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Extended Abstract

1 Introduction

In this paper we present an alternative approach for exploring convergence dynamics based on

the use of distances. Our methodology is underlined by an exploratory data analysis (EDA)

spirit in that the proposed empirical models are not derived from a theoretical economic model,

but use the very notion of convergence as a reduction in some form of “distance” (e.g. output

growth and its steady state) between a pair or group of variables of interest. Hence our approach

potentially has applicability in many situations where convergence dynamics are to be exam-

ined, without the prior need of a theoretical model . Within the context of a distance-based

convergence model we are able to provide estimates for the “speed of convergence”, half-life

and illustrate the fitted convergence path. We propose a variety of models for doing so, in-
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cluding single equation, pool and panel equations and nonparametric equations for getting the

above estimates. For most cases of practical empirical interest we are also able to provide an

assessment of convergence based on the distribution of pairwise differences between variables

of interest. We illustrate these ideas on the next section.

The literature on modeling convergence is really large and expanding rapidly. We do not

provide a comprehensive review in this abstract but we do connect our approach with some

related work. In the context of time series models convergence tests have been proposed based

on the use of differences but not distances, see for example Quah (1992) Bernard (1992), and

Bernard and Durlauf (1995). In such tests convergence is found if the difference between two

variables of interest is a stationary time series. When combining time series and cross-sectional

data in a panel a variety of papers use a number of popular panel unit root tests to test

for convergence, see for example Evans and Karras (1996), Evans (1998) for representative

applications in the context of growth convergence.1 An interesting, recent technical reference

on the use of such models, their pitfalls and potential remedies is given Phillips and Sul (2003).

The use of cross-sectional variances (a measure of dispersion and thus “distance”) was explicitly

considered in Evans (1996). In a number of papers the issue of convergence is addressed with the

use of predictive densities and distributional dynamics, differing in the specific methods used.

See for example Azariadis and Stachurski (undated) on the use of stochastic kernels in assessing

convergence using parametric estimates from a structural model as inputs in computing the

kernels; Maasoumi, Racine and Stengos (undated) on the use of entropy distance between cross-

country distributions for assessing convergence; Pittau and Zelli (undated) again on assessing

the evolution of cross-country distributions via kernel densities; Canova (2004) using a predictive

density approach to examine the existence of convergence clubs. Rappaport (2000) provides

arguments in favor of and a framework for time-varying speed of convergence. Nahar and Inder

(2002) examine convergence in a context that has some similarities to our work in the use of

distances in assessing convergence but is considerably more narrow than the methodology we

propose in this paper. Finally, a recent paper that uses pairwise distance measures, as we do,

but in a different empirical context than ours is Pesaran (2007).

1Most related literature on convergence addresses growth and income convergence.
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2 Distance-based Convergence Dynamics

Consider a group of p countries and, to begin with, a single variable of interest Xi(t), for

i = 1, 2, . . . , p. In the case where there is a target variable for assessing convergence (e.g.

a measure of a slowly-varying “steady state”), say X̄i(t) then the pairwise distance measure

between Xi(t) and the target is defined as:

ds
i (t)

def= |Xi(t)− X̄i(t)|s (1)

for s ≥ 1 and the total distance measure for all p countries will be given by:

ds
T (t) def=

p∑

i=1

ds
i (t) ⇔ dT (t) def=

[
p∑

i=1

ds
i (t)

]1/s

(2)

The above equation is the well-known Minkowski metric, where s = 1 corresponds to the

Manhattan metric and s = 2 corresponds to the Euclidean metric. Other types of distance can

also be used, for example the maximum distance measure dmax
T (t) def= max

i
d1

i (t).

Suppose next that there is no target variable available with respect to which we can assess

distance, so that we can only work with the pairwise distances between members of the group.

Let us define by ds
ij(t) the pairwise distance between member i and member j, i.e. ds

ij(t)
def=

|Xi(t) − Xj(t)|s. We can arrange these pairwise distances in the (p × p) symmetric distance

matrix D(t) given by:

D(t) def=




d11(t) d12(t) . . . d1p(t)

d21(t) d22(t) . . . d2p(t)
...

...
...

...

dp1(t) dp2(t) . . . dpp(t)




(3)

and note that it has q
def= p(p − 1)/2 distinct, non-zero elements, lying below or above the

main diagonal. These unique elements will be useful in the analysis that follows so we formally

defined them in the (q × 1) vector d(t) as:

d(t) def= S>vech(D(t)) (4)

where the vech(A) operator stacks the q + p elements of the symmetric matrix A lying on and

below the main diagonal and where the ((q +p)× q) selection matrix S contains the columns of



Kottaridi and Thomakos: Distance-based Convergence Dynamics 4

the ((q + p)× (q + p)) identity matrix that correspond to the non-zero elements in vech(D(t)).

