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1 Introduction

Asset-volatility is of outstanding importance in finance. Volatility both di-

rectly and indirectly influences asset pricing (for example options prices di-

rectly depend on the underlying asset’s volatility), the optimal hedge ra-

tio, portfolio decompositions, and risk management among others (Alizadeh,

Brandt and Diebold, 2002). Volatility-modeling, therefore, has been a fo-

cus of much academic research in the last decennia. Early contributions

assumed constant asset-volatility (e.g., Merton (1969) or Black and Scholes

(1973)). Especially the work of Engle (1982) and Bollerslev (1986), how-

ever, contributed to the mostly accepted conviction that volatility is both

time-varying and predictable (see also for example Andersen and Bollerslev

(1997)). Engle introduced the autoregressive conditional heteroscedasticity

(ARCH) models whereas Bollerslev extended those to the class of gener-

alized ARCH (GARCH) models. The observation that some time periods

seem to be affected by very high volatility while others by relatively low

volatility fostered the more recent development of regime-switching mod-

els. Building on Hamiltons 1989 work, Hamilton and Susmel (1994), Gray

(1996) and Klaassen (2002) further introduced regime-switching ARCH and

GARCH models improving further the modeling of volatility. ARCH and

GARCH models are today the workhorse of asset-volatility modeling both in

academics and industry (see for example Ghysels et al. (2006).).

Essentially, volatility in economics is defined as the variability of a random

variable of a time series. Hence, this volatility is “...inherently unobservable,

or latent, and develops stochastically through time” (Brandt and Diebold,

2006, p. 1). Volatility is inherently latent because the true data generat-

ing process of asset prices is not known, making it impossible to quantify

unambiguously the “random component” of a time series and even more dif-

ficult to pin down its instantaneous variability or volatility. There appear

to be two solutions to this problem. First, one can try to model the latent

variable volatility as the conditional second moment/variance of an observed

return series parametrically (e.g., Engle (1982), Bollerslev (1986), and Taylor

(1982)). Or second, one uses nonparametric estimators for the volatility. The
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range, defined as the difference between the maximum and the minimum log

asset prices over a fixed interval, appears here as a natural estimator and has

indeed been the subject of much academic research (e.g., Garman and Klass

(1980), Parkinson (1980), Beckers (1983), Ball and Torous (1984), Rogers and

Satchell (1991), Andersen and Bollerslev (1998), Yang and Zhang (2000), Al-

izadeh et al. (2002), Chou (2005), Brandt and Diebold (2006)). In contrast to

the conditional variance modeling, the range is directly observable from the

data and does not need to be estimated. Apart from being a very intuitive

and directly observable volatility estimator, the range also is very efficient.

Indeed, as noted in Brandt and Diebold (2006, pp.61):

As emphasized most recently by Alizadeh et al. (2002), the range

is a highly efficient volatility proxy, distilling volatility informa-

tion from the entire intraday price path, in contrast to volatility

proxies based on the daily return, such as the daily squared re-

turn, which use only the opening and closing prices.

Moreover, as has also been mentioned by many authors (e.g., Alizadeh

et al. (2002)), range data on the one hand are available for many differ-

ent assets such as individual stocks, stock indices, currencies, and Treasury

securities, and on the other hand these data series often have a history of

many decades. This constitutes a strong advantage over another nonpara-

metric estimator of the variance, namely the realized volatility, which uses

high-frequency data at say 5-minute intervals. Those data often only start in

the middle of the 1990s where available at all. References regarding realized

volatility include, among others, Barndorff-Nielsen and Shepard (2001; 2003;

2004), and Andersen, Bollerslev, Diebold and Labys (2003).

A further advantage of using an observed volatility estimator is that it

can be modeled in the mean equation. This enables the econometrician to

model the volatility of the volatility as the conditional second moment of the

range in contrast to having to model it as the conditional fourth moment of

a return series. Modeling the volatility of the volatility can be important, for

example, in option pricing, where an option trader might want to know the

probability that the volatility, a direct price determinant, changes in order
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to optimize his pricing decision. Additionally, changes in volatility also have

an influence on optimal hedge ratios (e.g., Ederington (1979), Lien and Tse

(2002)). Therefore, predictable volatility of volatility can help in making

better hedging decisions.

In the literature asset markets have been found to show regime-switching

behavior. There seem to be relatively clear periods of low or normal volatility

but also longer-lasting periods where asset market volatility is significantly

higher than in the low-volatility periods. Such regime-switching volatility

behavior has usually been modeled with first-order Markov processes. See,

for example, Hamilton and Susmel (1994), Gray (1996), and Klaassen (2002).

Motivated by these points, we propose a simple yet efficient way of model-

ing asset market volatility and its volatility. We suggest to fit the log range of

assets to a Markov-switching-(MS-)ARMA-GARCH time series model. We

hereby combine the advantages of the range as a nonparametric yet highly

efficient volatility estimator with well established time-series modeling tech-

niques in order to estimate and forecast asset volatilities. We fit our proposed

model to weekly S&P500 range data. First, we find that our model is well

able to distinguish a low from a high volatility regime. A second finding is

that volatility dynamics change with the regime, which has important effects

for forecasting purposes, confirming results found in Gray (1996). Third, a

forecasting exercise leads to promising results by showing that some spec-

ifications of the model are able to clearly decrease forecasting errors with

respect to a linear model in an absolute and mean square sense.

Our paper proceeds as follows. In Section 3 we describe the methodology

used for estimations and also places it within the current literature. Section

4 presents the results of the application of our model to the data of the US

S&P500 stock market index. We also present here results of the forecasting

comparison exercise we perform. Finally, Section 5 summarizes our results,

concludes and sketches directions for future research.
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2 Theoretical foundations

In this section we will brief on the theoretical distributional foundation of

the range as an estimator for the diffusion constant of a continuous random

walk that has already been derived in the literature. Furthermore we will

argue that the range indeed might be modeled in terms of a Markov-switching

model.

2.1 Theory of the range as a volatility estimator

The range as an estimate for the diffusion constant of stochastic processes

like the continuous random walk have quite long history at least going back to

Feller’s 1951 seminal paper where he derived the asymptotic distribution of

the range for the sum of independent variables using the theory of Brownian

motion. The assumptions Feller used are as follows. Let [ut] for t = 1, ..., n be

a sequence of i.i.d. random variables with distribution F (u) with E(ut) = 0

and V ar(ut) = 1. Let then Sn = u0 + . . . un, Mn = max(0, S1, . . . Sn), and

mn = min(0, S1, . . . Sn). The range is then defined as Rn = Mn −mn, which

corresponds closely to our definition in section 3 (up to some monotonic

transformations). Feller than derives formulas for the mean and the variance

of the range Rt. For details we refer to Feller (1951).

Parkinson (1980) extended the work of Feller (1951) to the case where

V ar(ut) = D and D being the random walk diffusion constant. Additionally

he applies the framework to the stock market and shows that the range is

a far superior estimate for the diffusion constant than the traditional esti-

mates using closing prices only. The argument for the use of the random

walk based on the observations that is generally accepted that (at least to a

good approximation) the log of stock prices follow a random walk. He fur-

ther derives a function describing all the moments of the range distribution

extending herewith the work of Feller (1951). According to Parkinson it can

be written as:

E(Rp) =
4√
π

Γ(
p + 1

2
)(1 − 4

2p
)ζ(p − 1)(2Dn)p/2,
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where Γ is the gamma function, ζ(x) is the Riemann zeta function, D is again

the diffusion constant. p has to be real and ≥ 1. The first two moments then

are found to be:

E(Rn) =

√
8Dn

π
(1)

E(R2
n) = [4ln(2)]Dn. (2)

2.2 Extension to non i.i.d. case

One might argue that the assumption of individually identically distributed

increments (ut) is not a realistic one because there is clear evidence that

the volatility of asset returns is changing over time in a (to some extend)

predictable way. So, we want to relax the assumption that V ar(ut) = D

being constant and change it to the assumption that V ar(ut) = σ2
t < ∞.

Standard results as published in, for example, Davidson (1994) and Davidson

(2000) can be used at this point. We will restate some results of the afore

mentioned author here.

Theorem Let Sn be defined as above and ut be a martingale difference

sequence with E(ut) = 0 and E(u2
t ) = σ2

t < ∞ with σ2
n = n−1

∑n
t=1 σ2

t . If ut

meets the additional conditions that

a) n−1
∑n

t=1(u
2
t − σ2

t )
pr→ 0, and

b) either

i) the sequence is strictly stationary or

ii)
max1≤t≤n||ut||2+δ

σn
≤ C < ∞ δ > 0, ∀n ≥ 1

then νn =
√

nun

σn

d→ ν ∼ N(0, 1).

