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1 Introduction

The recent financial crises have renewed the debate on the importance of vulnerability of

international financial markets and the propagation of foreign shocks. These turmoils origi-

nate from a crash in a ”ground-zero” country3 which spreads across the world, even though

market analysts considered other countries ”healthy” before the crisis.

Financial market linkages are fostered by the trend towards an almost complete capital mar-

ket liberalization (also called ”globalization”) and are consequently at the heart of the recent

crises. Emerging countries wishing to finance domestic investments can find the capital they

require on foreign capital markets. They are thus no longer bounded by their national saving

and can then accelerate their growth. Nevertheless, it is achieved at the cost of a higher

risk of financial instability: a negative shock in a ”ground-zero” country will be quickly and

strongly transmitted to its financial partners. The group of crisis-contingent theories explain

the increase in market cross-correlation after a shock issued in a ”ground-zero” country in

several ways; multiple equilibria based on investor psychology, endogenous liquidity shocks

causing a portfolio recomposition, and/or political disturbances affecting the exchange rate

regime. The transmission of the crisis and the subsequent increase in cross correlation be-

tween markets is thus characterized by a ”spill-over” or ”shift-contagion” process.4 These

crisis-contingent theories do not specify the channels of transmission, which are assumed to

be unstable and crisis dependent. In contrast, the non-crisis-contingent theories consider

that the propagation of shocks does not lead to a shift from a good to a bad equilibrium, but

that the increase in cross-correlation is the continuation of linkages (trade and/or financial)

existing before the crisis.

Empirical tests for ”shift-contagion” avoid the identification of transmission channels

and focus their attention on changing patterns of cross-market correlation. For example, the

propagation of the Asian crisis from Thailand to Indonesia is revealed by a higher correlation

3Thailand and the devaluation of the Thai Bath in July 1997 is considered as the event that initiated the
Asian crisis.

4Masson (1999) considers the particular case of ”false” shift-contagion, where the increase in cross-
correlation may be due to the simultaneous occurrence of macroeconomic shocks across countries. According
to the ”monsoonal effect” theory, this artefact for shift-contagion is likely to happen as macroeconomic shocks
are correlated.
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between these financial markets during the crisis period. This correlation breakdown has

been considered by several empirical studies. For example, King and Wadhwani (1990)

and Lee and Kim (1993) show that financial market cross-correlation in the largest financial

markets exhibits a significant increase after the U.S. stock market crash. Similarly Calvo and

Reinhart (1995) and Baig and Goldfajn (1998) offer similar results after the 1994 Mexican

and the 1997 Asian crises.

The concept of ”shift-contagion” appeared to be a robust standard stylized fact until the

influential paper of Forbes and Rigobon (2002). Considering a simple linear framework they

show that a any increase in spurious correlation is detected in the presence of a change in

volatility. As during a crisis, financial markets are subject to high volatility regimes, Forbes

and Rigobon (2002) propose a stability test for correlation, which is robust to volatility

changes. Applied to the 1994 Mexican and the 1997 Asian crises, the hypothesis of higher

cross-market linkages is ruled out. Several recent studies have extended the framework

proposed Forbes and Rigobon (2002) (see among other Candelon et al, 2005 or Corsetti et

al, 2005) without supporting the idea of absence of contagion.

The linear framework used in Forbes and Rigobon (2002) is also subject to strong crit-

icism. Hartman et al (2004), Bae et al (2003) stress that contagion is not characterized by

an increase in correlation over the whole sample, but only during a period of extreme events,

i.e. a financial crises. It would support the idea that contagion is a transitory process and

that dependence between markets deviates only temporarily from its long-run path. They

consequently propose to test for an increase in tail dependence (also called ”co-exceedence”)

around the financial crisis dates.5

Other studies (Ramchand and Susmel, 1998 and Ang and Beckaert, 2002 to name a few),

prefer to consider another non-linear framework, namely the Markov-switching approach.

They test for differences of the sample correlations among different volatility regimes iden-

tified as crisis and non-crisis periods. Maximum likelihood techniques are used to estimate

the coefficients of a SWARCH and the probability matrix of staying or leaving a particular

volatility regime.

More recently, Rodriguez (2007) investigates contagion using the concept of copulas. A

Copula is the part of a joint distribution that completely describes its dependence struc-

ture. Copulas allow the modeling of the dependence between variables in a flexible way

5Formal tests for the stability tail-dependence are proposed in Straetmans (1997).
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and independently of the marginal distribution. They can then be used to analyze the de-

pendence after certain events, of extreme events (tail dependence) and for losses and gains

(asymmetric dependence). They thus appear to allow for a more general characterization of

contagion than linear correlation. Moreover, the concept of time varying copulas by Patton

(2006a) provides a tool that allows the degree and type of dependence to vary over time and

to depend on a set of conditioning variables. Rodriguez (2007) follows a two-step approach.

In a first step, univariate SWARCH models are estimated to determine the two volatility

regimes: the low (resp. high) volatility regime corresponding to the non-crisis (resp. crisis)

period. In a second step copula models are estimated, conditional on a dummy variable,

representing the volatility regimes in the ”ground-zero” country. The dependence parame-

ters across the two volatility regimes are then compared using a standard likelihood ratio test.

This paper proposes to use copulas in order to investigate asset market shift-contagion.

It is worth noticing that contagion is defined here as a significant increase in overall depen-

dence, namely correlation, as in Forbes and Rigobon (2002). This point of view differs from

Rodriguez (2007), who focuses on tail-dependence. Moreover, contrary to previous studies,

we do not impose the dependence to have a break coinciding with the changes in volatility

regime.6 It may be that both dates are identical, supporting the idea that change in de-

pendence is synchronized with change in volatility regime. However, because of propagation

time or information transfer, they are in our opinion unlikely to perfectly coincide. Anyway,

the possibility to test for such an assumption is possible in the framework proposed in this

paper. Besides, the Rodriguez (2007) two-step approach assumes that the volatility regimes

are perfectly estimated via SWARCH (or any other methods which aim to detect changes

in volatility). It is obvious that the error in estimating the transition probabilities7 should

affect the second step results.

For this reason, this paper contributes to the literature by setting up a sequential algo-

rithm. Based on a time varying copula, it allows for an efficient joint estimation of distinct

breakpoints in dependence and volatility. Elaborating on Dias and Embrechts (2004), which

6A Preliminary analysis has shown that a variance dummy defined as in Rodriguez (2007) does not
appear as significant in the conditional distribution of the copula. Results are available from the authors
upon request.

