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Abstract

With an increasingly integrated global �nancial system, we frequently observe

that shocks to individual asset markets a¤ect �nancial markets worldwide. The

aim of this paper is to quantify the comovements between bond markets in the US

and emerging market economies. Following Rigobon (2003) we exploit the changing

volatility of the data to fully identify a structural VAR, without imposing ad-hoc

restrictions. Our results indicate that shocks that widen emerging market sovereign

debt (EMBIG) spreads tend to have a negative e¤ect on US interest rates (consis-

tent with "�ight quality" episodes), while the e¤ect of US interest rates on EMBIG

spreads is mixed. We also �nd that shocks that raise EMBIG spreads tend to raise

US high yield spreads and vice versa, constituting an important channel through

which crises in EMEs can a¤ect mature markets. Forecast error variance decompo-

sitions show that the variance of both EMBIG and US high yields spreads is mainly

explained by shocks to US long rates.
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1 Introduction

Financial markets worldwide have become increasingly integrated. One consequence of

this is that we observe a large degree of comovement across �nancial markets, as shocks

to individual markets or countries are transmitted internationally. Such spill-over e¤ects

were most notable during several �nancial crises episodes in emerging market economies

(EMEs) over the past decade. From a central banking perspective, understanding the

mechanisms through which shocks are transmitted across �nancial markets is impor-

tant for gauging the extent to which �nancial crises and volatility in emerging market

economies can a¤ect the �nancial systems in developed countries, and vice versa.

The aim of this paper is to quantify the linkages between bond markets in the U.S. and

EMEs. In particular, we want to analyse through which channels shocks are transmitted

across markets. We are particularly interested in two questions. First, what is the causal

relationship between US interest rates and emerging market bond spreads? On the one

hand, US interest rates might in�uence EMEs in di¤erent ways. An intuitive argument

suggests that rising US interest rates should increase the �nancing costs of EMEs, thus

raising their default risk and increasing the spreads that EME borrowers have to pay over

risk-free rates. Furthermore, decreases in riskless rates are often thought to be associated

with a "search for yield", as investors shift into more risky assets such EME debt and

drive their spreads down. But EMBIG spreads and US interest rates could also move

in the opposite direction if the latter are the result of strong output growth in the US

which is generally supportive of lower EMBIG spreads. On the other hand, episodes of

emerging market turmoil often seem to be associated with a "�ight to quality" and thus

a negative e¤ect of EMBIG spreads and risk-less rates, as investors shift out of risky

assets and into "safe-haven" assets such as US government debt. However, previous

studies have failed to �nd clear evidence of a positive e¤ect of US interest rates on EME

bond spreads1, and only few studies have sought to quantify the reverse in�uence of

EMEs on �nancial markets in mature economies.2

A second question concerns the relationship between spreads on risky debt in emerg-

ing and mature markets. It is well known that EMBIG and US high yield spreads tend

to move together. But are US high yield spreads in�uencing EMBIG spreads, or does the

in�uence run the other way round? This relationship is particularly important because

it represents one possible channel through which EME crises might negatively a¤ect

mature markets.
1See e.g. Eichengreen and Mody (1998) and Kamin and von Kleist (1999).
2See for example Sáez, Fratzscher and Thiemann (2007).
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Studies of �nancial market comovement are often complicated by endogeneity bias.

When two variables, such as US government bond yields and EMBIG spreads, are both

endogenous, estimation results in structural models will be biased. To circumvent this

bias researchers have typically resorted to restrictions, e¤ectively imposing that in�u-

ences run only one-way. We do not want to impose such restrictions because it is precisely

the direction of in�uence that we are trying to uncover. Using a relatively new method-

ology we are able to estimate a structural VAR model without imposing the ad hoc

restrictions that are commonly used for identi�cation in the VAR literature. Following

Rigobon (2003), we exploit the changing volatility of the data to identify our model.

The crucial assumption underlying this methodology is that the coe¢ cients describing

the comovement of our endogenous variables are constant over the whole sample period:

our results should therefore be thought of as capturing average, long-run e¤ects.

Our results shed light on how structural shocks to individual variables are transmitted

through the system. We can distinguish between direct and overall spillover e¤ects. An

initial structural shock that increases EMBIG spreads has direct e¤ects on the other

variables: for example, it reduces US long-term government bond yields and increases

US high yield spreads. However, following this �rst round of spillover e¤ects, lower US

government bond yields may feed back on the US high yield market, which could in turn

a¤ect EMBIG spreads and so forth. The overall e¤ects of the initial structural shocks

tend to have the same sign as the direct e¤ects, although the magnitude typically di¤ers.

We �nd strong evidence for "�ight to quality": EME structural shocks tend to lower

US government bond yields, especially on long-term debt. Conversely, the impact of

movements in US long interest rates on EMEs appears to be more mixed. We �nd that

the overall e¤ect of shocks to US long-term rates on EMBIG spreads is negative. This

is in line with the previous empirical literature and could suggest that GDP growth in

EMEs comoves with US long rates to the extent that the latter re�ect robust US output

growth. We do �nd a positive direct e¤ect of US long-term government bond yields on

EMBIG spreads, although the coe¢ cient is close to zero and not statistically signi�cant.

This suggests that although the direct e¤ect of a rise in US interest rates may be to raise

the �nancing costs of EMEs, it could be partially o¤set by procyclical interest rates or

even by second round e¤ects through other variables.

We also �nd strong spillover e¤ects both from EMBIG to US high yield spreads and

vice versa. One explanation for this comovement is that an increase in risk aversion

causes investors to shift out of risky assets, including both US corporate and EME

bonds, in response to disruptive shocks. This suggests that the high yield market is

an important channel through which �nancial crises can spread. For example, mature
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markets may be adversely a¤ected by crises in EMEs when US high yield spreads rise

(as in the Russian/LTCM crisis 1998) as �rms �nd it more expensive to access the debt

markets.