Let us also assume that

E(S2
n)

n
→ σ2 < ∞ (global wide-sense stationarity). (3)

If we then define Xn(r) = S[nr]√
nσ

, then Xn
d→ B. ⊲
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Here
pr→ and

d→ stand for convergence in probability and in distribution,

respectively. B stands for Brownian motion and r in between 0 and 1. A

proof of this theorem can be found in Davidson (1994), Theorems 27.14 and

29.6.

This theorem then states that under the condition of not too strong de-

pendence in the sequence of σt the correctly weighted partial sum Sn still

converges to Brownian motion. Such a convergence is the basis of the proofs

in Feller (1951) and Parkinson (1980) for the distribution of the range es-

timate for the diffusion constant. Heuristicly speaking then, this theorem

provides the basis to reason that the limit distribution of the range as in

Equation (1) will stay the same with D = σ2
n even for the non i.i.d. case of

the sequence ut.

Such a result also covers the case of possible non-linear behavior of the

diffusion constant D as long as Equation (3) is still assumed to hold, which

should be reasonable considering the observation that the long-run variance

of asset markets seems to not be an integrated process. So, possible Markov-

switching behavior in the volatility of asset markets should not change the

conclusion that the range is an efficient estimator of the diffusion constant

for particular periods t. Therefore, under the assumption that changes in

the diffusion constant D occur according to a Markov-switching process and

that Equation (3) is still satisfied we can very well use the observed range as

an estimator for D.

3 Methodology

This section outlines the general methodology proposed and used in this

paper. We will introduce the exact estimation and forecasting technique that

we apply for our Markov-Switching (MS) Range Model and all its different

specifications. Markov-switching time series models in econometrics today

draw heavily on Hamilton (1989) and Hamilton (1990) where he develops

the idea that output and business cycles in an economy may be subject

to discrete changes in regimes underlying their data generating processes

(DGPs). Hamilton argues that during economic expansions the average GDP
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growth rate should be different compared to times of recessions and that such

a behavior might best be described by a Markov chain that governs switches

from regime 1, expansion say, to regime 2, recession, and vice versa. In his

paper he proposes to model the GDP growth rate as a Markov-switching

autoregressive process of order q (MS-AR(q)).

3.1 The path to the model

Hamilton and Susmel (1994) and Cai (1994) argue that in financial time series

often observed volatility clusters or volatility persistence can be modeled in

a similar fashion as in Hamilton (1989). In their paper, they develop a

MS-ARCH model. ARCH models go back to the pioneering work of Engle

(1982) which Bollerslev (1986) extended to generalized-ARCH (GARCH)

models. Those models are designed to model the conditional second moment

or variance of time series and usually fit for example stock market returns very

well.1 Hamilton and Susmel argue that ARCH models often impute much

persistence to stock volatility but fail to give good forecasts. They pose

that this might be due to large shocks that arise from different “regimes”

rather than normal shocks. One finding is that the parameters of an ARCH

process seem to come from different regimes and transitions between regimes

governed by an unobserved Markov chain.

An important advantage of GARCH models over ARCH models is that

they usually capture much better the time dependence in the volatility. In

order to be more precise we introduce a very general GARCH(p, q) model.

We refrain for the moment from specifying a mean equation but will do so

in a later section. The GARCH model can be written as:

ut =
√

h(θh, Φt−1)vt

=
√

htvt, (4)

1Add some references!
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with the conditional variance of ut specified as a function like:

V ar(ut) = ht = f(ut−1, ut−2,...)

= ω +

p∑

i=1

αiu
2
t−i +

q∑

j=1

βjht−j , (5)

where θh is a vector of parameters governing the variance equation and vt is

an i.i.d. sequence with zero mean and unit variance. Φt−1 is the information

set generated by ut and represents the available information set up to time

t − 1. Other assumptions for the error distributions are generally possible.

A GARCH(p, 0) model is equal to an ARCH(p). So, the GARCH repre-

sentation allows for a richer parametrization of the conditional variance and

facilitates modeling the observed volatility persistence.

Both Cai (1994) and Hamilton and Susmel (1994) argue that the exten-

sion of GARCH processes to the Markov-switching framework is intractable

because of its path-dependence. Path dependence here means that the dis-

tribution at time t, if made conditional on regime (St) and on the available

information set Φt−1, depends directly on St but also indirectly on the whole

history of regimes (St−1, St−2..., S0) because of the path-dependence inherent

in regime-switching GARCH models. Regime-dependence in MS-GARCH

models comes through the lagged variance and lagged squared error terms.

In a GARCH(1,1) model, conditional variance at time t depends on the

squared error and the conditional variance at time t − 1, which obviously

depends on regime St−1 and the squared errors and conditional variance at

time t − 2 and so forth. This introduces an infinite path dependence on

the unobserved regimes St, St−1, ..., S0 or S̃t. In (quasi) maximum likelihood

estimations the likelihood function could only be constructed by integrating

out all possible regime paths. If we denote K as the number of regimes and

T the full sample time dimension, then there would be KT possible regime-

path realizations, which would quickly make estimation impossible as the

time dimension increases.

In order to avoid this path-dependence problem present in GARCH mod-

els Gray (1996) and Klaassen (2002) introduce ways to integrate out the path-
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dependence inherent in GARCH models avoiding the integration over KT

possible likelihoods. Gray’s idea is to integrate out the unobserved regime-

path S̃t where it emerges namely in Eq.(5) itself. To see this we have now to

write Eq.(5) in a regime-dependent form:

V ar(ut|S̃t, Φt−1) = hk,t

= f(ut−1, ut−2,...; S̃t) (6)

= ωk +

p∑

i=1

αk,iv
2
t−i +

q∑

j=1

βk,jhk,t−j ,

where V ar(ut|S̃t; Φt−1) denotes the variance of ut conditional on observable

information Φt−1 and the unobservable full regime path S̃t. The parameters

in the variance equation at time t are only determined by the current regime

St. In Eq.(6) there is still the full regime-path-dependence present and it is

not possible to estimate its parameters.

Different ways of integrating out the path-dependence have been sug-

gested in the literature. In Hamilton and Susmel (1994) they circumvent

the problem of path-dependence by excluding the lagged conditional vari-

ance terms hk,t−1, ..., hk,t−q in the variance equation. Hereby they only need

to integrate Kp different pathes out of the likelihood function in order to

estimate the parameters. Gray (1996) uses a different idea. As already men-

tioned above he integrates out the path dependence in the GARCH by taking

expectations of the conditional variances over all possible regimes. Hereby,

he makes the conditional variance at time t only dependent on the current

regime St but not the full path S̃t. In equation form this might be written

like:

V ar(ut|St, Φt−1) = ωk +

p∑

i=1

αk,iEt−2v
2
t−i

+

q∑

j=1

βk,jEt−j−1V ar(ut−j|St−j , Φt−j−1), (7)

where Et−j−1 means that expectations are taken at time t − j − 1 over all
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possible regimes and conditional on the information set Φt−j−1. This basically

means that every period ex-ante probabilities are calculated (we will show

the whole estimation algorithm later in this section) which are then used to

weigh all possible values of vt−i and V ar(ut−j|St−j). In the next period those

weighted values are used as inputs for the variance equation. So, essentially

the regimes St−j are integrated out at time t − j − 1.

In another paper Klaassen (2002) improves on Gray’s (1996) method.

Klaassen proposes to wait with integrating out the past regimes until they

are really needed and that is at time t − 1. Hereby more observations can

be used in order to draw inferences about the probabilities of regimes at

different points in time. If for example it is very likely that the observation

at time t comes from regime k and regimes are very persistent, then this adds

information to the calculation of the state probabilities in periods before. In

other words Klaassen proposes to use the fact that the regime at time t

essentially is in the conditioning information of V ar(ut|St, Φt−1) particularly

if regimes are highly persistent. He, therefore, proposes to rather use the

following representation:

V ar(ut|St, Φt−1) = ωk +

p∑

i=1

αk,iEt−1[(vt−i|St−i, Φt−i)|St]
2

+

q∑

j=1

βk,jEt−1[V ar(ut−j|St−j, Φt−j)|St], (8)

where the expectation Et−1 again is across regimes S̃t−1 but now condi-

tional on the information set Φt−1 and the regime St. Constructed like this,

V ar(ut|St, Φt−1) again only depends on the current regime St and not on the

full regime path S̃t−1 and the path-dependence problem disappears.