7Rodriguez (2007) used the smooth transition probabilities, and a cut-off criterion to determine the regime
timing. Both these choices are ad-hoc and a slight change might induce significant change in the results.
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proposes a formal test for the presence of a structural break in the dependence at an un-

known period of time. The sequential algorithm also includes a formal estimation of the date

of break in the variance parameters.8 Then, a Monte-Carlo study shows that the sequential

algorithm we propose outperforms the Forbes and Rigobon (2002) method, which underesti-

mates the presence of contagious events. It also outperforms Rodriguez (2007) copula based

test, which accepts the increase in interdependence too often, when the structural break in

variance is not causing the one in correlation. In the empirical application, which deals with

the Asian 1997 crisis, it turns out that contagion, defined as an increase in correlation, is a

dominating feature among the Asian economies. Furthermore, the assumption that depen-

dence and volatility exhibit a simultaneous change in regime is rejected. The date of the

change in regime is different, supporting the idea that transmission process may take some

time after to the occurrence of a financial crisis.

The rest of the paper is organized as follows. Methodological tools are introduced in

section 2. Section 3 is devoted to an extensive Monte-Carlo analysis. Section 4 presents

the results of our empirical study in the case of the Asian crisis and section 5 offers some

conclusions.

2 Methodology

2.1 Copulas

Copulas are multivariate distribution functions, which have uniform marginal distributions.

They capture dependence between the random variables of interest independently of their

marginal distributions and hence are scale invariant. Copulas find their applications mainly

in finance when calculating the Value-at-Risk of a portfolio, pricing exotic options and credit

derivatives, or for simply estimating the joint distribution of asset returns.9 In this study

we only focus on bivariate copulas. Definitions and most results of univariate copulas carry

over to the multivariate setting. In practice, however, the extensions are trivial only for

8The sequential algorithm does not have a formal estimation of the break in tail-dependence, which is
assumed to be synchronous with the break in dependence.

9For a good exposition of financial applications of copulas see Cherubini et al. (2004). Applications
in settings apart from measuring financial risk are rather rare and examples can be found in Granger et
al. (2006) for modeling the income consumption relationship or Bonhomme and Robin (2004) who model
earnings trajectories with the help of copulas.
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very specific cases. We thus limit the analysis to bivariate copulas. The most important

result on copulas, Sklar’s theorem, can be found with a proof in Nelson (2006) and states the

following. Let F be the marginal distribution function of X, G be the marginal distribution

function of Y , and let H be the joint distribution function of (X, Y ). Then there exists a

copula C such that

H(x, y) = C(F (x), G(y)),∀(x, y) ∈ R×R, (1)

where R denotes the extended real line. If F and G are continuous then C is unique. Con-

versely if we have distribution functions F and G and a copula C, then H is a bivariate

distribution function. Recalling the probability integral transform for continuous distribu-

tions, which states that the random variable U = F (X) has a U(0, 1) distribution regardless

of the original distribution F , it becomes clear that a copula is no more than a multivari-

ate distribution function with uniform marginals.10 It captures all the dependence between

random variables of interest, as all the dynamics of the marginal distributions are captured

by F and G for X and Y , respectively. In the case of bivariate normal distribution, F and

G are just normally distributed and the copula is completely described by the correlation

between the margins. Other copulas allow for more complex and possibly non-linear depen-

dence structures. For formal introductions to copulas and related functions, as well as a

large number of examples of copulas we refer to the books by Joe (1997) and Nelson (2006).

As correlation is the key feature of the paper, we will restrict our analysis to the Gaus-

sian copula.11 It can easily be derived from the bivariate normal distribution and has the

following distribution function

CGaussian(u, v) =

∫ φ−1(u)

−∞

∫ φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(
− s2 − 2ρst + t2

2(1− ρ2)

)
dsdt,

where ρ is the linear correlation coefficient of the corresponding bivariate normal distribution.

Thus the dependence between two variables having a Gaussian copula is the correlation the

variables would have if they had normal margins.

Patton (2006a) extended the theory by allowing the copula to be time varying and to depend

10Note that it is crucial that the marginal distributions are well specified so that the variables F (x) and
G(y) are i.i.d. U(0, 1) distributed.

11Tail dependence can only be modeled by alternative types of copulas.
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on an exogenous conditioning set Ft−1. In this way both the functional form of the copula

and the copula parameter may vary over time. It is crucial, however, that the conditioning

set is the same for marginal distributions as for the copula, otherwise the extension of Sklar’s

theorem to conditional distributions is not valid.

2.2 The Model

This paper opts for a model of contagion and interdependence between two asset markets,

which consists in keeping the conditional mean process a simple linear process and in con-

sidering time-varying copula based distributions for the error terms, evolving with volatility

and correlation regimes.

To this aim, the class of semiparametric copula-based multivariate dynamic (SCOMDY)

models by Chen and Fan (2006) is considered. They propose a parametric estimation the

conditional mean and variance of multivariate time series (using VAR or AR). In contrast, the

multivariate distribution of the standardized innovations is estimated via a semiparametric

copula model. The model for the conditional mean is given by the following stationary VAR

model:

Rt = Γ(L) ·Rt−1 + εt, (2)

where Rt are the stacked returns in markets r1 and r2, Rt = [r′1 r′2]
′ and Γ(L) is a lag

polynomial with roots lying outside the unit circle. εt = (ε1t, ε2t) are the VAR errors which

have the following conditional distribution:(
ε1t

ε2t

)
|Ft−1  CGaussian(F (ε1; ηt), G(ε2; ηt); θt), (3)

where Ft−1 is σ−space generated by the past returns. The variances of the marginal series

σ2 are included in the parameter vector η, the copula or dependence parameter vector θ

reduces to the correlation ρ in the case of a Gaussian copula.12 The marginal distributions

12Other copulas than the Gaussian one may be considered. Nevertheless, as we exclusively focus on the
overall dependence parameter and we do not expect qualitatively different results we focus only on this types
of copulas. Preliminary results suggested that using different copulas does not increase the fit considerably,
once the dependence parameter is allowed to vary over time.
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F and G may be specified parametrically or non-parametrically. We model the marginals

non-parametrically with the empirical distribution function

F̂ (x) =
1

T

T∑
t=1

1{Xt≤x}.

Two possibilities for the evolution of the time path of ηt are considered. There may be a

single unknown breakpoint in the level of volatility or the conditional variance can be mod-

eled via a GARCH model. Similarly, the copula parameter θt can either be characterized by

a single (unknown) breakpoint or can evolve over time, dynamically, as proposed in Patton

(2006a), which will be described below. Both the breakpoints in volatility and in correlation

are determined endogenously. Thus, changes in volatility and correlation induced by the

regime shift are captured in the conditional distribution of the V AR residuals.