While we allow structural shocks to be heteroskedastic (indeed this is crucial to

identify the model), we assume that the coe¢ cients are stable. Is this assumption

justi�ed? Especially in the context of EMEs the size of spillover-e¤ects seems to change

in times of market turmoil. However, even with stable coe¢ cients the importance of

di¤erent transmission channels can change in high volatility periods. Intuitively, the

e¤ect of an EME shock on US high yield spreads (to take an example) is given by the

estimated coe¢ cient multiplied by the size of the shock. Thus, as the size of the shock to

EME spreads varies (between tranquil and crisis periods in EMEs), so will the spillover

e¤ect between EMEs and mature markets. With our methodology it is impossible to

test for whether parameters are stable across volatility regimes. Instead, we check for

parameter stability by estimating the model separately for the �rst and second half of

the sample. Although parameters do change quantitatively, almost all parameters have

the same sign across both periods. This is remarkable, especially given the fact that the

volatility of EMEs has declined substantially over the later part of the sample. Also, for

the reduced form model the null hypothesis of parameter stability is not rejected in a

standard multivariate Chow test.

A crucial step in our estimation procedure is the identi�cation of volatility regimes.

The idea in choosing regimes is to identify periods in which the volatility of the underlying

unobserved structural shocks di¤ers. We employ two di¤erent methods of regime choice

to check whether our results are robust to the exact regimes chosen. We also discuss

how our choice of volatility regimes corresponds to actual events, such as for example

�nancial crises in EMEs.

The theoretical literature on �nancial markets and contagion has identi�ed several

channels through which shocks may be transmitted across �nancial markets3, and there is

a large number of empirical studies on the comovement of international �nancial markets.

The empirical literature can be roughly classi�ed into two broad strands: studies on the

(long-run) comovement of �nancial markets, and studies analysing "contagion", typically

de�ned as an increase in the correlation between markets in times of crises.4 Research
3Examples include the correlated information channel (King and Wadhwani, 1990), links between

�nancial institutions (Allen and Gale, 2000), portfolio rebalancing (Kodres and Pritsker, 2002), herd
behavior (Calvo and Mendoza, 2000; Chari and Kehoe, 2003), wealth e¤ects (Kyle and Xiong, 2001),
and the role of information markets (Veldkamp, 2006).

4See Gagnon and Karolyi (2006) for an extensive review of the empirical literature on comovement
of international �nancial markets, and Dornbusch, Claessens and Park (2000) and Dungey et.al. (2003)
for surveys of the empirical literature on contagion.
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in the �rst strand has generally focused exclusively on the comovement of markets for

just one asset class (typically stock markets). Furthermore, most studies either do

not identify the contemporaneous feedback e¤ects between the endogenous variables,

or use standard, but ad-hoc restrictions for identi�cation. An exception to both of

these limitations is the paper by Ehrmann, Fratzscher and Rigobon (2005), who analyse

the interlinkages between US and European �nancial markets (including bonds, stocks,

and exchange rates), employing the method developed in Rigobon (2003) to identify a

structural VAR.

Empirical research in the second strand has attempted to establish whether or not

contagion occurred, based on two di¤erent methodologies: tests for increases in correla-

tions in crises times5, and tests for whether the probability of a crisis in some market

A, given that there is a crisis in market B, is higher than the unconditional probability.6

However, the literature on contagion faces the same identi�cation challenges mentioned

above, which have to be circumvented by making restrictive assumptions. For exam-

ple, Favero and Giavazzi (2002) test for nonlinearities in the transmission of shocks in

European money markets; to identify their model they have to assume that several

reduced-form coe¢ cients are equal to zero.

To sum up, the empirical literature on the comovement of international �nancial

markets has the following limitations: (i) identi�cation challenges have usually forced

researchers to impose ad-hoc restrictions on the contemporaneous feedback e¤ects among

the endogenous variables; (ii) research has typically focused on comovement of markets

for one speci�c asset, rather than linkages across asset classes as well as across countries.

Addressing these limitations, our contribution is to analyse the relationships between

bond markets in the US and EMEs, and to identify how shocks are transmitted across

markets without imposing unrealistic restrictions. To our knowledge, this study is the

�rst to analyse comovement between �nancial markets in EMEs and developed countries

using the Rigobon (2003) methodology.

Our paper is structured as follows. The next section reviews some stylised facts

about the correlations of our endogenous variables for tranquil and crisis periods. These

�ndings are important for interpreting our �nal results concerning the comovements

of �nancial markets, and they are also useful for deciding on starting values for the

estimation of our model. The third section gives a brief introduction to the empirical

methodology that we use, "Identi�cation through heteroskedasticity", and outlines our

empirical model and the choice of volatility regimes. The fourth section then presents

5For example, Forbes and Rigobon (2002).
6See e.g. Pesaran and Pick (2007).
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the results. Section 5 presents some robustness checks. In particular, we estimate our

model separately for the �rst and second part of the sample to check whether parameters

can indeed be considered to be stable over time, as assumed. Furthermore, we employ an

alternative method of regime choice to test the sensitivity of our results to the choice of

volatility regimes. Finally, section 6 concludes and discusses avenues for future research.

2 Comovement of international �nancial markets: some

stylised facts

Before we begin with the formal empirical analysis it is useful to look at some simple

statistics of the raw data to get an idea of the relevant stylised facts. Our dataset

includes daily data on US short- (3 month) and long-term (10 year) government bond

yields, US high yield spreads, and EMBIG spreads (EMBI before 1998), from January

1997 to December 2006. In our empirical analysis below we will work with data in �rst

di¤erences in order to ensure stationarity.