We can construct a total distance (scalar) measure using the elements of d(t) as before:

ds
P (t) =

q∑

i6=j

[
ds

ij(t)
] ⇔ dP (t) def=




q∑

i6=j

ds
ij(t)




1/s

(5)

However, the vector of distinct distances d(t) can be used to formulate a multivariate and/or a

panel model for analyzing convergence.

We note that the use of distances implies that we use a non-linear transformation in the

differences between a pair of variables or a variable and its target. This is important as it allows

us to consider potentially simpler models for assessing convergence. Specifically, if convergence

takes place over a period of time then we must observe a decrease in the distance and the rate

of change in the distance measure we are using should be negative, or:

limt→∞〈d(t)〉 = γ → 0

∂〈d(t)〉/∂t < 0
(6)

where d(t) is any of the distance measures we considered before and where 〈X〉 denotes the

expected value of a random variable X. Note that we allow for a possibly non-zero limiting

value γ since it is not necessary to have achieved zero distance to claim that convergence has

taken place. Since convergence is associated with a decrease in distance the class of “decay”

models can be appropriate for modeling convergence dynamics. The simplest such model can

be derived from a standard differential equation for 〈d(t)〉 given by:

∂〈d(t)〉
∂t

def= −β(t) [〈d(t)〉 − γ] (7)

where β(t) is the (possibly varying) “speed of convergence” (equivalent, the rate of decay in

the distance) and γ is the limiting value as t →∞ as given in equation (6). Note that we have

〈d(t)〉 ≥ γ for all t and that convergence takes place when β(t) > 0 for all t - the model however

does not preclude the possibility of divergence, i.e. β(t) ≤ 0. In this equation the “speed of

convergence” is proportional to the difference of the distance at time t from the limiting value

of γ and we can re-write the time derivative as:

∂〈d(t)〉
∂t

· 1
〈d(t)〉 − γ

= −β(t) (8)
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If we assume a constant speed of convergence β(t) = β, as does most of the literature, then

the solution of equation (7) takes the form of a two-parameter exponential decay equation:

〈d(t)〉 = γ + [d(0)− γ] exp(−βt) (9)

which is expressible as a function of time only. It is well known that a differential equation like

equation (7) with constant coefficient β has an equivalent autoregressive solution given by:

〈d(t)〉 = φ0 + φ1〈d(t− 1)〉 (10)

where φ0
def= γ [1− exp(−β)] and φ1

def= exp(−β). However, the solution in equation (9) is much

more preferable from an empirical point of view: one does not have to dwell on the time series

properties of the distance series d(t) when using equation (9), as is simply a non-linear function

of time.

Converting equation (8) into a stochastic, estimable equation, by adding a series of random

deviations u(t) around the deterministic dynamics, we can write it in a couple of alternative

forms, to allow for single or pool/panel estimation. The properties of u(t) are to be determined

within the context of convergence. For single equation estimation we can use d(t) = dT (t) from

equation (2) or d(t) = dP (t) from equation (5) and write:

d(t) = γ + [d(0)− γ] exp(−βt) + u(t) (11)

For short time series we may want to pool together the individual differences of equation (1)

or the pairwise differences of equation (3) and consider the model as:

ds
i (t) = γi + [di(0)− γi] exp(−βit) + ui(t)

ds
ij(t) = γij + [dij(0)− γij ] exp(−βijt) + uij(t)

(12)

Placing restrictions on the individual coefficients we can differentiate between panel and pool

estimation. We have three different options per equation: for example, when using ds
i (t), we

can vary both γi’s and βi’s, vary only the γi’s and have a common β, or have both γ and

β common for all i’s (and similarly for the γij ’s and βij ’s).2 Estimation of both equation

2Note that by using the solution of equation (9) and not the autoregressive representation of equation (10)

we can avoid all shorts of problems associated with the estimation of dynamic panels.
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(11) and equation (12) is straightforward by non-linear least squares or non-linear weighted

least squares, depending on the specification. If the number of countries p is large then some

restrictions would need to be placed in either the γ’s or the β’s to reduce the number of free

coefficients and achieve or speed-up the numerical optimization. After estimation we can easily

obtain the fitted “convergence path” and obtain immediate visual estimates of half-lives.

If the conditions of equation (6) are satisfied, and we thus have convergence, we would

expect that the random deviations given by u(t) would be transitory and their (unconditional)

variance would probably decrease over time. It is not immediately apparent whether the u(t)

series should be stationary, if we allow for the possibility that the magnitude of the deviations

from the convergence path is decreasing over time. Based on our empirical observations we

propose the following as a potentially plausible structure for the u(t) series:

1. u(t) is mean-reverting around its unconditional mean of zero.