In this paper we propose a new way to model the “observed” volatility

of time series (in our case we focus on the US stock market) using the fa-

mous range estimator for volatility. Parkinson (1980) shows that the range

is an effective extreme value theory estimator of the current volatility. In

this paper we will use Klaassens (2002) approach and extend his method

to a more general MS-ARMA(a,b)-GARCH(p,q) case in order to model the
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log-range. As our main focus is modeling asset volatility with the help of

the range estimator2, we have to focus also on the mean equation and not

only on the variance equation. As already mentioned above, the advantage

of “observing” the volatility makes it possible to use standard time series

methods to model it. This approach has two important advantages. First,

we can essentially model the observed volatility and thereby an observed first

moment. In the ARCH and GARCH literature, the volatility is not observed

but rather derived as the conditional second moment from a series of asset

returns. This is an advantage inherent to the range estimator.3 Second, this

approach allows us to model the volatility of the volatility as a conditional

second moment of the range. We do not need to estimate a conditional

fourth moment as would be the case if we used return data. So, we can also

model the dynamics and persistence of the volatility of the volatility of assets

relatively easily.

3.2 The model

In this subsection we present the model we would like to fit to the data in

its most general form. In Section 4 we fit different version of the presented

general model in order to find the best fit to the data. Let pt denote the

logarithm of the price of some speculative asset or asset index at time t.

Then the range of that asset over a certain period, say a week, can be defined

as Rt = 100 ∗ (pMax
t − pMin

t ). Here pMax
t and pMin

t denote the highest and the

lowest observed price of an asset over the considered time period, respectively.

In other words, the range measures the maximum spread in percent of an

asset’s price over a specified period. Let rt denote the logarithm of Rt. We,

thereby, use the same definition of the range and its logarithm as in Alizadeh

et al. (2002).

Our regime-switching-ARMA-GARCH range model consists of four el-

ements. First there is the mean process that governs the dynamics of the

2The range obviously is an observed and not conditionally derived volatility measure.
3Actually the same would hold for the realized volatility estimator which is also a

constructed estimator for volatility and thereby “observable”. Very interesting approaches
to model the realized volatility include among others Andersen et al. (2003).
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conditional mean of the range. The second element is the process for the vari-

ance specifying the dynamics of the conditional variance of the error terms.

Third we have to identify the process governing the regimes. A last ingredi-

ent is the assumed error distribution. As already indicated before, the mean

equation is assumed to follow an ARMA(a,b), the variance a GARCH(p,q)

process and the regime process is assumed to follow an unobserved Markov

chain. We will assume the errors to be i.i.d. standard Gaussian.

The mean of the range has also been modeled by Chou (2005) in the

following way:

Rt = λtǫt

λt = ω + αRt−1 + βλt−1,

where ǫt ∼ F (1, .). Here λt can be interpreted as the expectation of the

range at time t and is modeled in an autoregressive fashion very much like a

GARCH model. As can be easily seen, this model is from the multiplicative

class of models and asks for an error distribution with a non-negative support

in order to guarantee positivity of the range. Chou shows that this model

fits the S&P500 range data quite well. Another approach is due to Alizadeh

et al. (2002) who specify the log-range as a stochastic volatility model.

We propose basically a mixture of the above approaches with the ad-

ditional assumption of an unobservable Markov chain. First we model the

log-range instead of the range in order to allow also for negative observations.

This basically changes a multiplicative into an additive model and facilitates

estimation. As we already shortly motivated above4, the data seem to be

generated by different regimes. Here, we restrict ourselves to two regimes,

namely a low and a high volatility regime. Extensions to more than two

regimes are nevertheless possible. Let us start with specifying our mean

equation:

rt = µk +
a∑

i=1

ak,irt−i +
b∑

j=1

bk,jEt−1[(ǫt−j |St−j, Φt−j)|St] + ǫt, (9)

4The motivation in the introduction will say something about this point.
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where

ǫt =
√

hk,tzt

hk,t = ωk +

p∑

m=1

αk,mEt−1[(ǫt−m|St−m, Φt−1)|St]

+

q∑

n=1

βk,nEt−1[(ht−n|St−n, Φt−1)|St]. (10)

In the mean equation µk represents the constant term for all different regimes

k = 1, 2, ..., K, ak,i are all autoregressive coefficients, bk,j are all moving

average coefficients and zt is assumed to be i.i.d. with a N(0, 1) distribution.

In Eq.(10) we have ωk being the constant term of the variance equation,

αk,m and βk,n being the lagged squared error and lagged variance coefficients,

respectively. By this it is clear that St fully determines the parameters of

the conditional distribution of rt.

As, for example, in Hamilton (1989) we assume that the regimes St follow

a first-order Markov process with constant transition probabilities5

p(St = j|St−1 = i, St−2 = k, ..., Φt−1) = p(St = j|St−1 = i) = pij , (11)

for i, j = 1, 2, ..., K. So, as required by the Markov property the probability

of state St = j only depends on St−1, namely the state the process was in at

time t−1. All these probabilities can be summarized in a (K×K) transition

probability matrix:

P =




p11 p21 . . . pK1

p12 p22 . . . pK2

...
... . . .

...

p1K p2K . . . pKK




,

where each column of P sums to unity.

5In general it is also possible to model the transition probabilities as time-varying.
Examples are the contributions of Diebold, Lee and Weinbach (1994) and Gray (1996).
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3.3 Estimation

In the regime-switching literature, models are usually estimated by quasi

maximum likelihood (QMLE). Gray (1995) proves for some regime-switching

models the consistency and asymptotic normality of the QML estimator un-

der relatively mild regularity conditions. We, therefore, follow this path

with our MS-ARMA-GARCH range model. As in Gray (1996) and Klaassen

(2002), our likelihood has a first-order recursive structure and can be esti-

mated similar to a normal single regime GARCH model. At the same time

one can calculate probabilities that the process is in a particular regime at a

specific time t, which is very useful if we want to classify our series into pe-

riods with low and high volatility. Also following Gray and Klaassen we use

two different types of regime probabilities. The first is the ex ante probability

of a certain regime. It will be denoted as p(St|Φt−1) and is the conditional

probability that the process is in a certain regime at time t given only the

information set available to the econometrician at time t−1. Second, we also

calculate the smoothed regime probabilities p(St|ΦT , θ) or in short p(St|ΦT )

which use the complete data and information set ΦT at the estimated coeffi-

cient vector θ, thereby smoothing the ex ante probabilities. These smoothed

regime probabilities give the econometrician’s best inference about the prob-

ability of the regime the process was in at time t. The smoothed regime

probabilities will be calculated from the ex ante probabilities we obtain dur-

ing estimation of the model.

We now introduce the estimation procedure by extending the work of

Klaassen (2002) and Gray (1996) to the general case of a MS(K)-ARMA(a,b)-

GARCH(p,q) model. Klaassen and Gray are mostly concerned with the

Markov-switching aspects in the conditional variance equation. We, as in our

application in fact observe an estimator of the variance, are more focussing on

the mean equation of course not neglecting the variance of the process. Above

in Eq.(9) and (10) we already presented a more general model essentially

using the same ideas as in Klaassen’s paper. Now we turn to the estimation

procedure for those models.

In order to obtain the full sample likelihood function we essentially have to
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model the density of every range observation at time t for all possible regimes

conditional on only observable information. So, we write that density as:

f(rt|Φt−1) =
K∑

k=1

f(rt, St = k|Φt−1)

=

K∑

k=1

f(rt|St = k, Φt−1)p(St = k|Φt−1), (12)

where we take the sum
∑K

k=1 of the regime conditional densities over all pos-

sible regimes weighted by their respective ex ante probabilities of occurrence

p(St = k|Φt−1). Therefore, we can write the distribution of rt conditional on

available information like:

rt|Φt−1 ∼





f(rt, St = 1|Φt−1) with probability p(St = 1|Φt−1),

f(rt, St = 2|Φt−1) with probability p(St = 2|Φt−1),
...

f(rt, St = K|Φt−1) with probability p(St = K|Φt−1).

In the empirical section of this paper we restrict ourselves to the case of

K = 2. If we assume conditional normality for the error distribution in

Eq.(9) we can write:

f(rt|St = k, Φt−1) =
1√

2πhk,t

exp

{−ǫ2
k,t

2hk,t

}
. (13)

In the empirical implementation the residuals are relatively close to normal-

ity6 but a Jarque-Bera test still formally rejects it. In general, the errors

can for example also be assumed to follow a student-t distribution obviously

changing (13) correspondingly.