Table 1 presents correlations of the di¤erenced raw data, computed over the whole

sample period.7 Note �rst that US short- and long-term government bond yields are

positively correlated, but negatively correlated with US high yield spreads. This sec-

ond �nding seems to contradict the conventional wisdom that higher risk-free interest

rates should increase the �nancing costs of risky borrowers and hence their default risk,

which should be re�ected in spreads. Furthermore, since spreads are computed as the

di¤erence between the yields of risky and risk-less assets with corresponding maturity,

spreads should be increasing in risk-less rates for simple "mathematical" reasons.8 One

possible explanation for this puzzle could be that US high yields spreads tend to be low

when the US economy is booming and pro�ts in the corporate sector are high. Dur-

ing such economic upturns, in�ationary pressures may build up that induce monetary

policymakers to raise interest rates, which then translates into higher long term rates,

7We present correlations of di¤erenced data for consistency with the empirical results below.
8To see this, consider the following simple example taken from Kamin and von Kleist (1999). Let

i denote the yield of a risky asset which is repaid with probability p, and r denote the yield of a
corresponding risk-less asset. Then we have

1 + r = p � (1 + i) + (1� p) � 0

From this, the spread is computed as

i� r = (1 + r) (1� p)
p

which is increasing in r.
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Table 1: Correlations, 1997-2006

US 3m US 10y US HY EMBIG
US 3m 1.00
US 10y 0.29 1.00
US HY -0.12 -0.32 1.00
EMBIG -0.06 -0.12 0.17 1.00

Data in �rst di¤erences.

leading to a negative correlation between spreads on risky debt and risk-less rates.

The correlation between EMBIG and US high yield spreads is positive, suggesting

a high degree of comovement across markets. Finally, the correlations between EMBIG

spreads and US government bond yields are negative. This is surprising as we would

again expect correlations between EMBIG spreads and risk-less US government bond

yields to be positive: higher risk-less rates should increase �nancing costs and hence

the default risk of risky borrowers; furthermore, following a decrease in risk-less rates,

investors tend to "search for yield" and shift into more risky assets in order to earn

higher returns, thus driving the prices of these assets up and their yield spreads over

risk-less debt down.9 However, this �nding could again be explained by US interest rates

being pro-cyclical.

It is interesting to also look at how correlations change during periods of �nancial

market turmoil. As an example, Table 2 summarises the correlations for the period of

the Russian/LTCM crisis 1998. Note that the magnitude of all correlations increases,

while the sign of the correlation coe¢ cients stays the same. The strong correlation

between EMBIG spreads and US high yield spreads in that period is an indication of

the contagion that occurred following the Russian default, possibly through an increase

in investors�risk aversion. The strong negative correlation between US government bond

yields and EMBIG spreads may re�ect the "�ight to quality".

Figure 1 plots the correlation between US long-term government bond yields and

EMBIG spreads versus EMBIG volatility (computed over moving windows of 21 days)

to illustrate how correlations change in times of �nancial market volatility. The Asian

(1997-8) and Russian (1998) �nancial crises are marked by spikes in EMBIG volatility,

and by a corresponding fall of the correlation between EMBIG and US long-term yields.

Again, this could be interpreted as a "�ight to quality", or as the result of the provision

9Note however that correlations of US government bond yields and EMBIG spreads are positive when
the variables are analysed in levels.
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Table 2: Correlations during the Russian/LTCM crisis

US 3m US 10y US HY EMBIG
US 3m 1.00
US 10y 0.49 1.00
US HY -0.26 -0.74 1.00
EMBIG -0.21 -0.45 0.55 1.00

Data in �rst di¤erences.

of ample liquidity by the Federal Reserve in the face of the LTCM crisis.

There are two ways to interpret these �ndings. First, the changing correlations in

time of �nancial market turmoil could imply that the relationship between our variables is

non-linear, so that spillover e¤ects change in times of high volatility. This is the approach

taken by the empirical literature on �nancial contagion. In contrast, for our econometric

model we will assume that the underlying parameters that govern the feedback e¤ects

between variables stay the same, and that di¤erent transmission channels will dominate

in times of crises because the size and volatility of the underlying structural shocks that

change.

Correlations indicate how �nancial variables move together, but do not provide in-

formation about the source of that comovement. A high correlation between EMBIG

spreads and US government bond yields could be caused by EMBIG spreads a¤ecting US

interest rates (e.g., �ight to quality); by US interest rates a¤ecting EMBIG spreads (e.g.,

�nancing costs); or causation could run through some third factor such as US high yield

spreads (e.g., a �nancial crisis in some EME increases EMBIG spreads, and US high

yield spreads increase as well because of higher risk aversion; to ease the burden on the

economy, the Federal Reserve lowers interest rates). To analyse through which channels

these feedback e¤ects occur, we estimate a fully identi�ed structural VAR below.

3 Empirical methodology

3.1 Some intuition: identi�cation through heteroskedasticity

The variables in our sample are highly heteroskedastic. For example, Figure 1 shows

that episodes of EME crises are clearly marked by higher EMBIG volatility. Rather

than presenting a problem for estimation, this heteroskedasticity can actually be used

to identify the model. We employ a method developed in Rigobon (2003), labelled

8



Figure 1: Correlation of 10-year US government bond yields and EMBIG spreads
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"identi�cation through heteroskedasticity".10

To illustrate the identi�cation method consider a model with only two variables -

say, EMBIG spreads and US government bond yields. Both variables should be treated

as endogenous: following our intuition from the previous section a rise in US interest

rates may increase EMBIG spreads, while a rise in EMBIG spreads could reduce US

interest rates (e.g., if �ight to quality occurs). Thus the relationship between EMBIG

spreads and US 10-year interest rates might be captured by the equations below:

EMBIGt = � � US10t + �t (1)

US10t = � � EMBIGt + �t (2)

where "t and �t are structural shocks. We expect � > 0 and � < 0. This situation

is captured in panel (a) of Figure 2. A dataset of observations on EMBIG and US

interest rates might look like the scatterplot on the right panel (b) of Figure 2. Clearly,

it is impossible to separately identify the two relationships in (1) and (2). More formally,

equations (1) and (2) can not be estimated directly because of endogeneity bias.

