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Abstract

The main aim of this paper is to show that expectation-driven fluctu-
ations of a rational bubble may exist. We consider a simple overlapping
generations model where money is used to finance a share of consumption
of second period of life. The rest of this consumption is financed by credit,
using remunerated non-monetary savings coming from the holdings of cap-
ital and bonds. Because they have no fundamental value, bonds represent
a pure bubble. In this economy, collateral matters because a larger level
of non-monetary savings increases the share of consumption financed by
credit. We show that the bubbly steady state can be locally indeterminate
under arbitrarily small market distortions. Hence, persistent fluctuations
of equilibria with (rational) bubbles are explained by self-fulfilling expec-
tations. Finally, we prove that a not too expansive monetary policy can
not only rule out sunspot fluctuations, but also improves welfare at the
steady state.
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1 Introduction

” [...] Clearly, sustained low inflation implies less uncertainty about the future,
and lower risk premiums imply higher prices of stocks and other earning assets.
We can see that in the inverse relationship exhibited by price/earnings ratios
and the rate of inflation in the past. But how do we know when irrational
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exuberance has unduly escalated asset values, which then become subject to
unexpected and prolonged contractions as they have in Japan over the past
decade? [...] ”

In Remarks by Chairman Alan Greenspan. At the Annual Dinner and Francis
Boyer Lecture of The American Enterprise Institute for Public Policy Research,
Washington, D.C. December 5, 1996.

Starting from these two controversial words of Alan Greenspan ”irrational
exuberance”, we are interested in the existence and persistence of rational ex-
uberance rather than irrational exuberance. We address this issue by showing
the existence of persistent expectation-driven fluctuations of a rational bubble.

As explained in Tirole (1982, 1985), the overlapping generations model is the
useful framework to show the existence of a rational bubble in a dynamic general
equilibrium model, because agents have short lifes and horizons.1 As it is well-
known, Tirole (1985) shows the existence of bubbly steady state, which requires
that the steady state without bubble is dynamically inefficient. Moreover, there
is a unique dynamic path which monotonically converges to this steady state.

Being also interested in rational bubbles within a dynamic general equi-
librium model, we want to show that these rational bubbles can experience
persistent fluctuations, that are not explained by shocks on fundamentals, but
are rather driven by the volatility of expectations, which corresponds to the
main idea behind exuberance. Our explanation is mainly based on the features
of the credit market.

We extend the overlapping generations model proposed by Tirole (1985)
where consumers can save through two assets, productive capital and a pure
bubble (bond), introducing money as a third asset. As in Hahn and Solow
(1995), money is needed, because of a binding cash-in-advance constraint:2 a
share of consumption of the second period of life is paid using money balances,3

the rest being financed by non-monetary savings or credit (capital and bonds).
A novel feature of this model consists in assuming that the share of consumption
financed by credit is increasing with the level of non-monetary savings. This
corresponds to the simple idea that a consumer owning more collateral (capital
and bonds) can increase his share of consumption financed by credit. Moreover,
we note that the higher is the credit share, the lower the market distortions on
the credit market.

In this framework, we show that there exists a steady state with a positive
bubble and we focus, throughout the paper, on its properties. We explore
the effect of a modification of the constant money growth on the stationary

1See also Tirole (1990) for an introductory survey.
2In contrast to several contributions (Michel and Wigniolle (2003, 2005), Weil (1987)),

the real value of money does not correspond to the bubble in our framework. Money is
valued because we focus on equilibria where the cash-in-advance constraint is always binding.
Instead, a bubble can exist because there is a bond without fundamental value.

3See Crettez et al. (1999) for a presentation of different types of cash-in-advance constraints
in the Diamond overlapping generations model.
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allocation. We show in particular that, when it is not too large, a decrease of
the money growth rate improves welfare.

Dynamics are studied through a local analysis. We start by showing that
under a constant credit share, the bubbly steady state can never be indetermi-
nate. Only endogenous cycles of period two can emerge. On the contrary, when
collateral matters, i.e. the credit share is increasing in non-monetary savings,
endogenous cycles cannot only occur, but the bubbly steady state can be inde-
terminate. Therefore, persistent expectation-driven fluctuations of the rational
bubble can emerge, providing a foundation for rational exuberance. It is also
worthwhile to notice that these fluctuations appear for arbitrarily small distor-
tions on the credit market4 and are mainly explained by the opposite dynamic
patterns of real money balances and non-monetary savings.

This issue of fluctuations of a rational bubble has been addressed in some
previous papers. Weil (1987) shows the existence of a sunspot equilibrium,
where the bubble can crash with a positive probability. However, his analysis
is based on markovian and exogenous probabilities of change and is not able to
explain persistent fluctuations of the bubble. In Azariadis and Reichlin (1996),
endogenous fluctuations of the bubble (debt) may occur through a Hopf bifur-
cation. However, in contrast to our result, their analysis requires sufficiently
large increasing returns,5 i.e. strong market imperfections. Finally, Michel and
Wigniolle (2003, 2005) provide an alternative explanation of the fluctuations of
a bubble. Cycles between a regime with a bubble (real money balances) and
a regime where a cash-in-advance constraint is binding are exhibited. Hence,
fluctuations occurs, but in contrast to our analysis, the bubble does not persist
along all the dynamic path.

The remainder of the paper is organized as follows. In Section 2 we present
the model, while we define the intertemporal equilibrium in Section 3. Section
4 is devoted to study the bubbly steady state. In Section 5, we show the
indeterminacy of the bubbly steady state. Section 6 concludes the paper, while
many technical details are gathered in the Appendix.

2 The model

We consider an overlapping generations model with two-period lived households
and discrete time, t = 0, 1, ...,+∞.

2.1 Households

At period t, Nt individuals are born. Every one consumes a quantity c1t of the
final good and supplies inelastically one unit of labor when young, and consumes
c2t+1 when old. Population growth is constant, n ≡ Nt+1/Nt > 0.

4This means a small elasticity of the credit share with respect to non-monetary savings
and a credit share close to one.

5Indeed, the real interest rate has to be increasing in capital.
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In order to ensure the consumption during the retirement age, people save
through a diversified portfolio of nominal balances Mt+1, bonds Bt+1 and pro-
ductive capital Kt+1.6 Bonds are remunerated at an interest rate, capital is
used by firms to produce the consumption good, and money is needed because
of a cash-in-advance constraint in the second period of life. We further note
pt the price of consumption good, it+1 and rt+1 the rental rates on bonds and
capital, respectively, and wt the real wage.