As in Gray (1996) and Klaassen (2002) and according to the assumed

first-order Markov structure, the probability p(St = k|Φt−1) depends only on

the regime the whole process is in at time t−1. If we condition on the regime

6See Section 4.
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at time t − 1 one can write the ex-ante probability as:





p(St = 1|Φt−1) =
∑K

k=1 p(St = 1|St−1 = k, Φt−1)p(St−1 = k|Φt−1),

p(St = 2|Φt−1) =
∑K

k=1 p(St = 2|St−1 = k, Φt−1)p(St−1 = k|Φt−1),
...

p(St = K|Φt−1) =
∑K

k=1 p(St = K|St−1 = k, Φt−1)p(St−1 = k|Φt−1),

(14)

where, according to the Markov property,

p(St = j|St−1 = i, Φt−1) = p(St = j|St−1 = i) = pij. (15)

So, the probabilities p(St = j|St−1 = i, Φt−1) only depend on St−1 and are

equal to the fixed transition probabilities in Eq.(11) and are summarized in

the transition matrix P.

Further note that the second part on the right hand side of Eq.(14),

p(St−1 = k|Φt−1) we can write, according to Bayes’ Rule, as:

p(St−1 = k|Φt−1) = p(St−1|rt−1, Φt−2)

=
p(rt−1|St−1, Φt−2)p(St−1|Φt−2)

p(rt−1|Φt−2)
(16)

=
p(rt−1|St−1, Φt−2)

∑K
St−2=1

p(St−2|Φt−2)p(St−1|St−2)

p(rt−1|Φt−2)
.

Here, the variables needed to compute p(St−1 = k|Φt−1) are its previous

values p(St−2 = k|Φt−2), the constant transition probabilities pij and the

densities p(rt−1|St−1, Φt−2) and p(rt−1|Φt−2) from the same calculation one

step before. So, the computation of p(St−1 = k|Φt−1) is a first-order recursive

process.

Before we move to the last ingredient for the calculation of the likelihood

function we present the full-sample log-likelihood which can be obtained as:

 L =
T∑

t=max(a,b,p,q)

f(rt|St)p(St|Φt−1) (17)
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where the first part on the right hand side is the conditional density at time t

given in Eq.(13), when normality is assumed, and where the second part is the

ex ante regime probability described in Eq.(14). Unfortunately, the density

f(rt|St) cannot be calculated in a straightforward fashion because of the

path dependency in the moving average and variance part of a plain ARMA-

GARCH model. So, we have to use Eq.(9) and (10) which necessitates the

calculation of the expectations of lagged error and variance terms across

regimes. Klaassen (2002) proposed to use all available information up to

time t− 1 to calculate the expected lagged variance in the variance equation

of a Markov-switching GARCH(1,1) model. We propose to use the same

probability measure to also weigh the lagged error terms in the MA-part and

the lagged squared errors in the ARCH-part of our proposed model. In his

paper Klaassen proposes a weighing mchanism which gives the probability

that the previous regime was St−1 given that the current regime is St and

given the information set Φt−1. It can be stated in the following way:

p(St−1|St, Φt−1) =
p(St−1|Φt−1)p(St|St−1, Φt−1)

p(St|Φt−1)
(18)

=
p(St−1|Φt−1)pij

p(St|Φt−1)
, (19)

where p(St−1|Φt−1) is given by Eq.(16), pij are the fixed transition probabil-

ities in Eq.(11), and p(St|Φt−1) is given by Eq.(14). If one wishes to esti-

mate models with a lag structure max = max(b, p, q) > 1 one obviously

needs the corresponding probabilities (p(St−2|St, Φt−1), p(St−3|St, Φt−1), ...,

p(St−max|St, Φt−1)), in order to get the expected values of those lagged er-

ror and variance terms as well. Those probabilities can be calculated in a

similar way as in Eq.(18). This completes the description of the estimation

procedure.

3.4 Smoothed regime inference

In this subsection we brief the method of calculating the reported smoothed

regime probabilities in Section 4 of this paper. As mentioned above, these
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probabilities represent the econometricians best inference about the regime

the process was in at time t using all available information up to time T . This

section heavily draws on results by Hamilton (1989), Hamilton (1990), Gray

(1996) and especially Klaassen (2002). In general, one can write p(St|Φτ ) for

all K regimes the ex post probability as:

p(St|Φτ ) = p(St|rτ , Φτ−1)

=
p(rτ |St, Φτ−1)p(St|Φτ−1)∑K

St=1 p(rτ−1|St, Φτ−1)p(St|Φτ−1)
. (20)

When τ = t, then p(St|Φτ ) follows directly because we already know p(St|Φτ−1)

and p(rτ−1|St, Φτ−1) from the foregoing maximum likelihood estimation pro-

cess. For all the following times (τ = t+ 1, t+ 2, ..., T ), the calculation of the

smoothed probabilities is a first-order recursive process.

If τ > t we basically need two inputs in order to compute Eq.(20). The

first ingredient is the previous K ex post probabilities p(St|Φτ−1), which are

known from the previous iteration. Second, we need to compute the density

p(rτ−1|St, Φτ−1) for all K possible regime outcomes. In order to arrive at this

density we have to go through some steps. First we can write is as:

p(Sτ |rt, Φτ−1) =

K∑

Sτ=1

p(rτ |Sτ , Φτ−1)p(Sτ |St, Φτ−1), (21)

where one uses that the conditional distribution of rτ given Sτ does not

depend on the earlier regimes (St, St−1, ...) because we integrate out the path-

dependence during the estimation procedure. In Eq.(21) we again have two

parts on the right hand side. The first one is the densities p(rτ |Sτ , Φτ−1) for

all K regimes, which are known from the estimation procedure. The second

part,p(Sτ |St, Φτ−1), consists of the τ − t period transition probabilities of

the Markov chain for all possible regime outcomes. By using the Markov
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property we can rewrite it as:

p(Sτ |St, Φτ−1) =
K∑

Sτ−1=1

p(Sτ |Sτ−1, Φτ−1)p(Sτ−1|St, Φτ−1)

=

K∑

Sτ−1=1

pijp(Sτ−1|St), (22)

where we again, as a first ingredient, have the one period ahead pij transition

probabilities following from Eq.(11) or the transition matrix P. The second

part on the right hand side on Eq.(22) can be calculated recursively.

Let us write p(Sτ−1|St, Φτ−1) for all K2 regime combinations as:

p(Sτ−1|St, Φτ−1) = p(Sτ−1|St, rτ−1, Φτ−2)

=
p(rτ−1|Sτ−1, Φτ−2)p(Sτ−1|St, Φτ−2)∑K

Sτ−1=1 p(rτ−1|Stau−1, Φτ−2)p(Sτ−1|St, Φτ−2)
, (23)

where we use the fact that the conditional density p(rτ−1|Sτ−1, Φτ−2) is in-

dependent of all earlier regimes once Sτ−1 is given. For iteration τ all ingre-

dients in Eq.(23) are known either from the foregoing estimation procedure

(the conditional density p(rτ−1|Sτ−1, Φτ−2)) or the previous iteration in the

calculation of the smoother (the (τ − t − 1)-period ahead transition proba-

bility p(Sτ−1|St, Φτ−2)). The ex post probability for τ = T then gives the

smoothed regime probability p(St|ΦT ), which completes the calculation of

the smoothed probabilities.

4 Application and results

In this section of the paper, we are going to present the results of fitting our

model in Eq.(9) and (10) to stock market index range data. We first present

the data themselves, some descriptive statistics and evidence indicating that

there very well might be a hidden Markov process underlying the data causing

the data generating process to switch between a low and a high volatility

state. As already mentioned above, we assume a two regime Markov process.
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We then further present the results of fitting different versions of our MS-

ARMA-GARCH range model and find that model which best fits the data.

We will end this section by briefing possible interpretations of the results.

4.1 The data

The data we use are weekly ranges for the US stock market index S&P500

downloaded from the yahoo.com database. In order to arrive at the actual

data we transformed the downloaded pMax
t and pMin

t being the highest and

the lowest (log-)price index observation, respectively, like:

Rt = 100 ∗ (pMax
t − pMin

t ). (24)

The range Rt is by definition a positive variable and would ask for either

a multiplicative model and/or an error distribution that has a lower bound

at zero. Furthermore, its unconditional distribution is highly skewed further

complicating its modeling. We, therefore, use the log-range7:

rt = ln(Rt), (25)

which unconditional distribution is surprisingly close to a normal distribu-

tion. This result confirms results of, for example, Alizadeh et al. (2002) who

also find that the log-range can very well be described as normally distributed

- a fact that is uncommon in financial time series, which are usually skewed

and show excess kurtosis. Furthermore, Andersen et al. (2003) find that fore-

casting the log transformation of volatility yields better in- and out-of sample

forecasts of the variance because it puts less weight on extreme realizations

of the volatility.