10See also Sentana and Fiorentini (2001).
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Figure 2: Illustration of identi�cation procedure
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Now, suppose that we could distinguish periods in which the volatility of EMBIG

spreads increases, while the volatility of US interest rates stays constant or increases

only slightly. For example we could pick periods in which volatility, computed over a

window of a certain number of days around the current period is above the upper 95%

con�dence bound. We could interpret the heteroskedasticity observed in the EMBIG

and US interest rates as stemming from varying volatility in the structural shocks "t
and �t. Note that during periods when US interest rate shocks are very volatile the

relationship in equation (1) is traced out, as shown in panel (c) of Figure 2. Similarly

panel (d) shows how the relationship in equation (2) is traced out during periods when

shocks to EMBIG are more volatile. This is intuitive: in times of high US interest rate

volatility the e¤ect of US interest rates on the �nancing costs of sovereign borrowers

may dominate the data, and we are likely to �nd a positive correlation corresponding

to equation (1). In times of EME crises however the relationship between US interest

rates and EMBIG spreads may be dominated by �ight to quality, allowing us to identify

equation (2). Thus, estimating our model separately for periods of di¤erent volatility

can help to identify the model.
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Note that the choice of regimes is very important to properly identify the model:

identi�cation works best if the change in relative volatilities is large across regimes,

as shown in Figure 2. The next section introduces our empirical model and explains

identi�cation through heteroskedasticity more formally.

3.2 The empirical model

We use a vector autoregressive model to account for the fact that no variable is truly

exogenous. Following Ehrmann, Fratzscher and Rigobon (2005) our structural model is

given by

Ayt = #(t) + �(L)yt�1 + �zt + �t (3)

where yt is the vector of endogenous variables, zt is a common shock, and �t is a vector

of structural shocks. A, �(L) and � are parameter matrices, with #(t) including both

constants and a time trend. Of particular interest to us is the matrix A, which determines

the contemporaneous feedback e¤ects among the endogenous variables. We make the

following standard assumptions:

E(�t) = E(zt) = 0

E(�t�
0
t�i) = E(ztzt�j) = E(�tzt�k) = 0

8i; j; k 6= 0. While we assume that the covariances of the structural shocks are equal to
zero, the inclusion of the common shocks zt serves to introduce some correlation among

the underlying shocks that drive the system.

To capture the changing volatility of our endogenous variables that we observe in

the data, we allow the variances of both structural and common shocks to change across

the sample. In particular, we assume that there are s = 1; :::; S volatility periods or

regimes, and that the shock variances are constant within each regime, but di¤erent

across regimes. For each regime s, we have

E
�
�t�

0
t

�
= 
�;s

E
�
z2t
�
= 
z;s

We cannot estimate equation (3) directly because of endogeneity bias. Therefore, we

need to work with the reduced form model, which is computed by multiplying both sides

of (3) with A�1. This yields
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yt = B0 +B1yt�1 + ut (4)

where B0 = A�1# (t), B1 = A�1�(L) and ut = A�1�zt + A�1�t. Since the same

variables appear on the right hand side of every equation in (4), OLS can be used to

estimate the reduced form parameters B0 and B1.11 However, we want to go further

and identify the structural parameters in the matrices A and �. To do this, we can

use "Identi�cation through Heteroskedasticity", implemented through GMM estimation.

Clearly, the residuals from the regression in (4) will re�ect the underlying structural

shocks �t. Therefore it is natural to use these residuals to determine volatility regimes

for the structural shocks. How this can be done is described in the next section.

To obtain moment conditions for GMM estimation, rearrange equation (4) to yield

yt �B0 �B1yt�1 = A�1�zt +A�1�t

The left-hand side in this expression can be proxied for with the VAR residuals. The

volatility of zt and �t changes across regimes s = 1; :::; S, and hence we can compute

the variance-covariance matrix of the VAR residuals separately for each regime s. This

leads to GMM moment conditions which are given by

A
e;sA
0 = �
z;s�

0 +
�;s (5)

where 
e;s is the covariance matrix of the residuals (which can compute from the data),

and 
�;s and 
z;s are the covariance matrices of the structural and common shocks

(which we want to estimate), all in regime s. Note that 
�;s is diagonal (as we assume

the structural shocks to be uncorrelated), and that one common shock implies 
z;s =

V ar(zs), a scalar. If there are n endogenous variables, 
e;s will have N = n � (n+ 1)=2
distinct elements, so that equation (5) delivers N moment conditions for each regime

which we summarise in the column vector ms. Therefore, with S regimes, we obtain

N � S moment conditions which can be used for GMM estimation. Let � denote a

vector containing the structural parameters which we want to estimate, including the

parameters in the matrices A and �, as well as the covariance matrices of the shocks,


z;s and 
�;s for regimes s = 1::::; S. We choose � to minimise the objective function

min
�
m0m (6)

11See e.g. Enders (2003), page 270.
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with

m =
�
m1 � T1T m2 � T2T ::: mS � TST

�0
where Ts is the number of observations in regime s and T is the total number of all

observations. Note that we multiply the moment conditions of regime s with the relative

weight of the regime. In this way we attach more importance to moment conditions that

represent a larger number of observations and thus are associated with less uncertainty.

This implicitly de�nes a weighting matrix for GMM estimation.

Our estimation strategy is as follows. First, we estimate the reduced-form model

given in equation (4) using OLS. We use the residuals from this regression to pick

the regimes: since the volatility of the structural and common shocks changes across

regimes, so will the volatility of the VAR residuals. For each regime we compute the

covariance-matrix of the residuals and derive moment conditions according to equation

(5). Finally, GMM is used to identify the structural form parameters of the original

VAR.

3.3 Choosing the regimes

Remember from Figure 2 that regimes should be chosen such that the relative volatilities

of di¤erent structural shocks vary signi�cantly across regimes. Thus, it would be ideal

to identify periods where only one variable was volatile, while the others were relatively

"tranquil". What precisely is interpreted as "volatile" and "tranquil" could be decided

by de�ning a reasonable volatility threshold. We use two alternative methods to choose

regime. The �rst method uses a simple threshold rule, as in Ehrmann, Fratzscher and

Rigobon (2005). As a robustness check, we also estimate a mixture of distributions

model on the residuals to choose regimes. This second approach is discussed in section

�ve.

