 4.99 .845 .268 .254

CHF F̂1 -8.60 16.46 3.19 0.57 3.66 .970 .695 .496

F̂2 -4.23 7.71 1.60 0.24 4.05 .944 .691 .505

F̂3 -5.85 3.54 1.46 -0.74 4.16 .966 .823 .679

CLP F̂1 -18.14 15.24 6.37 -0.25 2.51 .939 .635 .399

F̂2 -8.05 9.09 2.59 0.80 5.94 .912 .509 .075

F̂3 -3.41 2.77 1.51 -0.34 2.36 .976 .769 .533

CZK F̂1 -14.92 32.53 6.34 1.90 8.72 .978 .791 .630

F̂2 -8.77 6.38 2.62 -0.43 3.27 .950 .736 .569

F̂3 -7.43 5.56 2.03 -0.82 3.63 .962 .802 .688
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Code Min. Max. St. Dev. Skew. Kurt. ρ̂ (1) ρ̂ (12) ρ̂ (25)

GBP F̂1 -20.98 18.40 7.02 -0.62 3.34 .979 .921 .869

F̂2 -5.04 5.01 2.01 0.06 2.47 .970 .838 .722

F̂3 -3.25 3.46 1.15 -0.15 3.05 .964 .793 .672

HKD F̂1 -8.73 6.81 3.26 -0.15 2.91 .951 .578 .240

F̂2 -2.91 3.70 1.43 -0.11 2.47 .933 .533 .232

F̂3 -1.70 2.24 0.53 0.73 4.87 .810 .112 -.025

HUF F̂1 -13.60 18.25 6.59 0.13 2.55 .959 .514 .162

F̂2 -4.89 3.99 1.98 -0.31 2.26 .928 .528 .297

F̂3 -3.20 2.90 1.11 -0.13 2.53 .912 .588 .283

IDR F̂1 -10.75 31.87 6.70 1.90 8.71 .969 .533 .327

F̂2 -5.82 14.66 2.97 1.31 8.65 .962 .408 .195

F̂3 -9.01 2.97 1.95 -1.28 5.26 .970 .607 .411

INR F̂1 -7.73 7.67 3.63 -0.20 2.15 .961 .608 .074

F̂2 -5.04 11.52 2.80 0.48 2.66 .915 .542 .221

F̂3 -2.67 2.41 0.82 0.73 3.79 .906 .528 .125

JPY F̂1 -20.61 23.36 8.63 0.24 2.96 .978 .830 .708

F̂2 -6.63 12.00 3.41 1.10 3.99 .978 .774 .632

F̂3 -6.59 5.63 1.96 -0.18 3.23 .950 .685 .478

KRW F̂1 -27.49 50.35 11.39 1.27 6.58 .979 .888 .794

F̂2 -16.47 13.28 4.75 -0.24 3.55 .979 .854 .717

F̂3 -13.10 7.20 2.68 -0.44 4.56 .953 .653 .484

MXN F̂1 -14.71 23.51 7.34 1.02 4.50 .979 .762 .396

F̂2 -9.92 3.83 2.05 -1.13 5.09 .872 .429 -.030

F̂3 -2.81 5.39 1.20 0.26 3.74 .837 .338 .170

NOK F̂1 -11.17 14.36 4.83 0.24 2.60 .974 .820 .679

F̂2 -2.80 5.90 1.19 0.65 4.76 .904 .476 .339

F̂3 -4.93 2.39 0.93 -0.05 3.27 .923 .690 .574
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Code Min. Max. St. Dev. Skew. Kurt. ρ̂ (1) ρ̂ (12) ρ̂ (25)