Using copulas has three main advantages compared to using a known multivariate distribu-

tion such a the multivariate normal or student t-distribution. First, the individual series are

likely to be not normally distributed (i.e. leptokurtic and skewed). The marginals underly-

ing standard multivariate distributions do not allow for these features. Leaving the marginal

distributions unspecified, eliminates the risk of misspecification, which may influence the

estimation of the dependence parameter.13 Second, the dependence between two stock mar-

kets may show tail dependence (dependence of extreme losses), which may be modeled by

several types of copulas.14 Third, using a copula representation as in (2) allows sequential

estimation of marginal distribution as well as the copula itself. This leads to a significant

decrease in the computing time.

A test for contagion can then be performed as follows: First, one looks for a breakpoint in

the dependence parameter. If correlation does not increase, there is clearly no evidence for

shift-contagion. When a breakpoint in the dependence parameter is detected, it may support

the hypothesis of contagion, but it may also simply be due to an increase in volatility (see

Forbes and Rigobon, 2002). To discriminate between these possibilities, several methods

are available. First, it is possible to compare the confidence intervals of the breakpoint in

variance in the ”ground-zero” country and those of the breakpoint in correlation. Second,

13The advantage of not having to specify the marginal distributions comes at the cost of less efficient
estimation of the copula parameter, see Genest et al. (1995).

14However, tail dependence analysis will not constitute the focus of this paper.
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the model (2) is extended to allow for the dependence parameter to vary over time, condi-

tional on volatility. It then becomes possible to build a likelihood ratio test to determine

whether the level or the regime of the conditional variance can explain the variation of the

dependence parameter.

The tests for contagion based on correlation proposed by Forbes and Rigobon (2002)

consist of estimating the V AR model (2) 15 and restricting the distribution of the error

terms to a bivariate normal distribution, which is estimated over two predetermined periods

(one preceding and the other one during the turmoil). A significant increase in the correla-

tion of the error term during the turmoil (i.e. ρ1 < ρ2) indicates the presence of contagion.

Several studies have elaborated on this seminal paper keeping a similar framework.16 This

approach suffers from several drawbacks. First, it may be subject to sample selection bias

as the choice of tranquil and crisis periods is done beforehand. Second, the test assumed

that the residuals are normally distributed. It is obvious that such a condition is violated

in our case. Comparing the models before and during the crisis leads to the introduction

of non-linearities, and transforms (2) into a regime-dependent model. Forbes and Rigobon

(2002) associate these regimes to volatility stance, and propose a correction of the original

test. It may nevertheless miss other explanatory factors and introduce again an endogeneity

bias as the volatility regimes are determined beforehand.

Changes in dependence induced by the presence of volatility regimes have been explicitly

modeled by Rodriguez (2007).17 He developed a two-step approach: First, dynamics in the

mean are modeled via an AR(1) model and volatility regimes St are estimated for ”ground-

zero” countries via a Markov-switching ARCH (SWARCH) approach. Then, the change in

dependence (and tail-dependence) is investigated using copulas that are conditional on the

15Forbes and Rigobon (2002) also add interest rate as an exogenous control variable.
16(2) can be restated without adding more information as a common factor representation in order to

separate the common factor from the idiosyncratic country-specific component. Corsetti et al. (2005)
extract the common factor using principal components whereas Candelon et al. (2005) perform a common
feature approach. The test for contagion boils down to a stability analysis of the common component. If its
weight is larger after the crisis it can be concluded that shift-contagion occurred.

17A similar model has been developed by Okimoto (2007) to study the asset market linkages during bullish
and bearish phases.
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volatility regime s of the ”ground-zero” country. Model (2) then becomes:

ri
t = µ + φri

t−1 + εi
t, (4)

where εi
t follows a SWARCH(2, 1) process. The residuals νi

t of the SWARCH are mod-

eled by flexible, fully parametric copula models, whose degree and type of dependence is

conditioned on the state of the volatility regime st:

H(ν1
t , ν

2
t |st) = C(F (ν1

t |st), G(ν2
t |st)|st). (5)

Rodriguez (2007) rationalizes the concept of copulas to investigate market tail-dependence

and partially tackles the problem associated with the ad-hoc determination of volatility

regimes in Forbes and Rigobon (2002). Nevertheless, it suffers from several drawbacks:

First, it assumes that changes in dependence find their origin exclusively in volatility, which

might not always be the case. Second, even if the volatility regimes are estimated instead of

being fixed, they are introduced in the unconditional model (second step) as known, without

taking into account estimation uncertainty. Hence, the endogeneity bias is still present in

this approach.

2.3 Testing for structural breaks in copula models (Dias and Em-
brechts, 2004)

A formal test for the presence of a breakpoint in the dependence parameter of a copula is

developed by Dias and Embrechts (2004). They assume a sample (x1, y1)...(xT , yT ) where

t = 1, ...., T generated by the bivariate distribution functions H(x, y; θ1, η1)...H(x, y; θT , ηT ).

The θt’s are the parameters of the underlying copula, whereas the ηt’s are the parameters

of the marginal distributions and are treated as nuisance parameters. Formally, the null

hypothesis of no structural break in the copula becomes

H0 : θ1 = θ2 = ... = θT and η1 = η2 = ... = ηT

whereas the alternative hypothesis of the presence of a single structural break is formulated

as:

H1 : θ1 = ... = θk 6= θk+1 = ... = θT ≡ θ∗k and η1 = η2 = ... = ηT .
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In the case of a known break-point k, the test statistics can be derived from a generalized

likelihood ratio test. Let Lk(θ, η), L∗
k(θ, η) and LT (θ, η) be the log-likelihood functions of

our copula given in (3) using the first k observations, the observations from k + 1 to T and

all observations, respectively. Then the likelihood ratio statistic can be written as

LRk = 2[Lk(θ̂k, η̂T ) + L∗
k(θ̂

∗
k, η̂T )− LT (θ̂T , η̂T )],

where a hat denotes the maximizer of the corresponding likelihood function. Note that θ̂k

and θ̂∗k denote the estimates of θ before and after the break, whereas θ̂T and η̂T are the

estimates of θ and η using the full sample. In the case of an unknown break date k, a

recursive procedure similar to the one proposed by Andrews (1993) can be used. The test

statistic is the supremum of the sequence of statistic for known k:

ZT = max1≤k<T LRk. (6)

Dias and Embrechts (2004) recommend obtaining critical values using the approximation

provided by Gombay and Horváth (1996), which we present here. Under H0 it holds that

for T →∞ ∣∣∣∣Z1/2
T − sup

1/T≤t≤1−1/T

(
B

(d)
n (T )

t(1− t)

)1/2∣∣∣∣ = oP (exp(−(log(T ))1−ε)) (7)

for all 0 < ε < 1, where {B(d)
T : 0 ≤ t ≤ 1} is a sequence of stochastic processes such that