Here we describe how to use a threshold rule for regime choice, following Ehrmann,

Fratzscher and Rigobon (2005). The basic idea is to determine in which periods the

EMBIG-residuals, to take an example, are very volatile, while residuals of the other

variables are not. To do this we compute standard deviations of residuals for each of

the n endogenous variables over �xed windows of 21 days. Let �i;t be the standard

deviation of residuals corresponding to endogenous variable i, computed over the period

t� 10; :::; t; :::; t+ 10. We then de�ne a threshold according to

mean(�i;t) + c � st:dev(�i;t)
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where we set c = 1.12 Whenever �i;t is above that threshold we consider residuals of

variable i in period t to be volatile. We then de�ne n+1 regimes, where n is the number

of endogenous variables. In regime one we include periods where the residuals of all

endogenous variables are tranquil. Furthermore, for each endogenous variable i, we

identify a regime that includes periods where i�s residuals are volatile, but the residuals

of other endogenous variables are not.

If more than one variable is above the volatility threshold in some period t, we do

not use that period for GMM estimation since such periods would not signi�cantly help

to identify the model. Therefore we may ignore information that is not contained in the

data, but that can be obtained by identifying the economic events that volatility periods

re�ect. Some natural examples are �nancial crises in emerging markets, which could be

interpreted as shocks to EMBIG; tightening cycles in US monetary policy, which would

represent shocks to US short term government bond yields; and the US auto sector

turmoil, which we could capture through shocks to US high yield spreads. Consider the

case of the Russian/LTCM �nancial crisis. According to our de�nition of volatility,

EMBIG spreads are volatile from August 10 until November 11, 1998. US high yield

spreads are volatile from August 25, and US long term interest rates from September

1, 1998. Thus using our mechanical rule, only the period from August 10 to August

24 is included in the EMBIG volatility regime: the largest part of the data covering the

Russian/LTCM crisis is not used for identi�cation of the structural parameters! Clearly,

we are loosing some valuable information. However, we know that the whole August-

September 1998 period represents a shock to EMBIG spreads originating in the Russian

default on August 17. It would therefore seem natural to include the days after August

25 in our EMBIG volatility regime.

Some previous studies have used straightforward economic intuition to identify volatil-

ity regimes. Rigobon and Sack (2004) analyse the e¤ect of US monetary policy on asset

prices. They use two regimes, one including periods of FOMC meetings and Fed chair-

man�s testimonies to congress, and another including all other periods. The idea is that,

clearly, monetary policy is more volatile on days when interest rate decisions are taken

or when news about interest rate policies emerge. Similarly, Gonçalves and Guimaraes

(2006) analyse the relationship between monetary policy and exchange rates in Brazil,

identifying periods of Brazilian Central Bank policy meetings as regimes of higher inter-

est rate volatility.

12 Increasing c will decrease the number of periods in the volatility regimes, making identi�cation
harder; decreasing c will increase the number of volatility regime periods; however, it is then also more
likely that more than one variable above the threshold so that the number of periods not used for GMM
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Figure 3: EMBIG high volatility regime periods with threshold rule
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In our case using economic reasoning for identifying the regimes is not always straight-

forward, as many events may correspond to shocks to several variables at once. Nev-

ertheless we also combined the results from using the threshold rule with our economic

intuition to de�ne regimes. For example, we allowed for a longer period of the Asian cri-

sis (according to our residual covariances, the Asian crisis lasts only from mid-November

to December 1997), attributed all of the Russian crisis period to the EME shock regime,

and extended the period of US high yield volatility in spring 2005 to cover the whole

period of the US auto sector turmoil. Therefore, there are more observations in the

regimes corresponding to EMBIG and US high yield volatility, and less observations in

the regime corresponding to tranquility.13 The resulting covariances from threshold rule

and the combination of threshold rule and economic intuition were not very di¤erent,

and the resulting GMM estimates for the structural coe¢ cients were also very similar.

Therefore, we just report the results from the regime choice using the threshold rule.14

Figure 3 shows the volatility of EMBIG residuals and the threshold which is used to

estimation rises.
13With the threshold rule, regime 1 (tranquility) includes 1836 observations, while regime 2 (US 3m

volatility) has 166, regime 3 (US 10y volatility) 174, regime 4 (US HY volatility) has 72 and �nally
regime 5 (EMBIG volatility) 91 observations.
14Note also that Rigobon (2003, proposition 3) has shown that estimation by "Identi�cation through

Heteroskestacity" remains consistent even if the volatility windows are misspeci�ed.
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determine whether EMBIG residuals are considered to be volatile. Note the spikes in

volatility corresponding to the Asian crisis 1997/98, the Russian/LTCM crisis (autumn

1998), and the Brazilian (beginning of 1999) and Argentinean (2001/2002) crises. How-

ever, as indicated in the graph, these episodes are only partly included in the EMBIG

regime. The reason is that the volatility of other variables - notably US high yields

spreads, but also US interest rates - tends to increase as well in times of EME crises,

and that therefore such periods are excluded from GMM estimation because they would

not help with the identi�cation of the structural model.

4 Results

This section presents our empirical results. Using "Identi�cation through Heteroskedas-

ticity", we are able to estimate all parameters in the structural model of equation (3).

This makes it possible to analyse not only the overall e¤ects of structural shocks on the

endogenous variables through the reduced form, but also to assess the importance of var-

ious transmission channels. We use data on bond yields and spreads in �rst di¤erences

to ensure stationarity.

Before discussing our results, let us brie�y note some computational issues. Good

starting values are very important for the optimization procedure to converge. We use

the �ndings from section two to set starting values for estimation.15 For the variances

of structural shocks we use the regime variances of the VAR residuals contained in the

matrix 
e;s as starting values - this should ensure that the starting values are at least

roughly of a realistic magnitude. For the variances of the common shock and coe¢ cients

in the vector � we use starting values of 1. We also constrain all variances to be positive,

and impose constraints on some structural coe¢ cients (for example, we constrain the

feedback e¤ects between US short- and long term government bond yields to be positive).