NZD F̂1 -9.94 11.77 4.68 0.36 2.55 .963 .525 .341

F̂2 -5.46 3.26 1.50 -0.77 4.23 .894 .312 .091

F̂3 -1.54 2.78 0.63 0.45 4.07 .731 -.196 .158

PLN F̂1 -9.45 13.11 4.34 0.13 3.05 .963 .585 .229

F̂2 -6.03 4.51 2.17 -0.58 2.85 .947 .590 .334

F̂3 -1.81 1.69 0.61 -0.20 3.16 .845 .280 .164

RUB F̂1 -5.73 8.31 2.30 -0.07 3.58 .850 .554 .346

F̂2 -4.67 2.26 1.06 -0.40 4.00 .686 .420 .160

F̂3 -2.08 2.10 0.91 0.01 2.48 .926 .720 .470

SEK F̂1 -13.27 23.13 5.66 0.18 3.45 .974 .849 .709

F̂2 -4.31 13.52 2.34 1.48 7.67 .968 .775 .557

F̂3 -7.68 4.52 1.77 0.03 3.25 .947 .816 .691

SGD F̂1 -5.90 4.73 1.96 -0.25 3.22 .915 .387 -.008

F̂2 -5.19 3.57 1.43 -0.55 4.25 .923 .495 .203

F̂3 -1.66 1.18 0.64 -0.50 2.66 .931 .631 .351

SKK F̂1 -13.83 18.50 5.11 0.47 3.52 .974 .820 .659

F̂2 -5.54 4.35 1.60 -0.25 2.90 .924 .602 .427

F̂3 -3.06 4.71 1.25 0.99 4.40 .946 .666 .453

TRY F̂1 -111.74 92.94 34.59 0.36 2.85 .984 .873 .770

F̂2 -43.76 20.11 8.49 -1.31 6.11 .946 .721 .532

F̂3 -26.85 14.45 6.00 -0.94 5.57 .805 .512 .348

TWD F̂1 -9.04 5.67 2.30 0.05 3.01 .827 .529 .169

F̂2 -3.05 2.18 0.82 -0.68 3.51 .853 .305 .036

F̂3 -1.86 1.48 0.63 -0.43 2.79 .880 .399 .049

USD F̂1 -21.72 23.53 7.49 -0.38 3.06 .967 .819 .724

F̂2 -6.18 8.01 2.00 0.18 3.50 .932 .563 .462

F̂3 -4.87 3.30 1.46 -0.11 2.37 .924 .797 .674
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Code Min. Max. St. Dev. Skew. Kurt. ρ̂ (1) ρ̂ (12) ρ̂ (25)

ZAR F̂1 -20.38 48.27 12.49 0.95 4.14 .968 .578 .154

F̂2 -8.36 18.64 4.06 1.61 7.71 .961 .644 .339

F̂3 -4.41 4.47 1.34 0.09 3.73 .856 .362 .221

B Appendix: Idiosyncratic errors unit root

tests

The idiosyncratic errors from the factor representation in equation (5) have

been examined for common and individual unit roots through a number of

panel tests. Results are summarised in Table B.1.

The modified t–statistic of Levin, Lin and Chu (2002), the standardised

t–statistic of Im, Pesaran and Shin (2003), and the Fisher–augmented Dickey

Fuller χ2 statistic are reported in the table. In all tests, individual intercepts

are allowed in the test equations, and the number of lags used is decided by

the Bayesian information criterion of Schwarz (1978). The Parzen kernel is

used in the Levin, Lin and Chu (2002) common unit root test.
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Panel Unit Root (UR) Tests

Currency Common UR Individual URs Panel size

Code LLC t∗ ADF-F χ2 IPS W Cross sect. N.Obs.

AUD -33.69 1510.2 -27.41 60 103,090

BRL -29.09 1093.4 -22.19 50 52,810

CAD -21.66 765.2 -14.13 60 52,313

CHF -36.66 1690.8 -29.30 65 115,168

CLP -24.01 817.6 -18.40 40 25,267

CZK -34.95 1820.0 -29.73 70 120,987

GBP -35.40 1622.4 -29.20 60 103,914

HKD -22.46 784.9 -14.30 60 22,501

HUF -29.08 1063.5 -20.40 60 22,449

IDR -18.54 563.1 -12.90 40 22,002

INR -22.45 897.9 -16.77 60 22,476

JPY -32.43 1396.9 -25.66 60 103,917

KRW -28.39 1010.7 -22.47 40 82,663

MXN -27.02 995.1 -18.60 60 21,298

NOK -30.08 1279.9 -26.76 40 69,101

NZD -22.40 789.4 -14.51 60 22,529

PLN -25.58 853.8 -16.00 60 22,427

RUB -25.65 985.8 -16.81 70 24,741

SEK -41.81 2036.1 -34.98 60 103,820

SGD -21.49 744.3 -13.45 60 22,451

SKK -29.75 1101.7 -23.43 40 41,894

TRY -28.83 996.2 -21.84 40 66,877

TWD -18.55 699.6 -12.26 60 22,566

USD -21.03 860.3 -15.31 60 103,548

ZAR -30.04 1180.6 -22.35 60 22,518

Table B.1: The table reports panel unit root tests for the idiosyncratic errors

eit from the factor representation (equation (5)) of the volatility surfaces

implied by the 25 different currency options in our sample. LLC t∗ denotes

the modified t–statistic of Levin, Lin and Chu (2002), ADF-F χ2 is the

Fisher–augmented Dickey Fuller chi–square statistic, while IPS W stand for

the properly–standardised t–statistic of Im, Pesaran and Shin (2003) that is

asymptotically normal.

An ∗ denotes that the null hypothesis of (a common or individual) unit root

cannot be reject at α = 1%.
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