{B(d)
T : 0 ≤ t ≤ 1} d

= {B(d) : 0 ≤ t ≤ 1} for each T and B(d)(t) =
∑

1≤i≤d B2
i (t), where

{Bs : 0 ≤ t ≤ 1}, s = 1, ..., d are independent Brownian bridges. There is no simple closed

form expression for the distribution in (7). The following approximation can be used in

practice. For 0 < h < l < 1

P

(
sup

h≤t≤1−l

{
B

(d)
T (t)

t(1− t)

}1/2

≥ x

)
=

xdexp(−x2/2

2d/2Γ(d/2)
× (8)(

log
(1− h)(1− l)

hl
− d

x2
log

(1− h)(1− l)

hl
+

4

x2
+O

(
1

x4

))
,

as x → ∞. Note that this limiting distribution is strictly identical to the one proposed

in Andrews (1993), which applies in a more general context. The only difference is that

Gombay and Horváth (1996) let the trimming parameters l and h depend on the sample size

10



through l(t) = h(t) = log(t)3/2/t, whereas Andrews (1993) considers a constant trimming

value. We thus opt for the use of the critical values tabulated by Andrews (1993) and to

trim the first and last 15% of the observations.

2.4 Testing for a structural break in volatility

We test for a breakpoint in volatility using a quasi likelihood ratio test. To this end we

model the return data with a normal distribution that has a structural break in variance at

an unknown point in time p. Let Lp(σ), L∗
p(σ) and LT (σ) be the log-likelihood function of

the Gaussian distribution using the first p observations, the observations from p + 1 to T

and the whole sample, respectively. Again σ̂p and σ̂∗p stand for the estimates of σ before and

after the candidate breakpoint and σ̂T is the estimate of σ using the whole sample. Similar

to the approach for testing for a breakpoint in correlation for

LRp = 2[Lp(σ̂p) + L∗
p(σ̂

∗
p)− LT (σ̂T )],

the test statistic of interest is

ZT = max1≤p<T LRp. (9)

If one does not believe that the sample has a zero mean over the subsamples, then the

series should be demeaned over the sub-periods. The asymptotic theory needed to study the

behavior of the statistic ZT is the same as for the test above and the same critical values

can be used.

Let p be the point estimate for the breakpoint in variance. In order to obtain a confidence

interval for this estimate we rely on a bootstrap procedure. We draw bootstrap samples from

our data set before and after our estimated break p and estimate from the bootstrap sample

a breakpoint p∗. This is repeated a sufficiently large number of times and the empirical 95%

confidence interval is calculated from the sample of p∗’s.

2.5 Jointly testing for structural breaks in volatility and depen-
dence: a sequential algorithm

The problem of testing for a structural break in the dependence parameter becomes more

complicated when there is a breakpoint in the variances of the individual series. This is
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taken into account by considering the nuisance parameter η, which may change at point p

under the alternative. Formally, the null hypothesis of our joint test is

H0 : θ1 = θ2 = ... = θT and η1 = ... = ηp = ηp+1 = ... = ηT

versus

H1 : θ1 = ... = θk 6= θk+1 = ... = θT ≡ θ∗k and η1 = ... = ηp 6= ηp+1 = ... = ηT ≡ η∗
p.

Thus under the alternative, a single break in both the dependence and the variance param-

eters occurs, and the breaks occur at different points in time k and p. Therefore ideally

both breaks must be estimated simultaneously. This is done by setting up a model based

on a time-varying copula that allows for a break in the variances and in the dependence

parameter. The supremum over all candidate breakpoints is chosen and the value of the

likelihood ratio statistic is compared to the simulated critical value at a predefined nominal

size. Assume without loss of generality that p < k and let Lk\p(θ, η) be the likelihood func-

tion of the joint distribution in our model (3) using the observations between p and k. In

this situation the LR statistic becomes

LRk,p = 2[Lp(θ̂k, η̂p) + Lk\p(θ̂k, η̂
∗
p) + L∗

k(θ̂
∗
k, η̂

∗
p)− LT (θ̂T , η̂T )].

The test statistic then has the following form

ZT = max 1≤k<T

1≤p<T
LRk,p.

This supremum statistics becomes more complicated when the variances of the two series

exhibit a breakpoint at distinct points p1 and p2. In any case, the asymptotic distribution

of the LR statistic ZT will also depend on the estimation of the breakpoint in the nuisance

parameter η. The approximations provided by Andrews (1993) and Gombay and Horváth

(1996) should be modified to take the uncertainty in the estimation of the variance break

into account.

Estimating all three breakpoints jointly is computationally very demanding and we opt

for a sequential procedure to estimate the variance and dependence breaks. The copula

decomposition of a joint distribution allows us to first estimate the marginal distributions,

including the breakpoint in variance, followed by the estimation of the copula, which greatly
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reduces the computational burden. Strictly speaking we therefore apply a conditional test

in the second step, estimating a breakpoint in the copula parameter, conditional on a break

in the variance. The breaks in variance as well as the 95% confidence intervals Ip1 and Ip2

are estimated in a first step using the method introduced in section 2.4.18 In a second step

both series are transformed into uniform variables (ũ, ṽ) such that ũ = F̂ (x) and ṽ = F̂ (y).

F̂ (·) is the empirical probability integral transform which has a different form before and

after the estimated breaks p1 and p2:

F̂p1(x) =
1

p1

p1∑
t=1

1{Xt≤x} (10)

F̂p∗1
(x) =

1

(T − p1)

T∑
t=p1+1

1{Xt≤x}

and

F̂p2(y) =
1

p2

p2∑
t=1

1{Yt≤y} (11)

F̂p∗2
(y) =

1

(T − p2)

T∑
t=p2+1

1{Yt≤y}

finally, the structural break test by Dias and Embrechts (2004) is applied to the transformed

data (ũ, ṽ). Thus, we compute a similar test statistic with the following form

ZT = max1≤k<T LRk.

Assuming that the variance breaks are consistently estimated the resulting estimate (of the

break in the correlation coefficient) is also consistent. However, the nuisance caused by the

estimation error in the first step must be taken into account when obtaining the critical

values for the sup LR statistic in the second step. Furthermore, the stability may exhibit

a size bias when the breaks are close to the trimming value (see Candelon and Lütkepohl,

2001). To tackle these potential problems the following parametric bootstrap algorithm is

set up:

18p1 and p2 refer to the breaks in the first and second series, respectively.
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1. Sequentially estimate the variance and correlation breaks p1, p2 and k and store the

confidence intervals Ip1 and Ip2 for the variance breaks.

2. Estimate the time constant copula parameter θ̄

3. Randomly draw two points p′1, p′2 for the variance breaks from the confidence intervals

Ip1 and Ip2 .