Preferences are summarized by a Cobb-Douglas utility function in consump-
tion of both periods:

U (c1t, c2t+1) ≡ c1tac1−a2t+1 (1)

The representative household of a generation born at time t derives con-
sumption and assets demands (money, bonds and capital), by maximizing the
utility function (1) under the first and second-period budget constraints:

Mt+1

ptNt
+
Bt+1

ptNt
+
Kt+1

Nt
+ c1t ≤ τt + wt (2)

c2t+1 ≤ Mt+1

pt+1Nt
+ it+1

Bt+1

pt+1Nt
+ rt+1

Kt+1

Nt
(3)

where τt = (Mt+1 −Mt) / (ptNt) are the monetary transfers distributed to
young households. In addition, at the second period of life, each consumer
faces a cash-in-advance constraint:

[1− γ (st)] pt+1c2t+1 ≤
Mt+1

Nt
(4)

where st represents non-monetary savings:

st ≡
Bt+1

ptNt
+
Kt+1

Nt
(5)

A share 1−γ (s) ∈ (0, 1) of consumption purchases has to be paid cash.7 The
remaining part γ (s) can be paid at the end of the period and denotes the credit
share, that is the fraction of consumption good bought on credit. Individual
non-monetary savings st works as collateral in order to reduce the need of cash,
i.e. the larger the collaterals, the easier the purchasing on credit.8

Assumption 1 γ (s) ∈ (0, 1) is a continuous function defined on [0,+∞), C2

on (0,+∞) and strictly increasing (γ′ (s) > 0). In addition, we define:

η1 (s) ≡ γ′ (s) s
γ (s)

, η2 (s) ≡ γ′′ (s) s
γ′ (s)

(6)

ηη (s) ≡ η′1 (s) s
η1 (s)

= 1− η1 (s) + η2 (s)

6We assume a full capital depreciation during the period.
7We observe that, alternatively, 1/ [1− γ (s)] can be interpreted as the endogenous velocity

of money.
8In fact, we extend the cash-in-advance constraint proposed in Hahn and Solow (1995) to

the case where the share of consumption when old paid by cash depends on non-monetary
savings.
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We note that when η1 (s) = 0 and γ(s) tends to 1, money is no more need
and there is no more any credit market distortion. Our framework becomes
similar to the model studied in the seminal paper by Tirole (1985).

Using πt+1 ≡ pt+1/pt, a no-arbitrage condition follows from the choice of a
non-monetary portfolio:

it+1 = πt+1rt+1 (7)

Introducing the variables per capita mt ≡ Mt/ (ptNt), bt ≡ Bt/ (ptNt) and
kt ≡ Kt/Nt, the constraints (2)-(4) can be rewritten:

nπt+1mt+1 + st + c1t ≤ τt + wt (8)
c2t+1 ≤ nmt+1 + rt+1st (9)

[1− γ (st)] c2t+1 ≤ nmt+1 (10)

where now
st = n (kt+1 + πt+1bt+1) (11)

Each household maximizes (1) under the reduced budget and cash-in-advance
constraints (8)-(10) to determine his optimal portfolio (mt+1, st) and his optimal
consumption plan (c1t, c2t+1).

In order to ensure the different constraints to be binding, we assume that
money is a dominated asset, that is rt+1 > 1/πt+1 or, equivalently, it+1 > 1.
The opportunity cost of holding money, that is the nominal interest rate it+1−1,
is supposed to be strictly positive.

Assumption 2 Let ωt+1 ≡ st/ (st + nπt+1mt+1). For all t ≥ 0, we assume
it > 1 and

η1 (st) <
1− γ (st)
γ (st)

ωt+1

1− ωt+1
(12)

Using this assumption, we show that:

Lemma 1 Under Assumption 2, constraints (8)-(10) are binding.

Proof. See the Appendix.

Inequality (12) puts an upper bound to the credit-share elasticity η1 (s).
In fact, if collaterals matter too much, people no longer hold money and the
cash-in-advance constraint fails to be binding.

Let Rst+1 ≡ rt+1 − γ′ (st) c2t+1 and Rmt+1 ≡ 1/πt+1 − γ′ (st) c2t+1. Under
Assumption 2, solving the optimal households’ behavior, we get:

U1 (c1t, c2t+1)
U2 (c1t, c2t+1)

=
1

πt+1

Rst+1

γ (st)Rmt+1 + [1− γ (st)]Rst+1

>
1

πt+1
(13)

where the last inequality holds because money is a dominated asset (Rmt+1 <
Rst+1).9 We further note that under a constant credit share (γ (s) = γ), equation

9Second order conditions are derived in the Appendix. We show that they are satisfied if
η2(s) ≤ 2(η1(s)− 1) or η1(s) sufficiently low.
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(13) rewrites:
U1 (c1t, c2t+1)
U2 (c1t, c2t+1)

=
rt+1

1 + (1− γ) (it+1 − 1)

While the left-hand side is a marginal rate of intertemporal substitution, the
right-hand side would reduce to rt+1 when γ tends to 1, as in the non-monetary
model by Diamond (1965). In this limit case, there is no market distortion.
When γ < 1, money demand entails an opportunity cost which lowers the real
return on portfolio. More precisely, the household has to pay cash 1 − γ to
enjoy an additional unit of consumption when old. The interest rate it+1 − 1
on the cash holding entails an opportunity cost (1− γ) (it+1 − 1) which reduces
the purchasing power of non-monetary saving. When the credit share further
depends on collaterals, we get an additional distortion due to the marginal
impact of savings on the credit share (γ′ (s) > 0).

2.2 Firms

A competitive representative firm produces the final good using the constant
returns to scale technology f (K/N)N , where the intensive production function
f (k) satisfies:

Assumption 3 f (k) is a continuous function defined on [0,+∞) and C2 on
(0,+∞), strictly increasing (f ′ (k) > 0) and strictly concave (f ′′ (k) < 0). We
further assume limk→0+ f ′ (k) = +∞ and limk→+∞ f ′ (k) = 0.

The firm maximizes the (real) profits f (Kt/Nt)Nt−wtNt− rtKt, taken the
prices as given, and we obtain:

rt = f ′ (kt) ≡ r (kt) (14)
wt = f (kt)− ktf ′ (kt) ≡ w (kt)

For further reference, note α (k) ≡ f ′ (k) k/f (k) ∈ (0, 1) the capital share in
total income and σ (k) ≡ [f ′ (k) k/f (k)− 1] f ′ (k) / [kf ′′ (k)] > 0 the elasticity
of capital-labor substitution. The two following elasticities can be easily derived:

εr (k) ≡ r′ (k) k
r(k)

= −1− α (k)
σ (k)

(15)

εw (k) ≡ w′ (k) k
w(k)

=
α (k)
σ (k)

2.3 Monetary policy

The monetary policy implements a constant money growth, Mt+1/Mt = µ.
Using real variables per capita, we obtain:

µ = nπt+1mt+1/mt (16)
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As seen above, we assume, for simplicity, that money is distributed by the
monetary authority to young consumers through the lump-sum transfer τt =
(Mt+1 −Mt) / (ptNt), or equivalently,

τt = nπt+1mt+1 −mt (17)

2.4 Bonds

Bonds follow Bt+1 = itBt.10 Using real variables per capita, one equivalently
get:

itbt = nπt+1bt+1 (18)

Because they have zero intrinsic (fundamental) value, these bonds are pure
bubbles.