7In fact we use an outlier-adjusted version of the data series. We consider all realizations
as outliers when the weekly range is either larger than 10% (8 cases) or smaller then 1%
(30 cases). Less than five trading days per week are often responsible for lower tail outliers.
Identified outliers are eliminated by taking the average of five consecutive observations,
namely the two observations before and after the outlier and the outlier observations
itself. By this method we make sure that extreme observations remain extreme but do not
bias estimation results. A robustness check showed no significant changes (besides larger
Jarque Bera test statistics) in estimation results, which are available upon request.
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Table 1 shows descriptive statistics of our range and log-range data. The

Jarque-Bera test statistics reject normality for both series. In the case of

log-ranges the statistic still rejects normality but is already very much closer

to non-rejection than in the case of the range. We also perform an aug-

mented Dickey and Fuller (1979) test (ADF) with lag-length selection using

the Schwarz (1978) information criterion. The null hypothesis of a unit root

is clearly rejected for all four series. So, there is no need for taking the first

difference of the data. We can directly apply standard stationary time series

analysis tools.

[Insert Table 1]

We show the range Rt and the log-range rt time series in Figure 1. The

data start on January 2nd 1962 and end on March 19th summing to 2359

observations in total (observations are on Mondays). The unconditional dis-

tributions of the range and log-range are shown in Figures 2. Obviously,

the fact that rt is close to normally distributed makes Rt appear to have a

log-normal distribution.

[Insert Figure 1]

[Insert Figure 2]

We continue the data description with an informal time series analysis

by having a closer look at the data. One can see in Figure 1 quite clearly

that there are periods of relatively low volatility and periods of high volatil-

ity. Especially the periods in the middle of the 1970s, the beginning of the

1980s, in the late 1980s and from 1998 until 2003 are marked by clearly

higher average volatilities measured by the range and/or log-range. High

volatility in the early and middle of the 1970s coincides with the break down

of the Bretton Woods gold system and the first oil crisis starting in 1973,

which was followed by strong reactions of world financial markets. The high

volatility period in the beginning of the 1980s corresponds to the second oil

crisis, where between 1980 and 1981 the price of crude oil more than doubled
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within a period of 12 months. In the late 1980s there is another very pro-

nounced but relatively short period of high volatility with a pronounced peek

corresponding to “Black Monday” on October 19th 1987. On this day the

main US stock markets dropped by ca.23% starting a period with extreme

uncertainty in asset markets worldwide.8 This period of increased asset mar-

ket volatility did not last very long though and markets returned to pre-crash

volatility levels before showing some increased volatility again in the begin-

ning of the 1990s during and after the second Gulf War. A further period of

higher than normal volatility starts in 1998/1999 probably corresponding to

the burst of the “dot-com-bubble” and very much lasting until 2003 roughly

corresponding to the end of the third Gulf War.

So, in sum there appear to be quite distinct periods of high and low mar-

ket uncertainty corresponding to high and low volatility, as measured by the

range and log-range, respectively. We think that this is strong evidence for

an underlying regime-switching process that might very well be described as

a Markov chain. In order to formally test for the presence of a low and high

volatility regime we use the testing procedure introduced by Cheung and

Erlandsson (2005). They propose a Monte Carlo based testing procedure to

simulate an empirical finite sample test statistic for the null hypothesis of one

regime (no Markov-switching) against the alternative of two regimes. Such

an testing procedure comes in handy because standard statistical procedures

fail here. Under the null hypothesis of a linear model with only one regime

the nuisance parameters P11 and P22, which are present under the alterna-

tive, are not defined making the distribution of the asymptotic log-likelihood

ratio test statistic non-standard. Contributions like Hansen(1992; 1996) and

Garcia (1998) derived such asymptotic distributions. But still not much is

known about their finite sample behavior. We therefore opt for the procedure

proposed by Cheung and Erlandsson (2005) which they show to have good

power also in finite samples.

We apply the Cheung and Erlandsson (2005) testing procedure to the

data by comparing the best fitting linear model with the best fit of the

Markow-switching models only allowing for a change in the intercept of the

8See, for example, Shiller (1989) and Carlson (2007).
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mean equation.9 We indeed find significant results for the presence of at least

two regimes. The p-value of the likelihood ratio test was found to be at 2%,

clearly rejecting the null hypothesis of a linear specification in favor of the

alternative Markov-switching hypothesis justifying the further procedure of

modeling the log-range according to Eq.(9) and (10).

Another criterion for a well fitting regime-switching model should be that

it is capable of at least also identifying some of the periods of high and low

volatility visually found in the graphs before. Therefore, we present the

results of fitting the considered MS-ARMA-GARCH models to the data in

Section 4.2.

4.2 Estimation results

In Section 4.1 we showed that the weekly S&P500 range and log-range are

very likely to be drawn from at least two different densities and thereby from

more than one volatility regime. In this section we aim at finding the best

fitting, parsimonious model from our proposed class of MS(2)-ARMA(a,b)-

GARCH(p,q) models generally described in Eq.(9) and (10), which are re-

produced here for convenience:

rt = µk +

a∑

i=1

ak,irt−i +

b∑

j=1

bk,jEt−1[(ǫt−j |St−j, Φt−j)|St] + ǫt,

9Such a test can easily be applied to different alternative model specifications. Never-
theless, it appears sufficient to us at this point to take the simplest Markov-switching as
an alternative model because it already showed up to be sufficient to generate significant
results. Furthermore, any more complicated alternative model specification would have
increased computing time without giving more insights.
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where

ǫt =
√

hk,tzt

hk,t = ωk +

p∑

m=1

αk,mEt−1[(ǫt−m|St−m, Φt−1)|St]

+

q∑

n=1

βk,nEt−1[(ht−n|St−n, Φt−1)|St].

So, we will have to fit different specifications of the MS(2)-ARMA(a,b)-

GARCH(p,q) models in order to be able to decide upon which one fits the

data best. We will proceed in a bottom-up way. We start with MS(2)-

ARMA(a,b) specifications without looking at possible GARCH or volatility

of volatility clustering effects. In order to make sure that the QMLE estima-

tion arrived at the global maximum likelihood, we estimate the models with

100 different randomly drawn starting values. To check for a good fit we

will employ different means. A very important criterium will obviously be

to check, if there is any autocorrelation in the standardized residuals and/or

the squared standardized residuals left. Any remaining autocorrelation in the

residuals asks for an increase in the amount of ARMA-terms. Any remaining

autocorrelation in the square of the standardized residuals hints at GARCH-

effects not sufficiently accounted for by the model, and we might need to

add more ARCH or GARCH terms. The best fitting model will not have

any remaining autocorrelation or foreseeability in the standardized residuals

or squared standardized residuals. So, the following subsections analyze the

data in more detail.

4.2.1 Only the intercept changes with the regime

In the empirical implementation we allow different parts of Eq.(9) and (10) to

change with regimes. An ARMA-C or an ARMA-X specification mean that

only the constant or all parameters in that part of the model are allowed

to change, respectively. In this subsection we concentrate on the different

MS(2)-ARMA-C(a,b)-GARCH(p,q) model specifications. In all the com-

ing models we let only the constant or intercept, µk, in the mean equation
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(Eq.(9)) change with the regime. Later, we also experiment with regime de-

pendent ARMA and GARCH parameters in order to find out if the volatility

of volatility is changing with time as well. All considered estimation results

we show in Table 2. The columns represent all different specifications with

parameter estimates and standard errors reported. We also show the value of

the maximized log-likelihood function and Ljung-Box (LB) and Jarque-Bera

statistics in order to check for residual and squared standardized residual

autocorrelation and normality of the residual distributions.

We start with the most parsimonious specification being the MS(2)-AR(1)

model. Here, we can already see that there are clearly two different volatility

regimes in the S&P500 data over the considered sample period. Constant

terms in either regime differ significantly from each other. Checking for cor-

rect model specification by inspecting the Ljung-Box statistics both for the

standardized residuals and squared residuals it becomes apparent that the

simple MS(2)-AR(1) specification cannot completely eliminate autocorrela-

tion in the residuals and their squares. Two points arise from this. First, we

need to increase the order of ARMA-terms in the mean equation. Second,

there is evidence for conditional heteroscedasticity in the residuals asking for

the inclusion of some ARCH and/or GARCH terms in order to allow for a

time-varying variance. Though, before specifying the conditional variance

of the range, we first proceed in finding an ARMA-specification that is able

to account for the autocorrelation in the residuals. Afterwards we continue

with modeling the conditional heteroscedasticity.