4. Estimate the variance σ2
p
′
i

and σ2
p
′∗
i

before and after the drawn break for both series.

5. Generate two random series (u, v) from a time constant copula C(u, v; θ̄) and transform

the marginal series into normal variables having the bootstrapped variance break and

the variances estimated before and after that break. So xt = Φ−1(u; σ2
p
′
1

) for t ≤ p′1

and xt = Φ−1(u; σ2
p
′∗
1

) for t > p′1 and similarly for yt.

6. Apply the sequential breakpoint test to this series and compute the sup LR Z∗ statistic

for the correlation break.

7. Repeat steps 3-6 m times (m being sufficiently large) and obtain the desired empirical

quantile from the bootstrapped test statistics.

3 Monte Carlo Studies

In this section, we compare the properties of the Forbes and Rigobon (2002) test and the

copula based and the sequential tests elaborated in section 2 with several types of stock

market interdependencies.

3.1 Monte Carlo Study 1:

In this first experiment we investigate the behavior of a traditional copula test when the

DGP is similar to the one presented in Forbes and Rigobon (2002). Stock market returns

are assumed to be related according to the following linear DGP:

xt = µ + γ1xt−1 + εt, (12)
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and

yt = β0 + γ2yt−1 + β1εt + νt. (13)

where t = 1, ..., T , and the error term νt is assumed to have zero mean, finite variance and

to be uncorrelated with εt. As it is now a well known stylized fact, that financial markets

returns exhibit some volatility clusters, the (strongly) exogenous variable xt is assumed to

follow a normal GARCH(1, 1). Thus the conditional variance ht of εt is given by

ht = ωt + α1ε
2
t−1 + α2ht−1. (14)

As parameters for the GARCH(1, 1) and the equation for yt, we choose β0 = 0, β1 = 0.35,

α1 = 0.15 and α2 = 0.75, which corresponds more or less to the estimated parameters of our

empirical section. The difference between the pre- and post-crisis period lies in the value of

ωt, which determines the conditional correlation between the markets: a high (resp. low)

ω indicates a strong (resp. weak) interdependence between the markets. Concerning the

dynamics characterized by (γ1, γ2), two alternative specifications are investigated. First, xt

and yt are imposed to have no short-run dynamics (i.e. γ1 = γ2 = 0 and to have a 0 mean,

so xt = εt. Alternatively, some dynamics is introduced into the DGP by setting γ1 = 0.3

and γ2 = 0.5. In the tranquil period (i.e. before the occurrence of a financial turmoil) ωt is

set equal to 0.1, corresponding to a conditional correlation between xt and yt roughly equals

to ρ = 0.3. After the structural break Tb, which is known and fixed at a fraction of the

sample T/2, we examine the case where conditional correlation increases to roughly ρh =0.5,

0.7 and 0.9.19 The sample sizes T are 500, 1.000 and 2.000 observations and the number of

replications N is fixed to 1.000.20

The contagion test based on copulas is performed assuming that the break in variance is

known and follows the following steps: Both the mean and the variance are estimated for

the series before and after the break.21 The series are then transformed into U(0, 1) variable

via the normal CDF. It is then possible to estimate a conditional gaussian copula on the

19The conditional correlation parameters corresponding to our parameter choices were obtained by simu-
lation.

20Matlab random generator rand is used for the simulations and the same generated series are used to
allow for fair comparison between the different cases. Programs are available from the authors upon request.

21For the dynamic DGP we work with the residuals of AR(1) regressions.
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transformed data, where the conditioning variable is a dummy for the second half of the

sample: Dt = 0 for t < T/2 and Dt = 1 for t ≥ T/2.22 The correlation ρt evolves as

ρt = Λ

(
α + βD2

)
,

where Λ(x) = 1−e−x

1+e−x is the modified logistic transformation to keep ρ in (-1,1). The contagion

test consists in testing the nullity of the coefficient of the dummy variable via a simple log-

likelihood ratio test: H0 : β = 0 (no contagion) vs H1 : β 6= 0 (contagion). In Table 1, we

report the rejection frequency of the null hypothesis. From these results, it is also possible

to infer the influence of the dummy on the conditional correlation coefficient (Table 2). The

nominal size is fixed to 5%. The size of the test, which corresponds to the first line of

Table 1 (conditional correlation is identical before and after the break date), is higher than

the nominal size indicating a tendency to over accept the presence of change in conditional

correlation (i.e. contagion). It turns out that the results of the simulation are similar when

considering a DGP with or without dynamics. The size unadjusted power, on the other

hand, is close to 1 indicating that the dummy coefficient captures quite well the effect the

variance increase on the conditional correlation. To summarize, this first simulation exercise

shows that when stock market returns are generated by the process suggested by Forbes

and Rigobon (2002) a conditional copula model falsely detects a structural break in the

correlation and then over-estimates the presence of contagion. Nevertheless, it is possible

to measure the contribution of the change in variance in the increase in dependence. This

could be useful to develop a correction for the contagion test.

3.2 Monte Carlo Study 2

Our second simulation exercise investigates the behavior of the Forbes and Rigobon (2002)

test for contagion when the data is now generated by a Gaussian copula.23 The two i.i.d.

22This method is similar to Rodriguez (2007), who builds the conditional dummy variable from the
”ground-zero” country.

23A similar simulation exercise can be done with other types of copulas. Result remains identical and can
be obtained from the authors upon request.
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Table 1: Rejection frequency of the null hypothesis of constant correlation against the al-
ternative that correlation increases conditional on volatility, Copula based contagion test,
DGP (12)− (14)

without dynamics with dynamics
T=500 T=1000 T=2000 T=500 T=1000 T=2000

ρh=0.3 0.108 0.119 0.119 0.135 0.153 0.146
ρh=0.5 0.790 0.956 0.999 0.746 0.922 0.977
ρh=0.7 1 1 0.997 1 0.994 0.996
ρh=0.9 1 1 0.999 0.947 0.945 0.944

Note: Table 1 reports the rejection frequency of the null hypothesis of no-
contagion using copula based contagion test. The DGPs are defined by (13)
to (13), the structural break is fixed at the middle of the sample and. The
correlation before the break is 0.3 and after ρh. The number of replications N
is fixed to 1.000.