3 Equilibrium

Substituting (17) in the first-period budget constraint (8), we obtain:

mt + st + c1t = w (kt) (19)

where mt represents demand for real balances per capita.11 Using (9) and (10),
we get:

mt+1 = st
r (kt+1)

n

1− γ (st)
γ (st)

(20)

c2t+1 = r (kt+1)
st

γ (st)
(21)

Substituting (20) into (16), we deduce the inflation factor:

πt+1 =
µ

n

γ (st)
γ (st−1)

1− γ (st−1)
1− γ (st)

r (kt) st−1

r (kt+1) st
(22)

Using these expressions, we can now derive the two equations that will de-
termine the dynamics of this economy. First, from (13), (21) and (22), the
consumers’ intertemporal trade-off can be rewritten:

xt+1 =
1− a
a

[1− η1 (st)] str (kt+1)

γ (st) st + µ [1− γ (st)− η1 (st)] st−1
r(kt)
n

γ(st)
1−γ(st)

1−γ(st−1)
γ(st−1)

(23)

10For instance, one can assume that this asset is supplied by the government. bt can be
considered as a (real) engagement to repay bt unit of consumption, whatever the price pt.
Alternatively, Bt can be interpreted as the (monetary) price of a quantity of asset normalized
to one. In both the cases, Bt is a non-predetermined variable.

11Note that aggregating (9) and (19), and substituting (11) and (18), we find:

c1t + c2t/n+ nkt+1 = r (kt) kt + w (kt) = f (kt)
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where

xt+1 ≡
c2t+1

c1t
=

str (kt+1) /γ (st)

w (kt)− st − st−1
r(kt)
n

1−γ(st−1)
γ(st−1)

(24)

is obtained from (19), (20) and (21).12 Second, combining (7), (11) and (18)
gives:

r (kt) (st−1 − nkt) = n (st − nkt+1) (25)

Definition 1 An intertemporal equilibrium with perfect foresight is a sequence
(st−1, kt) ∈ R2

++, t = 0, 1, ...,+∞, such that (23)-(25) are satisfied, given k0 =
K0/N0 > 0.

Equations (23)-(25) constitute a two-dimensional dynamic system determin-
ing the sequence (st−1, kt)t≥0 where kt is the only one predetermined variable.

Let us notice that, substituting the definition of ωt+1 and (20) into (12), we
have η1 (st) < 1/it+1. Hence, at equilibrium, Assumption 2 imposes:

1 < it+1 < 1/η1 (st) (26)

for all t = 0, 1, ...,+∞.

4 Steady state analysis

A steady state is a solution (s, k) ∈ R2
++ that satisfies:

x =
1− a
a

(1− η1(s)) r(k)
γ(s) + µ (1− γ(s)− η1(s)) r(k)/n

(27)

with

x =
r(k)

γ(s) (w(k)/s− 1)− (1− γ(s)) r(k)/n

and13

r(k) (s− nk) = n (s− nk) (28)

By direct inspection of this last equation, we deduce that two steady states
may exist, the one without bubble (bubbleless steady state) where s = nk, and
the one with a bubble (bubbly steady state) where s > nk. Recall that in this
paper, we are interested in the role of monetary policy and credit share14 on
the level of the bubble as well as on the occurrence of persistent fluctuations of
the bubble. Therefore, we will focus on the bubbly steady state and we will not
analyze the bubbleless steady state.15

12The positivity of the right-hand side of (23) is ensured by (12) (see the proof of Lemma
1). Hence, xt+1, solution of (23), will be positive at equilibrium.

13Equation (28) is equivalent to r(k)b = nb.
14Notice that γ(s) can also be seen as coming from the credit market regulation.
15It is in fact possible to show the existence of such a steady state and analyze extensively

its properties.
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Using (27) and (28), a steady state with s > nk is a solution (s, k) ∈ R2
++

satisfying:

r (k) = n (29)
a

1− a
ns/γ (s)

w (k)− s/γ (s)
=

n [1− η1 (s)]
γ (s) + µ [1− γ (s)− η1 (s)]

(30)

It is useful to notice that the level of the capital-labor ratio is given by the
golden rule (29). Therefore, this also determines the level of wage w(k). Given
k, non-monetary saving s is given by equation (30).

We further notice that, at the steady state, equation (16) simplifies to µ =
nπ. Using equation (18), we also have i = πn. Therefore, according to equation
(26), Assumption 2 is satisfied if and only if the following inequalities hold:

1 < µ < 1/η1(s) (31)

We pursue the analysis of the bubbly steady state by showing its existence.
Second, we analyze how the credit share and money growth affect the stationary
allocation. We end by examining the relationship between monetary policy and
welfare.

4.1 Existence

To establish the existence of a steady state with a positive bubble, we further
assume:

Assumption 4

anf ′−1(n)
γ (nf ′−1(n))w (f ′−1(n))− nf ′−1(n)

<
(1− a)[1− η1

(
nf ′−1(n)

)
]

µ− γ (nf ′−1(n)) (µ− 1)− µη1 (nf ′−1(n))

When this last inequality is satisfied, we can prove the following proposition:

Proposition 1 Let s ≡ nf ′−1(n) and s be defined by w ≡ w(f ′−1(n)) = s/γ(s).
Under Assumptions 1-4, there exists a steady state characterized by the golden
rule, r (k) = n, and a positive bubble, s ∈ (s, s). Moreover, when γ is constant,
uniqueness of this steady state is ensured.

Proof. See the Appendix.

We note that, by continuity, uniqueness of the steady state with bubble is
still satisfied when the credit share γ(s) is no more constant but its elasticity
η1(s) is weak for all s ∈ (s, s). However, multiplicity cannot a priori be excluded
if this credit share elasticity is sufficiently large for some values of s.
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4.2 Comparative statics under η1 constant

Comparative statics are analyzed assuming that the credit share elasticity η1(s)
is constant (ηη(s) = 0). We start by studying the role of the credit constraint
on non-monetary savings and, therefore, on the size of the bubble. To simplify
the analysis, we assume that:

Assumption 5

µ < 1 +
(1− η1)2

η1

1− a
a

w

s

We notice that this additional assumption is not restrictive when η1 is low.
Since the credit share elasticity η1 is constant, we can show that:

Proposition 2 Under Assumptions 1-5 and η1 constant, non-monetary saving
s and the bubble b are both increasing with η1 because µ > 1.

Proof. See the Appendix.

Under a positive, but not too large (Assumption 5), rate of money growth
µ − 1, the more sensitive the credit share to collaterals, the higher the non-
monetary saving. Indeed, under a higher η1, the cash-in-advance constraint
c2 ≤ nm/[1− γ(s)] enlarges more, following an increasing of s. This reinforces
the raise of c2 and hence of s. Since η1 affects neither the capital-labor ratio,
nor the inflation, a more sensitive credit share to collaterals also increases the
size of the bubble.

To examine the role of the level of the credit share on non-monetary saving
and on the size of the bubble, we further assume that η1 = 0, i.e. the credit
share γ is constant. Then, it is possible to evaluate the effect of γ on s. One can
show that under a positive monetary growth rate µ > 1, non-monetary saving
is increasing with the credit share, which is essentially due to a raise of the
bubble size b.16 Indeed, households are required to hold less cash, improving
the non-monetary part in total saving. Since the capital-labor ratio is given
by the golden rule, the non-monetary saving raises because the bubble becomes
larger.