[Insert Table 2]

Already an ARMA(1,1) specification is able to deliver insignificant auto-

correlation levels in the residuals, which can be checked by looking at the

Ljung-Box statistics. But we still have clear evidence for remaining condi-

tional heteroscedasticity. The addition of an equation specifying the condi-

tional variance solves this problem.

In order to take care of the conditional heteroscedasticity in the data we

specify different GARCH(p,q) models. We only report the results for the

GARCH(1,0), GARCH(1,1) and the GARCH(2,1) cases in Table 2. The
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GARCH(1,0) specification for the variance equation does not seem to be suf-

ficient to justify the i.i.d. assumption for the residuals because the Ljung

Box statistics for the standardized squared residuals are still significant.10

We therefore try two different approaches, namely augmenting the condi-

tional variance with a lagged conditional variance term (GARCH(1,1)) and

augmenting it with higher order ARCH-terms (GARCH(2,1)). Also the as-

sumption of a GARCH(1,1) specification does not fully solve the problem of

not having i.i.d. residuals because the Q-statistic at one lag is still signif-

icant at a 5% level. The GARCH(2,1) model though delivers insignificant

autocorrelations for the squared residuals at a 10% significance level.11 We

therefore consider the MS(2)-ARMA-C(1,1)-GARCH(2,1) model as fitting

the data best. The fitted values of this model specification can be found in

Figure 3. By inspecting the Jarque-Bera test statistic it is apparent that the

normality assumption is very likely to be violated, though.

[Insert Figure 3]

By having a closer look at the coefficients of the MS-ARMA-C(1,1)-

GARCH(2,1) model, one can see a quite clear difference in the constant

terms of either regime. In the low volatility regime µ1 is equal to 0.0545

whereas in the high volatility regime µ2 is equal to 0.0876. These intercepts

and the AR-coefficient of 0.928 give us the unconditional log-range values

of 0.757 and 1.217 for the low and the high volatility regime, respectively.

Such log-range values translate into ranges of 2.132 and 3.376, respectively,

which corresponds to a, on average, 61% larger volatility during periods with

high volatility as compared to those periods with low volatility. The variance

parameters α1, α1, and β1 and the fact that they add up to 0.9988 suggest

a quite persistent conditional volatility of the log-range, where the biggest

contribution of this persistence comes from the GARCH and not the instan-

taneous ARCH parameters. This suggests that shocks to the volatility of the

10By inspecting the Ljung-Box Q-statistics more closely, we find that especially the first
four lags cause the rejection of the no autocorrelation null hypothesis. Detailed results are
not reported here, but are available upon request.

11Because of space considerations we do not report all those test statistics in Table 2.
They are available on request.
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volatility die out quite slowly.

We also present the ex ante and smoothed regime probabilities derived

from the best fitting model for the weekly data. Figure 4 shows the ex ante

and the smoothed regime probabilities in Panel (a), and the corresponding

range observations in Panel (b). There is a clear peak in the smoothed and

ex ante probabilities around the 1987 stock market crash. Also the high

volatility period from 1997 until 2003 is clearly identified. Interestingly, the

weekly data ranging back to the beginning of the 1960s also identify a longer

period of high volatility from the end of the 1960 until the beginning of the

1980s. As already mentioned above, this period was characterized by many

world economic changes and crises, as for example the first and the second

oil shock and the collapse of the Bretton Woods system.

[Insert Figure 4]

In sum, our proposed model for the weekly log-range S&P500 data do a

good job in terms of identifying important periods of financial uncertainty

and increased volatility in a very important US stock market index. They

are capable of distinguishing quite clearly low- and high-volatility periods

from each other. Also standardized residuals do not show important signs

of autocorrelation or remaining unexplained conditional heteroscedasticity,

which justifies the i.i.d. assumption important for quasi maximum likelihood

estimation.

4.2.2 Allowing all mean equation parameters to change

Up to now we only allowed for changes in the constant term of the mean

equation in Eq.(9). We also would like to check the evidence for changes in

the dynamics. It might be that the dynamics of the range as a time series

change with the regime. One might argue that in a high volatility regime the

dependence of the volatility today on the volatility in the past is different

compared to the low volatility regime because investors could change their

behavior according to their perception of what volatility regime markets are

in. In order to check for differences in the dynamics across regimes we let all
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parameters of the mean equation free to change with the regime. Again we

follow the same approach as in the case where we only let the constant, µ,

change for identifying the appropriate model.

We present the estimation results in Table 3, the fitted values in Figure

5, and the ex ante and smoothed probabilities of the best fitting model in

the corresponding Figure 6. Again we take the same approach for model

selection as before. The best fitting model here, where we allow all parame-

ters of the mean equation (9) to change, is the ARMA-X(1,1)-GARCH(2,1)

specification.

[Insert Table 3]

[Insert Figure 5]

[Insert Figure 6]

In Table 3 three interesting results, compared to the earlier results where

we only allowed the constant in the mean equation to change, appear. First,

there seems to be a quite clear difference in the autoregressive coefficients

across the regimes. In the case of the ARMA-X(1,1)-GARCH(2,1) specifi-

cation we estimate the AR-coefficients for the low- and the high volatility

regime to be equal to 0.9670 and 0.9132, respectively. This means that the

half-life of a shock to the volatility is 21 weeks in the case of the low and 7

weeks for the high-volatility regime. So, in the low-volatility even 21 weeks

after a shock around 50% of it is still present in the actual volatility. In the

high-volatility regime markets seem to “forget” much more quickly. Here

the half-life of a shock is around seven weeks. This confirms the results of

Gray (1996) and Klaassen (2002) who also find that volatility persistence in

the high volatility regime is lower. A second result is that also the moving-

average parameter in the high-volatility regime are lower in absolute value

than those in the low-volatility regime. The third interesting results is that

the GARCH structure, being a GARCH(2,1), does not change compared to

the results before and thereby appears to be very robust through different

regimes and specifications. So, also when we allow all parameters of the mean
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equation to change with the regime, there still is strong evidence for quite

persistent volatility of the volatility.

We also tried to let all parameters of Eq.(9) and (10) vary with the state.

Results were inconclusive though, which probably is due to large amounts

of coefficients that need to be estimated.12 Another possibility is that the

variance equation might be governed by a second Markov chain that not

necessarily coincides with the Markov chain governing the parameters of the

mean equation. A further extension of the model for that possibility could

be very interesting but is beyond the purpose of this paper and we leave it

for further research along these lines.

4.3 Forecasting performance

A better fit to the data is already an own end for modeling the data gen-

erating process of volatility as a Markov-switching model instead of a linear

one in order to identify high and low volatility periods within the sample.

But another interesting point is a comparison of forecasting performances.

In this subsection we present the results of an in-sample forecasting compar-

ison of our proposed Makrov-switching model with a linear ARMA-GARCH

specification. We estimate the best fitting linear13 and the best fitting MS

model using the full sample. Then we pick a starting point t in the sample

and forecast F periods into the future. After obtaining such a forecast we go

to observation t + 1 and so the same again rolling through the sample until

we arrive at period T − F which is the period of the last forecast. An un-

derlying assumption of such a procedure is that the parameter estimates do

not change much by either estimating the models with the full sample or by

always re-estimating it14. For calculating our forecasts we follow the methods

developed in Davidson (2004) where he proposes a method for multi-period

forecasting with a Markov-switching dynamic regression model accounting

12Results are available upon request.
13The linear model we consider is an ARMA(1,1)-GARCH(2,1) specification without

Markov-switching. For brevity we do not show the details of this model here, but they are
available upon request.

14We performed estimations of the models only using sub-samples. It turned out that
such an assumption appears to be justified.
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for conditional heteroscedasticity.

Imagine that we want to forecast rt+F for F ≥ 1 given observations

on the process up to date t. With other words the object of interest is

E(rt+F |Φt). Davidson (2004) develops a recursion for computing E(rt+F |Φt),

which we denote by r̂t+F for brevity. Such a recursion involves only K terms

at each iteration. The terms are the probability-weighted averages of the

one-step contingent forecasts. We can rewrite Davidson’s recursion slightly

by adapting it to our case as:

r̂t+F =

K∑

jF =1

P̂F,jF
[µjF

+

a∑

f=1

am,jF
r̂F−f +

F+a∑

f=F

am,jF
r̂F−f ] (26)

+

b∑

f=min(b,F )

bm,jF
ǫ̂F−f , (27)

where P̂f,j = Pr(Sf = j|Φt) and is generated from

P̂f,j =

K∑

i=1

PjiP̂f−1,i, for j = 1, ..., K and f = 1, 2, ..., F.