Table 2: Average correlation due to the dummy capturing the regime change in variance.

without dynamics with dynamics
T=500 T=1000 T=2000 T=500 T=1000 T=2000

ρh=0.3 -0.0005 0.0004 -0.0021 -0.0039 -0.005 -0.0008
ρh=0.5 0.2017 0.2061 0.2049 0.1969 0.1995 0.1972
ρh=0.7 0.4001 0.4009 0.3974 0.3822 0.3854 0.385
ρh=0.9 0.5803 0.5812 0.5795 0.5229 0.5305 0.5298
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series xt and yt are generated by DGP2:

(ut, vt) ∼ CGaussian
0.3 ,

xt = Φ−1(ut; 0, 1), (15)

yt = Φ−1(vt; 0, 1)

before the break and by

(ut, vt) ∼ CGaussian
ρh

,

xt = Φ−1(ut; 0, σh), (16)

yt = Φ−1(vt; 0, σh)

after the break. By itself this is a rather simplistic DGP for stock returns, but one may think

of it as generating the innovations for a V AR as in the model we consider for the empirical

application. The sample sizes T , the number of replications N , and the correlation before

and after the turmoil period are the same as in the previous Monte-Carlo exercise. The

first difference with respect to the previous Monte-Carlo analysis, is that we investigate the

behavior of the test for several known dates of the structural break Tb (Tb = (0.25, 0.5, 0.75)).

Second, during the financial turmoil the standard deviation (σh) of the series takes on the

values 3, 5 and 10 larger than those before the structural break (fixed here to 1). The first

value corresponds to a moderate increase in volatility after the turmoil whereas the break in

variance is much higher when considering the second or the third value for σh. It also has to

be noticed that under DGP2, the break in variance occurs with a synchronous shift in the

conditional correlation. A change to a regime of high volatility defines thus, as in Rodriguez

(2007), the possible birth of a contagion phenomenon. Again, the null hypothesis of the test

is that the correlation during the post-crisis period is equal to the correlation during the

pre-crisis period, the alternative being that correlation increases. Correlation is corrected

in the way suggested by Forbes and Rigobon (2002) to get the unconditional correlation

coefficient and a standard one-sided t− test as the test statistics. The rejection frequency of

the null hypothesis (i.e. detection of an increase in correlation, or contagion) is reported in

Table (3). For large changes in correlation ρh =0.7 or 0.9, the test correctly finds a structural

break (i.e. rejects constant correlation) as the power is quite large. Nevertheless, when the

increase in correlation is only moderate, or when the variance increase is rather strong, the

18



power of the tests sharply decreases and the null hypothesis of constant correlation is no

longer rejected. The relative location of the date of the break is also important, as it turns

out that the power is maximum when Tb = 0.5, and decreases as it is closer to the border.

Thus, when the data is generated by a copula based DGP similar to DGP2, using uncon-

ditional correlations robust to a change in variance as in Forbes and Rigobon (2002) leads

to an over acceptatance of the null hypothesis of no contagion. This bias becomes stronger

as the correlation change is small, when the increase in variance is large and when the break

is close to the sample borders.
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3.3 Monte Carlo Study 3

In this third Monte-carlo exercise, the data are generated as in the previous simulations by

a Gaussian copula. Similarly, there is a breakpoint in the correlation parameter at a date

Tb (Tb = (0.25, 0.5, 0.75)), but we also allow the presence of a break in the variance of the

individual series Vb, which takes place at a different date, i.e Tb 6= Vb. Such a differentiation

between the breaks in the correlation and in the variance was not performed in the previous

exercises, where we assumed Tb = Vb. The breaks in variance and correlation are estimated

sequentially using the all-in-one algorithm presented in Section 2. Similar to the Monte-Carlo

study 1, a dummy D2 is created to distinguish the periods before and after the estimated

correlation break. The marginal series before and after the variance breaks are transformed

beforehand using the empirical probability integral transform. The simulations have the

same characteristics as the previous ones except that the correlation and the variance breaks

are separated, both taking a different value in (0.25, 0.5, 0.75). In Table (3) we record both

the rejection frequency of the null hypothesis of constant correlation conditional on the

presence of a break in variance (absence of contagion) as well as the 95% confidence interval

for the estimated correlation breaks.

The rejection frequencies of the sequential copula test, which are to be found in Table

(3), indicate good power of the procedure to identify a structural break in correlation despite

the nuisance caused by estimating the breaks in variance as well. Not surprisingly, the power

of the procedure and the precision of the confidence intervals increase proportionally to the

sample size and the size of the change in correlation after the turmoil. The point of the

variance break does not seem to make a difference, nor whether the variance break occurs at

the same time as the break in correlation. The sequential copula test seems to outperform

the other procedures in all the cases as it is able to distinguish the break in variance from

the one affecting correlation.

4 Empirical Application

The financial turmoil that has affected Asian countries in 1997 has fueled the empirical

literature on contagion (see Dungey et al or Candelon et al, 2008). Its main feature is

that Asian countries were assumed to be well behaved, i.e. to possess good macroeconomic
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Table 4: Rejection frequency of the null hypothesis of constant correlation,
sequential copula contagion test

Correlation break: 1/4
Variance break: 1/4 T=500 T=1.000 T=2.000

ρh=0.5 0.764 0.939 0.996
[0.154,0.771] [0.174,0.497] [0.191,0.33]

ρh=0.7 0.998 1 1
[0.205,0.296] [0.224,0.271] [0.236,0.259]

ρh=0.9 1 1 1
[0.236,0.506] [0.243,0.258] [0.247,0.254]

Variance break: 1/2 T=500 T=1.000 T=2.000
ρh=0.5 0.726 0.907 0.989

[0.158,0.771] [0.177,0.503] [0.188,0.349]
ρh=0.7 0.995 1 1

[0.211,0.294] [0.224,0.27] [0.236,0.258]
ρh=0.9 1 1 1

[0.238,0.256] [0.244,0.253] [0.247,0.251]
Variance break: 3/4 T=500 T=1.000 T=2.000

ρh=0.5 0.715 0.908 0.989
[0.158,0.783] [0.181,0.593] [0.191,0.35]

ρh=0.7 0.994 1 1
[0.212,0.288] [0.225,0.269] [0.237,0.258]

ρh=0.9 1 1 1
[0.238,0.256] [0.244,0.253] [0.247,0.251]

Correlation break: 1/2
Variance break: 1/4 T=500 T=1.000 T=2.000

ρh=0.5 0.857 0.99 0.999
[0.256,0.771] [0.355,0.634] [0.427,0.564]

ρh=0.7 1 1 1
[0.446,0.542] [0.478,0.52] [0.488,0.508]

ρh=0.9 1 1 1
[0.488,0.52] [0.494,0.503] [0.497,0.501]

Variance break: 1/2 T=500 T=1.000 T=2.000
ρh=0.5 0.864 0.972 0.999

[0.223,0.763] [0.363,0.649] [0.424,0.562]
ρh=0.7 1 1 1

[0.442,0.544] [0.474,0.524] [0.487,0.509]
ρh=0.9 1 1 1

[0.486,0.517] [0.493,0.509] [0.496,0.504]
Variance break: 3/4 T=500 T=1.000 T=2.000