16Assume γ constant (η1 = 0). Using the expressions of the ratio between consumptions
and non-monetary saving:

x =
1− a
a

n

γ + (1− γ)µ

s = kn
1− α
α

(1− a) γ

1 + a (1− γ) (µ− 1)

we differentiate (30) with respect s and γ, and get:

ds

dγ

γ

s
=

1 + a (µ− 1)

1 + a (µ− 1) (1− γ)

which is strictly positive since µ > 1. Moreover, using b = [s − nf ′−1 (n)]/µ, we have
db/dγ = (1/µ)ds/dγ, which is also strictly positive.
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The capital-labor ratio, which is determined by the golden rule r(k) = n, can
never be affected by the monetary policy when there is a bubble. However, non-
monetary saving is modified by money growth because the size of the bubble is.
When µ, η1, a, w and s satisfy Assumption 5, we can show:

Proposition 3 Under Assumptions 1-5 and η1 constant, non-monetary saving
s is decreasing with µ if and only if η1 < 1− γ.

Proof. See the Appendix.

A higher µ increases the inflation rate and the nominal interest rate, i.e. the
opportunity cost of holding money. This reduces the demand of real balances.
When the credit share is little sensitive to collaterals (η1 < 1 − γ), the cash-
in-advance constraint lowers the future consumption which, according to the
budget constraint, requires less non-monetary saving (εsµ < 0). Conversely,
if credit market sensitivity to collaterals becomes large enough (η1 > 1 − γ),
individuals can reduce the burden of cash-in-advance by purchasing collaterals
(εsµ > 0) so compensating the increase of nominal interest rate.17

It is also of interest to compute how the (real) bubble b adjusts in response
to a change of money growth. We can show that:

Corollary 1 Under Assumptions 1-5 and η1 constant, the (real) bubble b is
decreasing with µ if η1 < 1− γ.

Proof. See the Appendix.

When η1 < 1 − γ, a higher rate of money growth reduces the size of the
(real) bubble because it lowers non-monetary saving, but also because inflation
raises. If η1 > 1 − γ, a more expansive monetary policy can increase the size
of the (real) bubble if the increase of non-monetary saving is sufficiently large.
This occurs for instance if the credit share γ is sufficiently low.

4.3 Welfare

To further analyze the role of money growth on the stationary allocation, we
investigate now how µ affect consumers’ welfare evaluated at the steady state.
As already explained, since there is a bubble, the capital-labor ratio k given by
the golden rule does not depend on the monetary policy, whereas non-monetary
saving s is affected by the choice of µ. Therefore consumptions when young and
old also. Indeed, c1 and c2 can now be written:

c1 = f (k)− nk − s

γ (s)
(32)

c2 = n
s

γ (s)
(33)

17This interpretation is confirmed by the fact that the ratio between consumptions x = c2/c1
is increasing with respect to s (see the proof of Proposition 3). Therefore, this ratio increases
(decreases) with µ when η1 > 1− γ (η1 < 1− γ).
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The stationary level of welfare of an household is given by W = U(c1, c2).
Let:

µ1 ≡ γ

η1 − (1− γ)

µ2 ≡ 1 +
1− η1

1− η1 + ηη

(1− η1)2

η1

1− a
a

w

s

After some computations,18 we obtain:

εWµ = εUc2
µ

γ

1− η1

η1

1− η1

1− η1 + ηη

µ− 1
µ− µ1

1− γ − η1

µ− µ2
(34)

To establish how the welfare evolves according to a variation of µ > 1, we
further assume19:

Assumption 6 ηη > η1 − 1.

We are able to show the following proposition:

Proposition 4 Consider that Assumptions 1-4 and 6 are satisfied.

1. When η1 < 1 − γ: the welfare W is decreasing in µ for 1 < µ < µ2, and
increasing for µ > µ2;

2. When 1−γ < η1: the welfare W is decreasing in µ for 1 < µ < min{µ1, µ2},
increasing for min{µ1, µ2} < µ < max{µ1, µ2}, and decreasing again for
µ > max{µ1, µ2}.

In the limit case where µ = 1, the welfare W reaches a local maximum.

Proof. See the Appendix.

Recall that a variation of µ induces a decrease or an increase of non-monetary
savings s depending on the value of η1 with respect to 1 − γ (see Proposition
3). Moreover, by direct inspection of (32) and (33), we see that consumption
c1 is decreasing in s, whereas c2 is raising with s. Hence, when η1 < 1− γ and
µ not too large, a higher money growth rate, decreasing non-monetary savings,
has a predominant effect on welfare through consumption of the second period
of life. On the contrary, when η1 > 1− γ and µ not too large, welfare decreases
with the money growth rate, because the raise of non-monetary savings reduces
consumption of the first period, which has the most important effect on welfare.

In any case, it is important to notice that starting with a not too large money
growth rate, a decrease of µ is welfare improving.

Finally, we note that in the limit case where µ tends to 1, we have U1(c1, c2)/
U2(c1, c2) = r = n (see equation (27)), which corresponds to the usual intertem-
poral trade-off in the Diamond (1965) model without cash-in-advance constraint.
Market distortions do no more affect consumers’ choice. This also corresponds
to the Friedman rule i = nπ = 1.

18See the Appendix for more details on the derivation of equation (34).
19Notice that Assumption 6 includes the isoelastic case (ηη = 0).
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5 Sunspot bubbles

We will show the existence of sunspot bubbles, that is, multiple equilibria that
converge to a steady state characterized by a positive bubble. We will address
this issue establishing that the steady state with a positive rational bubble
can be locally indeterminate and, therefore, expectation-driven fluctuations of
the bubble can arise, without any shock on the fundamentals. We will further
emphasize the crucial role of collateral on the credit share. Indeed, when the
credit share is constant, the steady state will never be indeterminate, whereas
when it depends on non-monetary savings, indeterminacy could occur under
arbitrarily weak market distortions.

We start by linearizing the dynamic system (23)-(25) around the steady state
with a positive bubble20 and obtain the following proposition:

Proposition 5 Let

Z1 ≡ (1− γ − η1)
[

1− a
a

+ µ
1− γ − η1

(1− γ) (1− η1)

]
(35)

Z2 ≡ γ

[
µ− 1
1− η1

(
1 + η1 +

η1

1− η1
η2

)
− µ 1− γ − η2

1

(1− γ) (1− η1)
− 1− a

a

]
(36)

Z3 ≡ 1− a
a

(
1 + η1

1− y
y

)
+ µ

1− η1 − γ
1− η1

(
1 +

η1

1− γ
1− y
y

)
(37)

where the capital share in total non-monetary saving y ≡ rk/(rk+ ib) = nk/s ∈
(0, 1], γ ≡ γ(s), η1 ≡ η1(s) and η2 ≡ η2(s) are all evaluated at the steady state.

Under Assumptions 1-4, the characteristic polynomial evaluated at a steady
state with a positive bubble (r(k) = n, y ∈ (0, 1)) is defined by P (X) ≡ X2 −
TX +D = 0, where:

D =
Z1

Z2
− 1− α

σ

Z3

Z2
≡ D (σ) (38)

T = 1 +D (σ)− 1− α
σ

1− y
y

(
Z1

Z2
− 1
)
≡ T (σ) (39)

Proof. See the Appendix.