This increases the e¢ ciency of the estimation and also ensures that we choose the right

"rotation" of the matrix A (see Ehrmann, Fratzscher and Rigobon, 2005). However we

make sure to check that the constraints imposed are never actually binding. We estimate

our model including constant, time trend and �ve lags in the VAR, and one common

shock.16

Our estimation yields estimates for the structural-form parameters in A and �, as

15We use the built-in MATLAB constrained optimisation routine fmincon.
16The likelihood ratio test, �nal prediction error and Akaike information criterion suggest an optimal

lag length of 5, while the Schwarz and Hannan-Quinn information criteria point to an optimal lag length
of 3. Our intuition is that �nancial markets adjust to new information very quickly, and that including
lagged values covering the past work week should be su¢ cient.
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well as for the structural shock variances 
�;s and 
z;s. The estimated coe¢ cients in

matrix A correspond to the direct contemporaneous e¤ects of the various structural

shocks on the endogenous variables, as described by the structural form equation (3):

the coe¢ cient A(i; j) describes the direct e¤ect of a shock to endogenous variable j on

variable i. These coe¢ cients therefore give information about the importance of various

transmission channels. In order to judge the overall e¤ect of a shock the variable j on

variable i, one has to account for all simultaneous feedback e¤ects. This is done in the

reduced form model in equation (4) where it can be seen that the coe¢ cients of A�1

determine the overall e¤ects of structural shocks - that is, the cumulative e¤ect of the

di¤erent direct transmission channels.

The distribution and standard errors for the estimated parameters were obtained

using bootstrap: the residuals in each regime are resampled and used to compute new

covariance matrices. New parameters are then estimated using GMM. We repeat this

procedure 500 times to obtain a set of all coe¢ cients in the model, estimated 500 times.

The signi�cance of the estimated parameters can then be judged from the bootstrap

p-value.

Table 3 reports the parameter estimates for both structural-form (matrix A with

switched signs) and reduced-form (matrix A�1) coe¢ cients. Bold font indicates that

coe¢ cients are statistically signi�cant at the 95% con�dence level, according to the

bootstrap p-value. Detailed bootstrap results on parameter signi�cance can be found in

appendix B.

Direct e¤ects:
We �rst discuss direct feedback e¤ects, presented in panel (a) of Table 3. Our results

imply that a structural shock that increases EMBIG spreads will tend to decrease US

government bond yields, where the e¤ect is stronger for long term yields. Both coef-

�cients are highly signi�cant. This �nding can be interpreted as re�ecting a "�ight to

quality". The coe¢ cients capturing the reverse e¤ect, however, are close to zero and

insigni�cant, positive for long-term US government bond yields but negative for short

term yields. As noted earlier, we would expect a positive sign, as it is conventional wis-

dom that debt �nancing costs for risky borrowers tend to increase with risk-free interest

rates. However, our �nding that the e¤ect is small (and in the case of short rates has the

wrong sign) is consistent with the empirical literature on the determinants of sovereign

spreads, which seems to be inconclusive as to whether US interest rates can explain the

variation of EME credit spreads.17 Indeed, it seems plausible to obtain negative e¤ects if

17For example, Kamin and von Kleist (1999) regress emerging market bond spreads on a set of ex-
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Table 3: Estimation results using threshold rule for regime choice

(a) contemporaneous feedback e¤ects: direct
From... US 3m US 10y US HY EMBIG
...to
US 3m 0.10 -0.03 -0.06
US 10y 0.17 -0.06 -0.11
US HY 0.00 �0.53 0.04
EMBIG -0.01 0.03 0.20

(b) contemporaneous feedback e¤ects: overall
From... �US3 �US10 �USHY �EMBIG

...to
US 3m 1.02 0.13 -0.05 -0.07
US 10y 0.18 1.07 -0.10 -0.12
US HY -0.10 -0.57 1.06 0.10
EMBIG -0.02 -0.09 0.21 1.02
Bold coe¢ cients are signi�cant at the 95% con�dence level.

See Table 8 in appendix B for details.

interest rates in the US re�ect stronger economic conditions there which in turn support

economic performance in EMEs.

Our results also indicate strong comovement of US high yield spreads and EMBIG

spreads; note that the in�uence of US high yields spreads on EMBIG is stronger than

vice versa. The e¤ect of a shock to US long-term interest rates on US high yield spreads

is estimated to be strongly negative and highly signi�cant. This result appears very

counterintuitive. As mentioned in section two, one possible explanation might be that

interest rates tend to increase when the economy is booming; this is likely to coincide

with periods when the corporate sector is strong. The reverse e¤ect of US high yield

spreads on US interest rates is negative, which could again be interpreted as re�ecting a

"�ight to quality". Finally, the in�uence of US short-term on long-term yields is stronger

than vice versa.

Overall e¤ects:
Now consider the overall e¤ect of structural shocks on the endogenous variables, as given

by the coe¢ cients of the matrix A�1. The parameter estimates are summarized in panel

(b) of Table 3. Again we concentrate �rst on the relationship between US long-term

planatory variables and �nd that the e¤ect of interest rates in industrialised countries on EME spreads
is insigni�cant, and often has the wrong (negative) sign. See also Eichengreen and Mody (1998).
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government bond yields and EME bond spreads. The overall e¤ects of a shock to EM-

BIG spreads on US government bond yields are negative, and larger than the direct

e¤ects. This suggests that the various transmission channels tend to magnify the "�ight

to quality" e¤ect. The reverse overall e¤ect of US interest rates on EME bond spreads

contradicts the intuitive �nancing cost/search for yield argument: the coe¢ cients are

estimated to be negative and the coe¢ cient for long-term rates is signi�cant. Again this

could be explained by cyclical factors behind interest rate movements. All other coe¢ -

cients have the same sign as the corresponding direct e¤ects. Note that the coe¢ cients

on the diagonal are greater than one: the initial impact of a structural shock on EMBIG

spreads is one, but this e¤ect is magni�ed through the feedback e¤ects of other variables

so that the overall e¤ect on EMBIG spreads is larger than one.