ρh=0.5 0.823 0.961 0.999
[0.248,0.78] [0.356,0.655] [0.432,0.554]

ρh=0.7 0.999 1 1
[0.44,0.538] [0.475,0.516] [0.487,0.509]

ρh=0.9 1 1 1
[0.488,0.518] [0.494,0.503] [0.497,0.501]

Correlation break: 3/4
Variance break: 1/4 T=500 T=1.000 T=2.000

ρh=0.5 0.788 0.954 0.997
[0.221,0.832] [0.429,0.824] [0.662,0.802]

ρh=0.7 1 1 1
[0.694,0.784] [0.724,0.768] [0.738,0.759]

ρh=0.9 1 1 1
[0.738,0.756] [0.744,0.752] [0.747,0.751]

Variance break: 1/2 T=500 T=1.000 T=2.000
ρh=0.5 0.793 0.939 0.998

[0.262,0.833] [0.414,0.824] [0.663,0.804]
ρh=0.7 1 1 1

[0.69,0.784] [0.717,0.768] [0.737,0.759]
ρh=0.9 1 1 1

[0.736,0.756] [0.744,0.753] [0.747,0.751]
Variance break: 3/4 T=500 T=1.000 T=2.000

ρh=0.5 0.784 0.938 0.996
[0.253,0.835] [0.533,0.825] [0.668,]0.801

ρh=0.7 1 1 1
[0.688,0.788] [0.724,0.768] [0.736,0.76]

ρh=0.9 1 1 1
[0.735,0.769] [0.743,0.76] [0.746,0.754]

Note: Table 4 reports the rejection frequency of the null hypoth-
esis of no-contagion using the sequential copula contagion test.
The correlation before the break is 0.3 and after ρh, the variance
σ = 1 before the break and σh = 5 after. The number of repli-
cations N is fixed to 1.000. The 95% confidence bound for the
estimated location of break is indicated between brackets.22



fundamentals, before the occurrence of the crisis, leaving market analysts or modelers of the

first generation without any voice. The importance of the transmission of the crisis from

Thailand, which was first hit, to the rest of Asia is therefore at the core of this global crisis.

The conclusion of Forbes and Rigobon (2002), rejects the presence of contagion in this crisis,

and has let analysts skeptical.24 Our Monte-Carlo experiments have shown that this test

tends to over accept the null hypothesis of no contagion when the DGP is copula based. A

traditional copula-based test like the one Rodriguez (2007) is therefore preferred. However,

it may be biased if the break in variance and correlation are erroneously assumed to be

identical. In such a case the sequential procedure based on time-varying copula presented in

section 2 turns out to be the best alternative. In this empirical application, stock returns for

eight Asian countries25 are considered. Series are daily, extracted from Datastream market

indices, labeled in US$ and cover the period 01/01/1996−30/06/1998, i.e. 652 observations.

Returns of the market indices are plotted in Figure (1). To shed new light on the question of

the possible contagious characteristic of the Asian crisis, the sequential algorithm, presented

in Section 2.5, is applied. We consider both Thailand and Hong Kong as the ”ground-zero”

countries at the origin of the financial crisis. It is well-documented in the literature (see

for example Dungey et al. 2006) that the Asian crisis was first initiated by the Thai Baht

devaluation, and then by the crash of the Hong Kong stock market. These shocks have to

be analyzed separately to draw a global picture of the shift-contagious process during the

Asian crisis.

For each bivariate system of the other 6 Asian countries with both Thailand and Hong

Kong (i.e. 13 models), we estimate the VAR given in model (5) and then the steps 1 − 7

are performed on the residuals.26 Table (5) reports the dates for the structural breaks found

in all univariate systems, and Table (6) gathers the dates for the structural breaks in the

conditional copula, together with confidence intervals, which together should allow for a con-

clusion whether contagion has occurred. It first turns out that point estimates for the dates

24Some other empirical papers extending the Forbes and Rigobon (2002)’s test reach a different conclusion.
See Corsetti et al, 2005 and Candelon et al 2005.

25These countries are Thailand, Malaysia, Japan, Hong-Kong, Taiwan, Indonesia, Korea and the Philip-
pines.

26The study is limited to bivariate systems in order to avoid the possible effect of indirect contagion or
third-country effects. The Johansen Cointegration tests reject the presence of cointegration relationship
for the bivariate systems composed by the indices, allowing us to specify the VAR with the return series.
Furthermore, optimal lag length is determined according to the Schwarz information criterion.
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Figure 1: Returns series
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of the break in variance generally precede the ones from of the conditional correlations.27

There are two cases, one where the confidence intervals of the variance and correlation breaks

overlap and one where they do not. The assumption of concomitance between the change

in volatility and dependence is thus not always supported. It thus supports the intuition

that some time exists between the occurrence of the crisis, the increase in volatility and its

spill-over developments. This delay finds its justification in the time for information to be

spread over the region. Moreover, such a result justifies our sequential testing procedure.

Referring to the second Monte-Carlo exercise, a copula based test assuming erroneously a

same break in variance and in conditional correlation would result in an over-rejection of the

null hypothesis of no break leading to the fallacious conclusion of a contagious transmission

of the crisis. It may be a reason why Rodriguez (2007) supports this conclusion for all the

bivariate systems of Asian countries. This result also contradicts the ones in Forbes and

Rigobon (2002) which are biased towards the null hypothesis of no contagion. In our case,

we have a mixed result as two systems, (Hong Kong; Japan) and (Hong Kong; Korea) do

not exhibit any significant change in conditional correlation, leading to the rejection of a

contagious transmission of the Asian crisis. It is nevertheless clear that these two systems

are a minority compared to the 11 other exhibiting a significant break. Thus, the main pic-

ture delivered by our study is clearly in favor of the existence of contagious characteristics

of the Asian 1997 crisis.