Following Grandmont et al. (1998), the local stability properties of the
steady state, that is, the location of the eigenvalues with respect to the unit
circle, can be characterized in the (T,D)-plane (see Figures 1 and 2). More
explicitly, we evaluate the characteristic polynomial P (X) ≡ X2−TX +D = 0
at −1, 0 and 1. Along the line (AC), one eigenvalue is equal to 1, i.e. P (1) = 1−
T+D = 0. Along the line (AB), one eigenvalue is equal to −1, i.e. P (−1) = 1+
T+D = 0. On the segment [BC], the two eigenvalues are complex and conjugate

20For sake of conciseness, we will not analyze local dynamics in the neighborhood of the
steady state without bubble. Moreover, this would not help us to prove the result we focus
on.
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with unit modulus, i.e. D = 1 and |T | < 2. Therefore, inside the triangle ABC,
the steady state is a sink, i.e. locally indeterminate (D < 1 and |T | < 1+D). It
is a saddle point if (T,D) lies on the right or left sides of both (AB) and (AC)
(|1 +D| < |T |). It is a source otherwise. Moreover, when a parameter varies
continuously, we can examine how (T,D) moves in the (T,D)-plane. A (local)
bifurcation arises when at least one eigenvalue crosses the unit circle, that is,
when the pair (T,D) crosses one of the loci (AB), (AC) or [BC]. According to
the changes of the bifurcation parameter, a transcritical bifurcation (generically)
occurs when (T,D) goes through (AC), a flip bifurcation (generically) arises
when (T,D) crosses (AB), whereas a Hopf bifurcation (generically) happens
when (T,D) goes through the segment [BC].
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Figure 1: Local dynamics when γ is constant

A convenient parameter to discuss the stability of the steady state and the
occurrence of bifurcations in the (T,D)-plane is the elasticity of capital-labor
substitution σ ∈ (0,+∞). When this bifurcation parameter varies, the locus
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σ = +∞

σF

σH

Figure 2: Indeterminate bubble

Σ ≡ {(T (σ) , D (σ)) : σ ≥ 0} describes a half-line with a slope given by:

S =
D′ (σ)
T ′ (σ)

=
Z3

Z3 + (Z1 − Z2) (1− y) /y
(40)

We further note that the half-line Σ is characterized by the endpoint (T (+∞) ,
D (+∞)) given by:

D (+∞) = Z1/Z2 and 1− T (+∞) +D (+∞) = 0

which is located on the line (AC). Finally, the starting point (T (0+) , D (0+))
is such that T (0+) = ±∞ and D (0+) = ±∞, depending on the slope S.

To clearly establish the crucial role played by collaterals on the credit share,
we begin by analyzing the case where the credit share γ is constant, i.e. η1 =
η2 = 0. Using equations (35)-(37), we get:

Z1/Z2 = −[1 + a(µ− 1)](1− γ)/γ < 0 (41)
Z3/Z2 = −[1 + a(µ− 1)]/γ < 0 (42)
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Hence, the slope S belongs to (0, 1) and D(σ) is decreasing. This also means
that T (0+) = +∞ and D (0+) = +∞. Moreover, since D (+∞) = Z1/Z2 < 0,
(T (+∞) , D (+∞)) is on the line (AC) below the horizontal axis. Let:

γ̃ ≡ 1 + a(µ− 1)
2 + a(µ− 1)

∈ (1/2, 1) (43)

We easily deduce that for γ ∈ (γ̃, 1), D (+∞) > −1, whereas for γ ∈ (0, γ̃),
D (+∞) < −1. Therefore, for γ ∈ (γ̃, 1), the half-line Σ is below (AC) and
above (AB). For γ ∈ (0, γ̃), Σ is still below (AC) but crosses (AB) when
σ = σF ,21 with:

σF ≡ (1− α)
[

1− y
2y

+
1 + a(µ− 1) + γ(1− y)/y
(1− γ)[1 + a(µ− 1)] + γ

]
(44)

Using these geometrical results, we deduce the following proposition:

Proposition 6 Let γ̃ be defined by (43), σF by (44), γ be constant and η1 =
η2 = 0. Under Assumptions 1-4, the following generically holds.

(i) When γ ∈ (γ̃, 1), the bubbly steady state is a saddle for all σ > 0.

(ii) When γ ∈ (0, γ̃), the bubbly steady state is a saddle for 0 < σ < σF ,
undergoes a flip bifurcation for σ = σF , becoming a source for σ > σF .

When the credit share γ is constant, local indeterminacy can never emerge,
which excludes expectation-driven fluctuations. When γ is sufficiently large, the
bubbly steady state is a saddle for all degree of the capital-labor substitution.
This result is similar to Tirole (1985), which corresponds to the limit case where
γ tends to 1. In contrast, when γ is weaker, the bubbly steady state looses its
saddle-path stability through the occurrence of a 2-cycle, becoming unstable if
the capital-labor substitution is sufficiently large.

Assuming now that credit share is affected by collaterals (η1 6= 0, η2 6= 0), we
will show that the steady state may be locally indeterminate, i.e. expectation-
driven fluctuations of the (rational) bubble may occur. Furthermore, we will
prove that such fluctuations appear under arbitrarily weak market distortions,
that is, η1 close to 0 and γ close to 1.

Hence, we focus now on the conditions to get local indeterminacy, i.e. when-
ever Σ goes inside the triangle ABC (see Figure 2). As it is well-known,
1 − T (σ) + D(σ) > 0 is a necessary condition to be inside ABC. Using
(38) and (39), this inequality is equivalent to Z1/Z2 > 1. This implies that
(T (+∞) , D (+∞)) lies on the line (AC) above the point C. Then, two require-
ments are needed to get indeterminacy, i.e. Σ goes through ABC: D(σ) has to
be increasing and S must belong to (SB , 1), where SB ≡ (Z1−Z2)/(Z1 +3Z2) ∈
(0, 1) is the value of the slope S such that the half-line Σ goes through the point
B. In such a case, we also have T (0+) = −∞ and D (0+) = −∞. At this stage,
we further note that D′(σ) > 0 is equivalent to Z3/Z2 > 0, which together with
Z1/Z2 > 1 ensures that S < 1.

These geometrical results are summarized in the following proposition:
21The critical value σF solves 1 + T (σF ) +D(σF ) = 0.
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Proposition 7 Let

σF ≡ (1− α)
2Z3 + (Z1 − Z2) 1−y

y

2 (Z1 + Z2)

σH ≡ (1− α)
Z3

Z1 − Z2

be the critical values of the capital-labor substitution such that 1 + T (σF ) +
D(σF ) = 0 and D(σH) = 1, respectively.

Under Assumptions 1-4, the steady state with a positive bubble is locally in-
determinate if the conditions (i) Z1/Z2 > 1, (ii) Z3/Z2 > 0 and (iii) (Z1 − Z2) /
(Z1 + 3Z2) < S are satisfied, where Z1, Z2, Z3 are given by (35)-(37), and S
by (40).

In this case, local indeterminacy occurs for σ ∈ (σF , σH). Generically, the
steady state undergoes a flip bifurcation for σ = σF and a Hopf bifurcation for
σ = σH .

We remark that, since 0 < σF < σH < +∞, there is no room for a locally in-
determinate bubble when the production factors are either too weak substitutes
(σ sufficiently close to 0) or too large substitutes (σ high enough).

Conditions (i)-(iii) are not sufficiently meaningful and we need to connect
them to the structural parameters of the model that have a more clear economic
interpretation. In particular, money growth µ and (γ, η1, η2), which summarize
the role of collaterals and credit share, will play key roles.