To summarise our results let us reconsider the two questions posed in the introduc-

tion. What is the relationship between US government bond yields and EMBIG spreads?

We �nd that although there may be a weak positive e¤ect of US interest rates on EME

bond spreads - in line with the �nancing cost intuition - the overall e¤ect, taking into

account feedback e¤ects through other variables, turns out to be negative. How can we

explain this sign change from weakly positive to signi�cantly negative? From panel (a)

of Table 3, the most likely reason is the indirect feedback through US high yield spreads:

a positive shock to US long-term rates will slightly increase EMBIG spreads, but also

have a large negative e¤ect on US high yield spreads which in turn in�uence EME bond

markets.

The reverse e¤ect of an EME shock to US interest rates is estimated to be negative

and signi�cant: thus, there is strong evidence of �ight to quality. However, an EME

shock is not necessarily good news for bond markets in mature economies. Structural

shocks that raise EMBIG spreads will also raise US high yield spreads, constituting an

important channel through which contagion may occur. In the other direction, shocks

to the US corporate debt market - for example, the US auto sector shock in 2005 - will

also tend to spill over to EMEs. One possible source underlying the comovement of

EMBIG and US high yield spreads (in both directions) could be changes in investors�

risk aversion and the associated portfolio shifts into less risky assets.

Table 4 presents the decomposition of the 10-period ahead forecast error variance.

Note that both US short- and long-term government bond yields are explained largely by

their own structural shocks (this actually holds for all forecast horizons, with some vari-

ations for short-term forecasts). However, a very di¤erent picture emerges for US high

yield spreads and EMBIG spreads: for forecast horizons above 5 periods, the variances of
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Table 4: Variance decomposition

% of 10-period ahead forecast error variance of...
US 3m US 10y US HY EMBIG

... explained by shocks to
US 3m 84.6 1.6 1.6 11.5
US 10y 1.9 96.8 97.1 85.9
US HY 0.2 0.4 0.1 0.4
EMBIG 0.5 1.1 0.7 0.8
common shock 13 0.1 0.4 1.4

Regime choice using threshold rule.

the errors in forecasting US high yield and EMBIG spreads are both almost exclusively

explained by structural shocks to US long-term government bond yields. This suggests

that US long-term rates are of primary importance for explaining the developments of

markets of more risky debt, at least in the medium run.

5 Robustness checks

5.1 Parameter stability

The fundamental assumption underlying our empirical methodology is that the struc-

tural parameters in the matrices A and � are stable. Unfortunately, within our method-

ology it is impossible to check whether parameters are stable across regimes. Given

our limited sample it is not possible to estimate the reduced-form VAR in equation (4)

separately for each regime and then test for whether the estimated coe¢ cients are stable

across regimes (the smallest regime contains only 72 observations). What we can test

for, however, is whether parameters are stable across reasonably large subsets of our

sample. We do so formally by using a multivariate version of the Chow test, which tests

for stability of the reduced-form parameters, but not for stability of the structural shock

variances. If the reduced form parameters, B = A�1� are stable, then so should the

structural parameters in matrix A. We therefore re-estimate the reduced-form VAR for

two subsamples, from January 1997 up until summer 2000 and from summer 2000 until

December 2006. The null hypothesis of parameter stability is not rejected.18

18Note however that results from the test may be biased because of heteroskedasticity of the structural
shocks - see e.g. Toyoda (1974). Therefore, it is likely that the critical value is in fact lower than the one
found from the �2 - distribution. However, our test results indicate that parameter stability is accepted
by a wide margin.
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Table 5: Structural-form coe¢ cients in two subsamples

�rst sample (pre-2000)
From... US 3m US 10y US HY EMBIG
...to
US 3m 0.0284 -0.1882 -0.0512
US 10y 0.1941 -0.2132 -0.1499
US HY 0.1004 -0.4676 0.0734
EMBIG -0.0218 0.0476 0.1108

second sample (post-2000)
From... US 3m US 10y US HY EMBIG
...to
US 3m 0.1462 -0.0370 0.0413
US 10y 0.1138 -0.0382 -0.1603
US HY -0.0237 -0.5352 0.1235
EMBIG -0.0293 -0.0732 0.2232
Bold coe¢ cients are signi�cant at the 95% con�dence level.

For details see Tables 9 and 10 in appendix B.

To investigate further whether the parameters of the structural model change across

time, we split our dataset into two samples and reestimate our model. For the estimation

of the model in the two subsamples we use the same regime periods as before, chosen

from the analysis of the whole dataset. The estimation in the subsamples is complicated

by the fact that regime periods are spread unevenly across the sample: for example,

most EMBIG-regime periods are in the �rst half of the sample (corresponding to the

observation that EMBIG volatility has declined substantially in recent years), while US

high yield regime periods are mostly in the middle/second half of the sample. We split

the sample around summer 2000 to ensure that all regimes in both samples contain

enough observations for the model to be identi�ed. However, from the results in Tables

5 and 6 it is seen that even with this split most estimated coe¢ cients remain insigni�cant

because the number of observations in some high volatility regimes remains too small to

guarantee robust identi�cation.