2. u(t) can exhibit strong persistence at low lags that, however, decays exponentially fast.

3. u(t) can exhibit low-frequency cyclical behavior - we make no claims as to whether there

are “real” underlying cycles or not.

4. u2(t) or |u(t)| can exhibit a negative trend, accounting for a decreasing variance over time.

The above structure is, as noted, completely based on empirical observations and the futures

of our data although it appeared in practically all grouping combinations that we tried.

In addition to the parametric models discussed above we can make good use of the pairwise

differences ds
ij(t) by estimating their empirical distributions at two distinct time periods. The

number of distinct pairwise differences for p countries is q = p(p−1)/2. For sufficiently large p,

e.g. p > 15 we obtain q > 100 observations of pairwise differences. These observations can be

used in computing the empirical distributions at two different time periods (e.g. the beginning

and end of the sample) and then compared, either visually or by formal statistical tests for their

differences. Specifically, let {dr(tj)}q
r=1

def= {d12(tj), d13(tj), . . . , d1p(tj), . . . , dp−1,p(tj)} denote

the (q × 1) sequence of pairwise distances at period tj and compute the empirical distribution
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function F̂ (δ, tj) by:

F̂ (δ, tj)
def=

1
q

q∑

r=1

I(dr(tj) ≤ δ) (13)

where I(A) is the indicator function of the set A. If convergence takes place then, for t1 À t0

being two different time periods sufficiently apart in time, we should observe that:

F̂ (δ, t1) ≥ F̂ (δ, t0) ∀ δ (14)

The condition in the above equation can be easily visualized and checked but we can also apply

formal tests for distributional distances, akin to the approach of Maasoumi, Racine and Stengos

(undated). Note that this condition is similar to conditions applied in empirical distributions

in the context of stochastic dominance

3 Summary of Empirical Illustrations

Our first application of the suggested methodology is in the context of European inflation

convergence. Using monthly data from 1991/1994 to 2005 we consider the annual inflation rates

of the EU-25 countries (and a number of sub-groups). We apply our parametric models using

the distances from a common target variable X̄(t), taken to be the average annual inflation

of France, Germany and Netherlands for each month in the sample. We then consider the

distributional differences using pairwise differences.

Our second application is in the context of income convergence within several OECD coun-

tries. Using annual data from 1970/1975 to 2005 on real GDP per capita we apply our para-

metric models using both pairwise distances and distances from a common target. We take the

common target to be either the US real GDP or the average real GDP for each month in the

sample. We also consider the distributional differences using the pairwise differences.

We next present a set of representative results from our first application. We consider the

group of all EU-25 countries. Estimation results based on the parametric model of equation

(11), using the Manhattan distance metric, are given below. We provide the estimates of

the (β, γ) parameters and a number of statistics for the residual series û(t) to illustrate their
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properties. The estimated equations are given by:

dT (t) = 23.85 + [d(0)− 23.85] exp(−0.03t) + û(t)

û(t) = 1.16û(t− 1)− 0.24û(t− 2) + ê(t)

|û(t)| = 10.13− 0.05t + η̂(t)

(15)

where all estimates are significant at the 5% level. The “speed of convergence” is estimated at

3% while the limiting value is estimated at 23.85. Note that this is not a large value: since we

are using the total distance series of equation (2) it corresponds to a sum over the 25 countries.

We should divide it by 25 to get it appropriately scaled, i.e. to obtain 0.954. For comparison,

note that the estimates of “speed of convergence” and the limiting value in the context of pooled

estimation using equation (12) are 3% and 1.18 respectively, so the estimates are practically

the same. In Figure 1 we plot the actual distances and the fitted values corresponding to the

convergence path. We can easily see from the plot that the half-life is about 3 years.

The analysis of the residual series û(t) shows that they follow the properties we outlined in

the previous section. An AR(2) model with real distinct roots adequately captures the dynamic

properties of the series. The series, plotted in Figure 2, does exhibit a cyclical pattern which

cannot be accounted by the fitted AR model as its roots are not complex. Figure 3 has the

spectral density of the series which does exhibit a marked peak at frequency 0.03. A regression

of the absolute values of the residuals (as a proxy for their variance) against a time trend also

shows that the variance of the residuals is decreasing over time. The actual and fitted values

from this third regression are given in Figure 4. Finally, in Figure 5 we present the results

from the estimation of the empirical distribution functions based on pairwise differences. It is

evident that condition of equation (14) is clearly satisfied.

It is interesting to note that the pattern of results presented before appears both for various

sub-groups in the context of the EU and in the analysis of the OECD data. We are currently

working on producing a complete list with the related results.
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