We define the following critical values:

µ ≡ 1− γ
η1

1 + η1 + (1− η1) 1−a
a

1 + η1 − γ

µ ≡ 1 +
[
a

(
γ

1− η1

1 + η1

1− η1
− 1
)]−1

θ1 ≡ −1− η2
1

η1

[
1− 1− η1

1 + η1

(
1 +

1
a + µη1

1−η1
1−γ−η1

1−γ

µ− 1

)]

θ2 ≡ −1− η2
1

η1

[
1− 1− η1

1 + η1

(
1 +

1
a −

M
1−η1

µ− 1

)
1− η1

γ

]
where M is given by (72).22 We further assume that:

Assumption 7 γ < 1− η1 and µ < µ < µ.

To underline that the interval
(
µ, µ

)
can be nonempty, we observe that

limγ→1−η1
(
µ− µ

)
= 0, while

∂
(
µ− µ

)
∂γ

∣∣∣∣∣
γ=1−η1

= −1− a
2aη1

< 0

22See the proof of Proposition 8.
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Therefore, the interval
(
µ, µ

)
becomes nonempty as soon as γ slightly de-

creases from 1 − η1. We note also that µ > 1, and µ < 1/η1 for η1 sufficiently
close to 0.23 This means that Assumption 7 is in accordance with Assumption 2
(see also inequalities (31)) and the second order condition of utility maximiza-
tion when η1 is sufficiently low and γ close to 1, i.e. for arbitrarily weak market
imperfections.

Then, we are able to show the following proposition:

Proposition 8 Under Assumption 7, the conditions (i)-(iii) of Proposition 7
are satisfied if

max {θ1, θ2} < η2 (45)

Moreover, we notice that µ < µ is equivalent to θ1 < 0 and

M > (µ− µ)
1 + η1

1− η1

[
γ − (1− η1)

1− η1

1 + η1

]
, (46)

satisfied for µ sufficiently close to µ, entails θ2 < 0.

Proof. See the Appendix.

This proposition shows that when collaterals matters η1 6= 0, endogenous
cycles can occur not only through a flip bifurcation (cycle of period 2) but also
through a Hopf bifurcation, promoting the emergence of an invariant closed
curve around the steady state.

Moreover, the steady state can be locally indeterminate, meaning that expec-
tation-driven fluctuations of the bubble can occur around the bubbly steady
state. In other words, persistent fluctuations of the bubble may occur driven by
the volatility of expectations, i.e. the rational exuberance of the agents.

To our knowledge, this result is new and occurs when η1 is sufficiently low
and γ close to 1, i.e. under arbitrarily small market distortions. Furthermore, it
requires neither a too low not a too high elasticity of capital-labor substitution
(see Proposition 7). We can even underline that indeterminacy may arise under
usual specifications of the technology. For instance, in the Cobb-Douglas case,
this requires σF < 1 < σH , which is equivalent to:

Z2 > Z1 − (1− α)Z3 (47)

Z2 >
2(1− α)Z3 −

(
2− 1−α

α
1−y
y

)
Z1

2 + 1−α
α

1−y
y

(48)

Using (35) and (37), (47) is satisfied for η1 sufficiently close to 1−γ because
this ensures the right-hand side of the inequality to be negative and we have
Z2 > 0.24 Using now (36), we note that with an appropriate choice of η2,
inequality (48) is satisfied.

23Indeed, µ < 1/η1 is equivalent to a > η1(1− η1)/[γ(1 + η1)− (1− η1)2]
24See the proof of Proposition 8.
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Finally, we notice that Proposition 8 has also some implications for the
monetary policy. Indeed, indeterminacy requires µ < µ < µ (Assumption 7).
Therefore, choosing a money growth factor µ higher than µ or lower than µ
rules out expectation-driven fluctuations. We argue however, that choosing µ
smaller than µ and even sufficiently close to 1 is better. Indeed, in such a
case, the monetary authority does not only stabilize fluctuations due to self-
fulfilling expectations, but also improves consumers’ welfare at the steady state
(see Proposition 4).

Economic intuition

We give now an economic interpretation of the results obtained in this sec-
tion. The intuition we provide is based on the explanation of non monotonic
trajectories.

We start with the case where the credit share γ is constant (η1 = 0), but
strictly smaller than 1. Assuming a decrease of the capital stock kt from its
steady state value, the real wage wt becomes smaller and the real interest rate
rt higher. When the elasticity of capital-labor substitution is not too weak, this
induces a lower level of rtst−1. Since, using equation (20), we have:

mt =
1
n

1− γ
γ

rtst−1 (49)

real money balances mt decreases. As a direct implication, we also get a decrease
of πt+1mt+1 (see equation (16)).

Using now (23) and (24) with γ constant and η1 = 0, we obtain:

st = (1− a)wt − st−1
rt
n

1− γ
γ

[1 + a(µ− 1)] (50)

Since both wt and rtst−1 decrease, two opposite effects affect savings st. In
particular, we note that the second effect comes from the decrease of money
holding, and obviously disappears in the limit case where the credit share γ
tends to 1.

Assuming that the second effect dominates, savings st increases. Using (22),
we deduce that it+1 = πt+1rt+1 decreases, meaning that the opportunity cost
of holding money is reduced. Therefore, money balances mt+1 increases, which
implies a decrease of inflation πt+1 because, as seen above, πt+1mt+1 reduces.
From equation (49), this increase of the real money stock implies a raise of
rt+1st. When capital and labor are not too weak substitutes, capital kt+1

becomes higher. Since the bubble πt+1bt+1 has the same return, it increases
also.

This explains that, following a decrease of capital from the steady state,
future capital goes in the opposite direction, explaining oscillations. When γ
is constant and not too close to 1, we have seen that instability emerges (see
Proposition 6). We argue that this comes from two main effects: the strong
impact of rtst−1 on st (see (50)) and the proportional relationship between
rtst−1 and mt (see (49)).
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When indeterminacy (local stability) may emerge (see Proposition 8), γ
cannot be constant and is closer to 1. Hence, the effect of rtst−1 on st is lower
(see (50)). Moreover, the relationship between rtst−1 and mt is no more strictly
proportional, but becomes:

mt =
1
n

1− γ(st−1)
γ(st−1)

rtst−1 (51)

Note that the elasticity of (1 − γ(s))/γ(s) with respect to s is equal to
−η1/(1−γ), which belongs to (−1, 0) and is quite small in absolute value under
Assumption 7. Therefore, when rtst−1 decreases, and st−1 as well, the effect
on mt is dampened. In other words, two crucial channels for the occurrence of
non-monotonic dynamics are weaker when η1 > 0, which provides the intuition
for local stability or indeterminacy of the bubbly steady state when collateral
matters. Finally, we notice that equation (25) can be rewritten:

πtbtrt = nπt+1bt+1 (52)

The oscillations just described above can be sustained by optimistic expecta-
tions on the future value of the bubble πt+1bt+1, meaning that consumers born
in t − 1 will (slightly) increase their share of savings through the bubble πtbt,
which implies an effective increase of the bubble at the next period πt+1bt+1,
since rt also raises.