For a proof see Davidson (2004, p.3-4).

As a penalty function we use the mean absolute and the mean squared

errors. We apply Eq.(26) to different forecasting horizons F = 1, 5, 10, 20, 25

and show their relative performances with respect to the linear model in

Table 4.

In order to compare the forecasting accuracy of the linear and the Markov-

switching model more formally we perform the statistical tests proposed in

Diebold and Mariano (1995). They develop different test statistic allowing

to compare forecasts from two competing models against each other. Such a

comparison is based on a loss function g(·) that can take a variety of forms.

We again opt for an absolute forecasting error loss function. The Diebold and

Mariano procedure tests the null hypothesis of equality of the two competing

forecasts against the alternative that one forecasting model outperforms the

other in its forecasting accuracy. In equation form the null hypothesis may
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be written as:

E[g(eit)] = E[g(ejt)], or E(dt) = 0,

where eit is model i’s forecasting error and dt ≡ [g(eit)−g(ejt)] is the loss dif-

ferential. They propose different test statistics one of them being an asymp-

totic test, which they call S1:

S1 =
d̄√

V̂ ard̄/Tf

,

where

d̄ =
1

Tf

Tf∑

f=1

dt (28)

V ard̄ = γ0 + 2
∞∑

j=1

γj, γj = cov(dt, dt−j) (29)

and where V̂ ard̄ is a consistent estimate of the asymptotic variance of
√

T d̄ as

proposed in Diebold and Mariano. The infinite sum of covariances in Equa-

tion (28) is difficult to estimate. (Diebold and Mariano, 1995, p.254) state

that “optimal k-step ahead forecast errors are at most (k-1)-dependent...(k-

1)-dependence implies that only (k-1) sample autocovariances need to be

used...” They further show that S1
a∼ N(0, 1).

One might argue if an asymptotic test is applicable to our data. So, we

also calculate the “finite-sample tests” proposed by (Diebold and Mariano,

1995), which we will show below:

S2 =
T∑

t=1

I+(dt),

where

I+(dt) = 1 if dt > 1

= 0 otherwise.
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S2 may be assessed using the cumulative binomial distribution with a success

probability of p = 0.5 under the null. In large samples another version of the

S2 sign test is:

S2a =
S2 − 0.5T√

0.25T

a∼ N(0, 1).

The last test statistic we will use is based on a rank-test and is also

standard normally distributed under the null:

S3a =
S3 − T (T−1)

4√
T (T+1)(2T+1)

24

a∼ N(0, 1),

where

S3 =

T∑

t=1

I+(dt)rank(|dt|).

Again in Table 4 we show the results of forecasting comparison between

the linear and the non-linear Markov-switching model. It is apparent that

in the weekly dataset the Markov-switching model, where only the constant

term in the mean equation changes, outperforms the linear alternative sig-

nificantly at any forecasting horizon considered. It is interesting but not

surprising to see that the forecasting accuracy of the Markov-switching com-

pared to the linear model improves the longer the forecasting horizon. Such

a behavior was to be expected because the change in the absolute difference

in the intercepts between the low and the high volatility state is not large

and the processes need some time after state-switches to “burn-in” towards

the new unconditional volatility level.

When the Markov-switching model, where all mean parameters are free

to change, is the competing one, we can see that the linear model forecasts

better at short horizons and marginally worse at longer horizons. The better

forecasting performance of the MS model at longer horizons is at most small

and not very significant. There are a couple of possible explanations for

such an outcome. One explanation might be that the differences between

the linear and the non-linear MS model are not very large not leading to any

significant improvements. Another reason can be that the process does not
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remain long enough in one regime or another in order to take full advantage of

the difference in constants across regimes. This would not allow the forecast

to burn in towards the respective unconditional mean in order to obtain a

better forecast performance. Such a reason might be justified by again having

a look at Figure 6, where it is apparent that the average time the process is

estimated to stay in one of the two regimes is much shorter than for the MS

model which only allows for changes in the intercept of the mean equation.

5 Concluding remarks

In this paper we propose a new non-linear volatility model based upon the

observed volatility estimator range and/or log-range being defined as the

spread in percent between the maximum and the minimum observed stock

price index of the S&P500 within a trading week. The results of such an

analysis are of potential interest for option pricing, hedging decisions, VaR

calculations, but also for policy making. We find quite strong evidence for an

underlying and unobservable Markov chain governing the parameters of the

ARMA-GARCH specification that fits the log-range data best. We clearly

identify two, a high and a low, volatility regimes. Smoothed regime proba-

bilities that are obtained during the estimation of the models also very well

coincide with periods of either low or high volatility observed in the data.

Periods most likely to show stronger than average volatility correspond to

the collapse of the Bretton Woods system, the first and the second oil crisis,

to a (surprisingly) lower extend the period around “Black Monday” in Oc-

tober 1987, and the time from 1998 until 2003 with the burst of the dot-com

bubble.

We further find evidence for different volatility dynamics across different

volatility regimes. Volatility appears to be more persistent when the average

level of it is relatively low, but seems to be less persistent when it is high.

Such results confirm those of Gray (1996) and Klaassen (2002) and hint at

the fact that asset market participants act differently during normal versus

very volatile periods. In high volatility periods they seem to “forget” quicker

than during low volatility periods. The conditional volatility of the log-
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range (or the volatility of the volatility) is found to be described well by

a GARCH structure with strong persistence, which is very robust over all

different models considered. Such a fact means that shocks to the volatility

of the volatility in the S&P500 stock index tend to be still present in the

market many periods after they happened.

A forecasting comparison between a linear model and the proposed Markov-

switching models shows promising results. Whereas the Markov-switching

model allowing all mean equation parameters to change performs only marginally

better at longer horizons than the linear model, we find that the Markov-

switching specification only allowing the constant term to change with the

regime performs significantly better than the linear competitor at all horizons

considered.

Much remains to be done in the area of volatility estimation and forecast-

ing. Our model combining nonparametric volatility estimation with para-

metric Markov-switching time series methods is not the end of the story.

Some very interesting extensions of our model might include the possibility

of more than two volatility regimes. The transition probabilities between

regimes need not to be constant either, but can be specified to be dependent

on exogenous variables. Another very interesting extension of our model

would be to check if the forecasting performance of the Markov-switching

model may be improved by assuming that the unconditional mean of the

volatility changes with regimes and not only the constant term. Such a be-

havior would cause the forecasts to move much quicker to the new mean of

the volatility corresponding to the respective regime the process is forecast to

be in. We are working on some of these extensions and it will be interesting

to see to what extend they might improve the estimation and forecasting of

asset market volatility.
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Appendix

Figure 1: Weekly S&P500 range and log-range

(a) Range

(b) Log-Range

Note: Range is equal to Rt = 100 ∗ (pMax
t − pMin

t ). The Log-Range is calculated as rt = ln(Rt).
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Figure 2: Weekly S&P500 range and log-range unconditional distributions

(a) Range

(b) Log-Range

Note: The range and log-range are calculated as in Figures ?? and 1.
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Figure 3: Fitted and actual weekly S&P500 log-range values (only constant
changes)
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(b) Actual data

Note: The fitted values in Panel A are obtained from a MS-ARMA(1,1)-GARCH(2,1)
specification. Panel B shows the observed data.
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Figure 4: Weekly probabilities (only the constant changes)

(a) Ex ante and smoothed probabilities

(b) Range

Note: In Panel (a) we show the ex ante (dotted line), p(St = 2|Φt−1), and smoothed
probabilities (solid line), p(St = 2|ΦT ), which are calculated as in Section 3.3 and 3.4
respectively. Both show the probability that the data at time t are drawn from the high
volatility regime distribution. Panel (b) shows the corresponding observed range data for
which the probabilities are calculated. All probabilities are obtained from the daily MS(2)-
ARMA-C(1,1)-GARCH(4,0) model, where the C stands for only constant, meaning that
only the constant is allowed to change with the regime.
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Figure 5: Fitted and actual weekly S&P500 log-range values (all mean equa-
tion parameters change)
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(b) Actual data

Note: The fitted values in Panel A are obtained from a MS-ARMA-X(1,1)-GARCH(2,1)
specification. Panel B shows the observed data.
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Figure 6: Weekly probabilities (all mean equation parameters change)