Next, a loglikelihood ratio test is used to evaluate the relative significance of the volatility

and the correlation regime (characterized by two different dummies) in the time-varying

copula parameter. To this aim the conditional mean is modeled via a VAR model given in

(2). The conditional variance ht of the errors εt is modeled by a t-GARCH, which can be

stated as

ht = ωt + α1ε
2
t−1 + α2ht−1,

where the standardized innovations νt =
√

κ
ht(κ−2)

νt ∼ tκ. The νt’s are modeled by a semi-

parametric gaussian copula model, where the correlation parameter is allowed to vary over

27Asidesfrom comparison of break dates in the variance and the conditional correlation, the ”U-shape” form
of the conditional correlations, which is plotted in figure 3 constitutes another support for this conclusion.
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time conditional on a set of variables. Formally,(
υ1t

υ2t

)
|Ωt−1  CGaussian(F̂ (υ1), F̂ (υ2); ρt),

where F̂ denotes the empirical probability integral transform. Recall that p is the breakpoint

in variance of the ”ground-zero” country and k is the break of the copula parameter estimated

previously. Define two dummies Dt(ρ) and Dt(σ) as: Dt(σ) = 0 for t < p, Dt(σ) = 1 for

t ≥ p, Dt(ρ) = 0 for t < k and Dt(ρ) = 1 for t ≥ k. Then ρt evolves over time according to

ρt = Λ

(
α + β1 ·Dt(σ) + β2 ·Dt(ρ)

)
,

where Λ(x) = 1−e−x

1+e−x is the modified logistic transformation to keep ρ in (-1,1).28 We test the

two restrictions that one of the two dummies is not significant, given the other is included

in the model. Formally, the sequence of hypotheses is the following one:

Ha
0 : β2 = 0

and

Hb
0: β1 = 0

against:

H1: β1 6= 0 and β2 6= 0

The p-values for the tests are given in table (7). In almost all the cases, Ha
0 is rejected

against H1 , indicating that the correlation dummy improves the model when the variance

dummy is included. However, Hb
0 is rejected in favor of H1 only in a few cases. The presence

of a dummy for the variance hence is not found to be significant when a correlation break

dummy is already in the model. Taken together these results support the previous finding

of shift-contagion, irrespective of the presence of a change in volatility.

28The conditional variance estimated from a GARCH model can also be used as the measure for volatility
instead of the dummy. The results were very similar to the ones presented here and are available upon
request.
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Figure 2: GARCH Variances
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Table 5: Breakpoints in variance.

Thailand 12-5-1997
[24-4-1997,2-6-1997]

Malaysia 30-7-1997
[28-7-1997,6-8-1997]

Japan 3-12-1996
[22-11-1996,26-12-1996]

Japan second break 20-10-1997
[1-9-1997,5-2-1998]

Hong Kong 15-8-1997
[14-7-1997,5-9-1997]

Indonesia 12-8-1997
[5-8-1997,18-8-1997]

Taiwan 18-7-1997
[24-1-1997,8-12-1997]

Korea 13-10-1997
[9-10-1997,22-10-1997]

Philippines 18-4-1997
[11-4-1997,1-5-1997]

Note: This table reports the date of the structural
break in volatility found using the sequential ap-
proach, describe in Section 2.4. Confidence bounds
are bootstrapped (1.000 replications) and indicated
between brackets.
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As a final step in our analysis we use conditional copulas to model the path of the

correlation coefficient of a Gaussian copula for the standardized VAR-tGARCH residuals,

transformed by the empirical distribution function. To this end the correlation coefficient

evolves as proposed in Patton (2006a):

ρt = Λ

(
α + β1 · ρt−1 + β2 ·

1

p

p∑
j=1

Φ−1(ut−j) · Φ−1(vt−j) + γ · Zt

)
,

where, as before, Λ(·) is the modified logistic transformation. The number of lags of cross

products is chosen such that the fit of the model is best. Z is a set of additional conditioning

variables. If Z is exogenous the distribution of the marginals must also be conditioned on

it. In our case, however, it will be the dummies capturing the breakpoint in correlation

and variance we detected with our procedure above. Dummies are included depending

on the results obtained with the likelihood ratio tests given in table (7). The GARCH-

variance are reported in Figure 2, whereas the conditional correlations are plotted in Figure

3. One can see that conditional correlation vary quite a lot over time, increasing after the

”correlation” break. The evolution of the conditional correlation after the ”volatility break”

show a more shadowed picture: On one hand, it turns out that dependence decreases for

some system leading to a ”U-shape” evolution of the conditional correlations. Such a shape

remains difficult to explain, even if it is confirmed by other studies using different techniques

(Cappiello et al, 2005). On the other hand, some pairs of countries exhibit a constant

increase in the conditional correlation, stressing that dependence begins to increase with the

volatility break. Nevertheless, Figures (2) and (3) support our previous conclusions that the

break in variance generally precedes the one in correlation. This is thus further evidence

that high volatility is not always concomitant to an increase in correlation.

The robustness of the previous results vis-à-vis the data and the estimation method of the

conditional copula has been checked. We consider filtering the series only by AR models

(instead of VAR), with or without GARCH filtering, and a fully-parametric estimation of the

copula (i.e. specifying the marginal distributions parametrically), without finding different

qualitative results.29 The qualitative results are also quite robust to the choice of copula.30

In some particular cases, applying a different type of copula appears to outperform the

29Tables are not reported to save space but can be requested from the authors on request.
30Further copulas considered are the Student, Clayton, Frank and Gumbel copulas and mixtures of these.
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Gaussian copula. However, as the conclusions are not modified and the computing time

explodes, we only report results for the Gaussian copula.

5 Conclusion

In this paper we propose a new sequential procedure using time varying copula to test for

the presence of an increase in stock market dependence after a financial crisis, i.e. contagion

process. We show that the previous approach proposed by Forbes and Rigobon (2002) to

account for the effect of changes in volatility regime is biased toward the rejection of the

contagion hypothesis when the DGP is non linear. Similarly, Rodriguez’ (2007) approach,

which analyzes the interdependence across volatility regimes, is also biased. It leads to an

over acceptance of the contagion hypothesis at the wrong point in time, when the change in

variance and conditional correlation regime is different. In order to offer a better approach,

we develop a sequential algorithm, which allows for different breakpoints in the variance

and the conditional correlation. Moreover, the proposed contagion test is a sequential ”all-

in-one” procedure which takes into account the uncertainty in the determination of the

variance regime. The formal stability test is elaborated from the one proposed by Dias and

Embrechts (2004) and a bootstrap procedure is implemented in order to tackle the distortion

in the asymptotic distribution due to the presence of breakpoint in the nuisance parameters.

Applied to the recent 1997 Asian crisis, the results produced by our sequential algorithm

support that assuming the same break date for the variance and the conditional correlation

is an erroneous assumption: Breaks in variances are generally preceding those in conditional

correlation. Nevertheless, the Asian crisis turns out to have been characterized by a regional

contagious transmission of the Thai shock.

Beyond the separate analysis of the effect of the volatility regime on the evolution of asset

market dependence, tail-dependence may be also interesting as a complementary measure for

contagion (Rodriguez, 2007). Future research would include another step in the sequential

procedure that would allow for lower tail dependence (see Joe, 1997, for a definition) as

well as changing types of dependence over time (as studied by Rodriguez, 2007). This could

be performed using a more flexible copula model that additionally allows for conditional

tail dependence. Even if such an analysis would bring a complementary insight on the tail

dependence time path, it would not modify the previous results.
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