6 Conclusion

The main contribution of this paper is to show that exuberance may be rational.
To do that, we extend the overlapping generations model analyzed by Tirole
(1985), where the existence of a bubbly steady state is proved, to take in account
some form of credit market imperfection. A share of consumption of second
period of life has to by paid using money, while savings is also used to buy
productive capital and a pure bubble. Collateral matters because a higher level
of non-monetary savings reduces this share of consumption financed by money
balances.

In this framework, we show that the bubbly steady state can be locally
indeterminate because of the role of collateral. Therefore, expectation-driven
fluctuations of the bubble can prevail. We further notice that the existence
of such fluctuations requires arbitrarily small market distortions. We finally
emphasize that a not too expansive monetary policy may rule out endogenous
fluctuations, while it improves welfare at the steady state.

We should however underline that we restrict our analysis to equilibria where
the cash-in-advance constraint is always binding. In contrast to Michel and
Wigniolle (2003, 2005), who use however a simpler framework, the economy
cannot switch between two regimes, where the finance constraint is respectively
binding or not. Analyzing such dynamic interesting patterns in our model is
left for further research.
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7 Appendix

Proof of Lemma 1

We maximize the Lagrangian function:

U (c1t, c2t+1)
+λ1t (τt + wt − nπt+1mt+1 − st − c1t)
+λ2t+1 (nmt+1 + rt+1st − c2t+1)
+νt+1 (nmt+1 − [1− γ (st)] c2t+1) (53)

with respect to (mt+1, st, c1t, c2t+1, λ1t, λ2t+1, νt+1). Since λ1t = U1 (c1t, c2t+1) >
0, then (8) becomes binding. Because

λ2t+1 = λ1t
1− πt+1γ

′ (st) c2t+1

rt+1 − γ′ (st) c2t+1

νt+1 = λ1t

(
πt+1 −

1− πt+1γ
′ (st) c2t+1

rt+1 − γ′ (st) c2t+1

)
strict positivity of λ2t+1 and νt+1 requires

πt+1 >
1− πt+1γ

′ (st) c2t+1

rt+1 − γ′ (st) c2t+1
> 0

or, equivalently,

it+1 >
rt+1 − it+1γ

′ (st) c2t+1

rt+1 − γ′ (st) c2t+1
> 0 (54)

Inequality rt+1− it+1γ
′ (st) c2t+1 > 0 is equivalent to (12). Moreover, it+1 >

1 implies rt+1 − γ′ (st) c2t+1 > rt+1 − it+1γ
′ (st) c2t+1 > 0, which ensures that

both inequalities in (54) hold.

A sufficient condition for utility maximization

We compute the Hessian matrix of the Lagrangian function (53) with respect
to (λ1t, λ2t+1, νt+1, c1t, c2t+1, st,mt+1):25

H ≡



0 0 0 −1 0 −1 −nπ
0 0 0 0 −1 r n
0 0 0 0 γ − 1 c2γ

′ n
−1 0 0 U11 U12 0 0
0 −1 γ − 1 U12 U22 νγ′ 0
−1 r c2γ

′ 0 νγ′ νc2γ
′′ 0

−nπ n n 0 0 0 0


In order to get a regular (i.e. strict) local maximum, we need to check the

negative definition of H over the set of points satisfying the constraints. Let
25For simplicity, the arguments of the functions and the time subscripts are omitted.
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m and n denote the numbers of constraints and variables, respectively. If the
determinant of H has sign (−1)n and the last n−m diagonal principal minors
have alternating signs, then the optimum is a regular local maximum. In our
case n = 4 and m = 3. Therefore, we simply require detH > 0, that is,

detH = −n2
[
(γ − π [c2γ′ − r (1− γ)])2

U11

+2 (c2γ′ − r) (γ − π [c2γ′ − r (1− γ)])U12

+ (c2γ′ − r)
2
U22

− νγ [2γ′ (c2γ′ − r)− γc2γ′′]] > 0 (55)

Using (10) and (9), we find c2t+1/rt+1 = st/γ (st). Substituting in (55) and
reducing in elasticities, in order to satisfy the SOCs (locally), we require:

detH = − (nr)2
[
ζ0 + ζ2

1U11 + 2ζ1 (η1 − 1)U12 + (η1 − 1)2
U22

]
= − (nr)2

[
ζ0 +

[
ζ1 η1 − 1

] [ U11 U12

U12 U22

] [
ζ1

η1 − 1

]]
> 0(56)

where

ζ0 = ζ0 ≡ νη1 [η2 + 2 (1− η1)]
γ

r

γ

s

ζ1 = ζ1 ≡ π (1− γ − η1) +
γ

r

Condition (56) ensures the concavity in the utility maximization program
under three constraints. We observe that the negative definiteness of U entails[

ζ1 η1 − 1
] [ U11 U12

U12 U22

] [
ζ1

η1 − 1

]
< 0 (57)

A sufficient condition, jointly with (57), is ζ0 < 0 or, equivalently, η2 ≤
2 (η1 − 1), that is a sufficient degree of concavity of the credit share.26 It is also
useful to notice that the second order condition is satisfied under a sufficiently
small elasticity of credit share η1, which implies ζ0 close to zero.

In the Cobb-Douglas case, ζ0 + ζ2
1U11 + 2ζ1 (η1 − 1)U12 + (η1 − 1)2

U22 < 0
becomes:

νη1 (η2 + 2 (1− η1))
γ

n

γ

s
< a (1− a) c1ac1−a2

[
γ + µ (1− γ − η1)

nc1
+

1− η1

c2

]2

(58)

Proof of Proposition 1

The capital-labor ratio k is determined by the golden rule r (k) = n (see
(29)). Using Assumption 3, there exists a unique solution to this equation,

26In the isoelastic case, the concavity of credit share is weak: η2 = η1 − 1 and ζ0 > 0. In
order to get a local maximum, we require a sufficiently powerful concavity of utility function.
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k = f ′−1 (n). This also determines the real wage w (k) = w
(
f ′−1 (n)

)
= w.

Then, s is a solution of g (s) = h (s), with:

g (s) ≡ a

1− a
x (s) , where x (s) ≡ ns/γ (s)

w − s/γ (s)
(59)

h (s) ≡ n [1− η1 (s)]
γ (s) + µ [1− γ (s)− η1 (s)]

(60)

Since the steady state is characterized by a positive bubble (b > 0), we have
s > s. Moreover, because η1 (s) < 1, s/γ (s) is increasing in s, which implies
that x (s) > 0 requires s < s. Therefore, all the stationary solutions s belong to
(s, s).27

To prove the existence of a stationary solution s, we use the continuity of
g(s) and h(s), ensured because γ(s) is C2 (see Assumption 1). Using (59) and
(60), we determine the boundary values of g(s) and h(s):

lim
s→s

g (s) =
a

1− a
n2k

wγ (nk)− nk
> 0, lim

s→s̄
g (s) = +∞,

lim
s→s

h (s) =
n [1− η1 (nk)]

γ (nk) + µ [1− γ (nk)− η1 (nk)]
> 0,

lim
s→s

h (s) =
n [1− η1 (s)]

γ (s) + µ [1− γ (s)− η1 (s)]

where k = f ′−1 (n).
Assumption 4 ensures that lims→s g (s) < lims→s h (s), while we have lims→s̄

g (s) > lims→s̄ h (s). Therefore, there exists at least one value s∗ ∈ (s, s) such
that g (s∗) = h (s∗).