(a) Ex ante and smoothed probabilities

(b) Range

Note: In Panel (a) we show the ex ante (dotted line), p(St = 2|Φt−1), and smoothed
probabilities (solid line), p(St = 2|ΦT ), which are calculated as in Section 3.3 and 3.4
respectively. Both show the probability that the data at time t are drawn from the high
volatility regime distribution. Panel (b) shows the corresponding observed range data for
which the probabilities are calculated. All probabilities are obtained from the daily MS(2)-
ARMA-X(1,1)-GARCH(1,1) model, where the X stands for all, meaning that all parameters
in the ARMA equation are allowed to change with the regime.
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Table 1: Descriptive statistics
Weekly observations

Range Log-Range
Mean 3.145 1.045
Median 2.745 1.010
Maximum 12.215 2.503
Minimum 0.988 -0.012
Std.Dev. 1.530 0.441
Skewness 1.576 0.295
Kurtosis 6.250 2.825
Jarque-Bera 2015.069 37.173
P-value 0.000 0.000
ADF test 9.203 8.574
P-value 0.000 0.000

Note: Descriptive statistics relating weekly range and log-range ob-
servations as derived from Eq.(24) and (25) respectively. Data are
from January 2nd 1962 until March 19th summing to 2359 observa-
tions in total. The data are plotted in Fig. 1. Augmented Dickey-
Fuller (ADF) test statistics and p-values are calculated based on an
automatic lag-length selection using the Schwarz information crite-
rion.
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Table 2: Estimation results for weekly S&P500 data only allowing the constant (µ) to change
AM(1,0) AM(1,1) AM(1,1)-G(1,0) AM(1,1)-G(1,1) AM(1,1)-G(2,1)

Parameters Estimate Std.Er. Estimate Std.Er. Estimate Std.Er. Estimate Std.Er. Estimate Std.Er.
µ1 0.5413 0.0004 0.0410 0.0073 0.0589 0.0050 0.0560 0.0053 0.0545 0.0006
µ2 0.8865 0.0009 0.1741 0.0554 0.0934 0.0114 0.0900 0.0148 0.0876 0.0009
a1 0.3426 0.0003 0.9522 0.0030 0.9236 0.0096 0.9263 0.0123 0.9280 0.0008
b1 -0.7533 0.0046 -0.6956 0.0008 -0.6808 0.0094 -0.6907 0.0033
ω 0.1129 0.0000 0.1051 0.0007 0.1000 0.0318 0.0003 0.0000 0.0001 0.0001
α1 0.0939 0.0971 0.0128 0.0005 0.0892 0.0118
α2 -0.0797 0.0115
β1 0.9842 0.0007 0.9893 0.0016
P11 0.9899 0.0000 0.9779 0.0196 0.9958 0.0003 0.9964 0.0011 0.9961 0.0004
P22 0.9867 0.0004 0.6789 0.2956 0.9969 0.0000 0.9947 0.0002 0.9962 0.0002
Log-Likelihood -838.060 -728.313 -717.875 -695.227 -688.276

P-Values
LB1 0.000 0.513 0.975 0.625 0.781
LB5 0.000 0.286 0.726 0.775 0.808
LB10 0.000 0.524 0.871 0.909 0.917
LB2

1 0.000 0.000 0.612 0.000 0.969
LB2

5
0.000 0.000 0.003 0.002 0.375

LB2
10 0.000 0.000 0.000 0.007 0.318

Jarque-Bera 13.314 6.774 36.263 33.699 32.855
P-value 0.001 0.034 0.000 0.000 0.000

Note: AM(a,b)-G(p,q) is short for an ARMA(a,b)-GARCH(p,q) specification. Parameters are estimated using the
GAUSS6.0 conditional optimization package (co) under the constraints of all ARMA and GARCH roots lying outside the
unit circle. Additionally, we impose a positivity constraint for the variance and conditional variance. We apply the standard
convergence criteria. The parameters are as in Eq.(9) and (10) for the respective model specifications. P11 and P22 are the
Markov chain transition probabilities for every period for staying in the low and in the high volatility regime, respectively.
LBx stands for the Ljung-Box test at x lags of the standardized residuals. LB2

x is the same but for squared standardized
residuals. For the Ljung-Box test we only report p-values for the null hypothesis of no autocorrelation. The Jarque-Bera
test tests for standard normality in the standardized residuals. For the Jarque-Bera test we report the test statistics and
corresponding p-values.
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Table 3: Results for weekly S&P500 data allowing all mean equation parameters to change
AM(1,0) AM(1,1) AM(1,1)-G(1,0) AM(1,1)-G(1,1) AM(1,1)-G(2,1)

Parameters Estimate Std.Er. Estimate Std.Er. Estimate Std.Er. Estimate Std.Er. Estimate Std.Er.
µ1 0.6000 0.0050 0.0288 0.0483 0.0281 0.0536 0.0227 0.0002 0.0244 0.0012
µ2 0.7005 0.0723 0.1711 0.0066 0.1555 0.3773 0.1357 0.0013 0.1103 0.0015
a1,1 0.2326 0.0174 0.9655 0.0617 0.9651 0.0493 0.9745 0.0003 0.9670 0.0017
a2,1 0.4550 0.0361 0.8714 0.0004 0.8809 0.2548 0.8969 0.0008 0.9132 0.0011
b1,1 -0.8223 0.0546 -0.8347 0.1628 -0.8255 0.0009 -0.8388 0.0014
b2,1 -0.5257 0.1408 -0.5537 0.3383 -0.4987 0.0005 -0.5838 0.0077
ω 0.1130 0.0033 0.1055 0.0006 0.0957 0.0015 0.0002 0.0000 0.0001 0.0000
α1 0.0938 0.0302 0.0110 0.0000 0.0798 0.0103
α2 -0.0710 0.0104
β1 0.9866 0.0002 0.9901 0.0048
P11 0.9914 0.0033 0.9932 0.0020 0.9931 0.0149 0.9927 0.0000 0.9908 0.0000
P22 0.9903 0.0031 0.9869 0.0125 0.9887 0.0117 0.9810 0.0001 0.9922 0.0005
Log-Likelihood -828.018 -716.746 -708.093 -685.380 -680.768

P-Values
LB1 0.000 0.716 0.988 0.877 0.917
LB5 0.000 0.772 0.774 0.907 0.887
LB10 0.000 0.847 0.825 0.965 0.936
LB2

1 0.000 0.002 0.000 0.046 0.164
LB2

5
0.000 0.000 0.000 0.107 0.243

LB2

10
0.000 0.000 0.000 0.094 0.177

Jarque-Bera 30.241 27.562 38.670 34.113 34.713
P-value 0.001 0.000 0.000 0.000 0.000

Note: AM(a,b)-G(p,q) is short for an ARMA(a,b)-GARCH(p,q) specification. Parameters are estimated using the
GAUSS6.0 conditional optimization package (co) under the constraints of all ARMA and GARCH roots lying outside the
unit circle. Additionally, we impose a positivity constraint for the variance and conditional variance. We apply the standard
convergence criteria. The parameters are as in Eq.(9) and (10) for the respective model specifications. P11 and P22 are the
Markov chain transition probabilities for every period for staying in the low and in the high volatility regime, respectively.
LBx stands for the Ljung-Box test at x lags of the standardized residuals. LB2

x is the same but for squared standardized
residuals. For the Ljung-Box test we only report p-values for the null hypothesis of no autocorrelation. The Jarque-Bera
test tests for standard normality in the standardized residuals. For the Jarque-Bera test we report the test statistics and
corresponding p-values.
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Table 4: Point forecast comparison Markov-switching vs. linear model
Panel A Only constant changes
Criterion 1 5 10 20 25
Absolute 0.584 1.997 3.238 4.076 3.679
Squared 1.073 3.386 5.695 6.544 6.545
S1 0.021 0.002 0.007 0.044 0.111
S2 0.031 0.001 0.000 0.000 0.000
S2a 0.034 0.001 0.000 0.000 0.000
S3a 0.026 0.000 0.000 0.000 0.000
Panel B All mean equation parameters change
Absolute -26.557 -9.445 -3.215 1.528 2.974
Squared -61.102 -21.285 -8.215 3.347 5.644
S1 1.000 1.000 0.922 0.287 0.185
S2 1.000 0.999 0.649 0.009 0.097
S2a 1.000 0.999 0.665 0.010 0.105
S3a 1.000 1.000 0.929 0.087 0.013

Note: Values are the improvements in the forecasting performance
of the Markov-switching model compared to the linear model. We
compare the ARMA(1,1)-GARCH(2,1) linear model with the MS-
ARMA(1,1)-C-GARCH(2,1) model starting the forecasts at t =
1800 which corresponds to XY.
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