To address the uniqueness versus the multiplicity of stationary solutions s,
we compute the two following elasticities:

εg (s) ≡ g′ (s) s
g (s)

=
w [1− η1 (s)]
w − s/γ (s)

> 0

εh (s) ≡ h′ (s) s
h (s)

=
η1 (s) [ηη (s) + 1− η1 (s)]

1− η1 (s)
(µ− 1) γ (s)

γ (s) + µ [1− γ (s)− η1 (s)]

A sufficient condition for uniqueness is εh (s) < εg (s) for all s ∈ (s, s). We
deduce that when γ(s) is constant (η1(s) = 0), uniqueness is ensured because
εh (s) = 0 < εg (s).

Proof of Proposition 2

Assuming η1 constant and differentiating (30) with respect s and η1, we obtain:

εsη1 ≡
ds

dη1

η1

s
= −

[
1− η1

η1

(
η1 + (1− η1)

w

s

1− η1

1− µ
1− a
a

)]−1

27We notice that (s, s) is nonempty. Using (11) and (19), we obtain w > s ≥ nf ′−1 (n) = s.
Because 1− η1 (s), the elasticity of s/γ (s), belongs to (0, 1), s < w implies s < s. We deduce
that s < s.
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Since η1 < 1 and Assumption 5 is satisfied, εsη1 > 0 if and only if µ > 1.
According to (11), (22) and (29), we have b = [s − nf ′−1 (n)]/µ. We easily
conclude that b is increasing with η1 if and only if the same condition is satisfied.

Proof of Proposition 3

We differentiate (30) with respect to µ and s. Using ηη = 0, we obtain:

εsµ ≡
ds

dµ

µ

s
=
µ

γ

1− γ − η1

η1 (µ− 1)− (1− η1)2 w
s

1−a
a

Since, under Assumption 5, the denominator of the right-hand side is strictly
negative, the proposition immediately follows.

Proof of Corollary 1

Differentiating b = [s− nf ′−1 (n)]/µ, we get:

εbµ ≡
db

dµ

µ

b
=
sεsµ
bµ
− 1

Using Proposition 3, we easily deduce that εbµ < 0 if η1 < 1− γ.

Derivation of equation (34)

Consider the welfare function W = U(c1, c2) and note:

(εWµ, εUc2 , εc2µ) ≡
(
∂W

∂µ

µ

W
,
∂U

∂c2

c2
U
,
dc2
dµ

µ

c2

)
We can easily get:

εWµ = εUc2εc2µ

(
1 +

a

1− a
x
dc1/dµ

dc2/dµ

)
(61)

Differentiating now (32) and (33), we obtain:

dc1
dµ

= − (1− η1)
1
γ

ds

dµ
(62)

dc2
dµ

= n (1− η1)
1
γ

ds

dµ
(63)

Substituting (62) and (63) in (61) and noticing that εc2µ = (1− η1) εsµ, we
get:

εWµ = εUc2εsµ (1− η1)
(

1− a

1− a
x

n

)
(64)

Equations (30) implicitly defines s as function of µ. Applying the Implicit
Function Theorem, we compute the following elasticity:

εsµ =
µ

γ

1− γ − η1

η1 (µ− 1) 1−η1+ηη
1−η1 − (1− η1)2 w

s
1−a
a

(65)
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Substituting (65) in (64), we have:

εWµ = εUc2
µ

γ

(
1− x

n

a

1− a

)
1− γ − η1

(µ− 1) η1
1−η1

1−η1+ηη
1−η1 − (1− η1) ws

1−a
a

Using the critical values µ1 and µ2, we deduce equation (34).

Proof of Proposition 4

Using equation (34) and Assumption 6, the sign of εWµ is equivalent to the sign
of:

µ− 1
µ− µ1

1− γ − η1

µ− µ2
(66)

We note first that under Assumption 6, we have µ2 > 1. By direct inspection
of (66), we deduce that:

1. When η1 < 1− γ, we have µ1 < 0 and 1 < µ2. Then, εWµ > 0 is strictly
positive for 0 < µ < 1, εWµ < 0 for 1 < µ < µ2, and εWµ > 0 for µ > µ2;

2. When 1 − γ < η1, we have 1 < µ1 and 1 < µ2. Then, εWµ > 0 for
0 < µ < 1, εWµ < 0 for 1 < µ < min{µ1, µ2}, εWµ > 0 for min{µ1, µ2} <
µ < max{µ1, µ2}, and εWµ < 0 for µ > max{µ1, µ2}.

The limit case where µ = 1 corresponds to a local maximum (εWµ = 0). We
deduce the proposition taking in account that µ > 1.

Proof of Proposition 5

We linearize the system (23)-(25) around a steady state (with or without bubble)
with respect to (kt, st−1, kt+1, st). We obtain:

Z2
dst
s

= εr

(
γy

1− a
a

+
1− γ

1− γ − η1
Z1

)
dkt
k

+ Z1
dst−1

s
(67)

y
n

r

dkt+1

k
− n

r

dst
s

= [y − (1− y) εr]
dkt
k
− dst−1

s
(68)

where

Z1 ≡ (1− γ − η1)
[

1− a
a

+ µ
1− γ − η1

(1− γ) (1− η1)

]
Z2 ≡

(
µ− n

x

1− a
a

)(
1 +

η1ηη
1− η1

)
− µγ 1− γ − η2

1

(1− γ) (1− η1)
− γ n

r

1− a
a

and r, εr and ηη the stationary values of r(k), εr (k) and ηη(s), respectively.
The characteristic polynomial is given by P (X) ≡ X2−TX +D = 0, where

T and D represent the trace and the determinant of the associated Jacobian
matrix, respectively. After some computations, we get:

D =
1
Z2

r

n

(
Z1

[
1 + εr

y (1− γ) + (1− y) η1

y (1− γ − η1)

]
+ εrγ

1− a
a

)
(69)

T =
r

n
+
n

r
D + εr

1− y
y

(
Z1

Z2
− r

n

)
(70)
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We deduce the expressions given in the proposition considering y ∈ (0, 1)
and r = n, and using:

x =
1− a
a

n (1− η1)
γ + µ (1− γ − η1)

Proof of Proposition 8

We prove that, under Assumption 7, condition (45) implies the condition (i)-
(iii) of Proposition 7, i.e. is sufficient for local indeterminacy.

Assuming Z2 > 0,28 conditions (i)-(iii) for local indeterminacy in Proposi-
tion 7 are equivalent to Z1 > Z2, Z3 > 0 and

Z2
2 − 2

(
Z1 + 2Z3

y

1− y

)
Z2 + Z2

1 < 0 (71)

that is, to Z3 > 0 and 0 < Z1 − Z2 < M , with:

M ≡ 2Z3
y

1− y

(√
1 +

Z1

Z3

1− y
y
− 1

)
(72)

The inequality θ1 < η2 is equivalent to Z2 > 0, while the assumption γ <
1− η1 implies Z3 > 0. Since µ > 1, we have µ > 1, which means that:

(1− η1)
1− η1

1 + η1
< γ (73)

According to 1 < µ < µ and (73), µ < µ implies 0 < Z1 − Z2, while θ2 < η2

is equivalent to Z1 − Z2 < M .
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