The estimated structural coe¢ cients corresponding to direct spillover e¤ects are re-

ported in Table 5. Most of the structural coe¢ cients estimated for both subsamples have

the same sign as in the benchmark estimation in Table 3. Moreover, most coe¢ cients

are even quantitatively similar. The only exceptions are that the e¤ect of US long-term

government bond yields on EMBIG spreads turns negative for both parts of the sample,
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Table 6: Reduced-form coe¢ cients in two subsamples

�rst sample (pre-2000)
From... US 3m US 10y US HY EMBIG
...to
US 3m 1.0045 0.1303 -0.2265 -0.0876
US 10y 0.1948 1.1369 -0.3015 -0.2025
US HY 0.0089 -0.5190 1.1267 0.1601
EMBIG -0.0117 -0.0062 0.1154 1.0100

second sample (post-2000)
From... US 3m US 10y US HY EMBIG
...to
US 3m 1.0202 0.1710 -0.0421 0.0095
US 10y 0.1300 1.0779 -0.0857 -0.1780
US HY -0.1014 -0.6080 1.0775 0.2264
EMBIG -0.0621 -0.2196 0.2481 1.0633
Bold coe¢ cients are signi�cant at the 95% con�dence level.

For details see Tables 9 and 10 in appendix B.

while the e¤ect of US short-term rates on US high yield spreads turns negative in the

second part of the sample (however, in both cases the coe¢ cients remain insigni�cant).

The comovement of EMBIG and US high yield spreads increases in the second part of

the sample, although only the e¤ect from US high yield to EMBIG is signi�cant.

Next we turn to the reduced-form coe¢ cients, corresponding to the overall contem-

poraneous e¤ects of structural shocks on the endogenous variables. These are reported in

Table 6. There are three main changes between the estimated transmission channels for

the �rst and the second sample. The strength of the "�ight-to-quality" e¤ect decreases

in the second part of the sample, and the in�uence of EMBIG on US high yield spreads

is stronger than the reverse e¤ect in the �rst part of the sample, while the opposite is

true in the second sample. A further change occurs in the e¤ect of US government bond

yields on EMBIG spreads: the estimated coe¢ cients change from roughly zero in the

�rst part to strongly negative in the second part of the sample.

These changes in coe¢ cients between the two samples may partly re�ect di¢ culties

in identi�cation, since due to the rarity of EME crises in recent years there are only very

few observations in the EMBIG-volatility regime of the second sample. However, it is

also possible that there are more fundamental reasons. Over the years, the composition

of the EMBIG index has changed: while in the 1990s the fraction of investment-grade
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Figure 4: EMBIG high volatility regime periods with multivariate mixture model
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debt in the EMBIG was about 10%, this number has increased to about 50% in recent

years. Therefore, the nature of EME bonds as an asset class - including their relationship

with other macroeconomic indicators - may have changed.

5.2 Alternative methods of regime choice

The results presented in the previous sections were derived using a simple threshold

rule to choose volatility regimes. This rule is very easy to implement and works well

in practice. However, one may feel uncomfortable with regime choice using an appar-

ently "ad-hoc" rule. As a robustness check, we present here results using an alternative

method which involves estimating a regime switching model to describe the behavior of

the residuals/structural shocks. We assume that the stochastic process through which

structural shocks are generated is governed by an underlying unobserved variable which

we call the state. Thus, if the system is in state st = 1, structural shocks are assumed

to have a covariance matrix 
1, in state st = 2 shocks have a covariance matrix 
2
and so forth. The covariance matrices for each state, as well as the probability that

any given observation of the residuals is generated by an underlying state st = j can

be estimated and in this way volatility regimes can be chosen endogenously. Because of

the dimensionality of the problem, we use a multivariate mixture model, rather than a

more standard Markov model. Therefore, we only need to estimate the unconditional
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Table 7: Estimation results using endogenous regimes

(a) contemporaneous feedback e¤ects: direct
From... US 3m US 10y US HY EMBIG
...to
US 3m 0.22 -0.11 -0.04
US 10y 0.08 0.03 -0.14
US HY 0.02 -0.55 0.06
EMBIG -0.15 0.07 0.08

(b) contemporaneous feedback e¤ects: overall
From... �US3 �US10 �USHY �EMBIG

...to
US 3m 1.03 0.28 -0.11 -0.08
US 10y 0.99 1.01 0.01 -0.14
US HY -0.04 -0.55 1.00 0.14
EMBIG -0.16 -0.02 0.10 1.01
Bold coe¢ cients are signi�cant at the 95% con�dence level.

See Table 11 in appendix B for details.

probabilities of each state and their means and covariances, but no transition matrix.

Details are given in appendix A.

Figure 4 plots the regimes periods chosen for the case of EMBIG spreads, together

with the volatility of EMBIG residuals (computed over moving windows of 21 days).

Note that the regime periods chosen di¤er greatly from the previous threshold-method:

individual regime periods often only last for two or three days, and are spread out more

across the sample. Again, the most important EME crises events are picked up in the

EMBIG high volatility regime. Note that the bond market sell-o¤ in May/June 2006 is

included as well (in contrast to the regime choice with threshold rule).

Estimation results are presented in Table 7. Although most coe¢ cients are equal

in sign and similar in magnitude to the previous results, there are two di¤erences: the

direct e¤ect of US long-term government bond yields on EMBIG spreads is estimated

to be positive, and now also signi�cant, while the corresponding overall e¤ect is again

negative, but now insigni�cant. Furthermore, we again �nd that the �nancing cost

argument holds only for US long-term, but not for short-term rates (if indeed it holds

at all). A further di¤erence is that the e¤ect of US high yield spreads on US long rates

is now estimated to be positive, although close to zero and insigni�cant.
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6 Conclusion

This paper has analysed how shocks are transmitted across bond markets in emerging

market economies and mature markets. Our main contribution was to use a recently de-

veloped method, "Identi�cation through Heteroskedasticity", to identify all parameters

in a structural model of bond markets in the US and EMEs, without imposing ad-hoc

assumptions. This allowed us to quantify not only the overall spillover e¤ects, but also

the importance of alternative transmission channels.

We found strong evidence for the "�ight to quality" phenomenon, while the "�nancing

cost channel" was estimated to be insigni�cant, or signi�cant but with negative sign in

the case of overall e¤ects. An alternative explanation for this negative sign is that

interest rates in the US are procyclical such that they actually support economic growth

in EMEs. Concerning the comovement of US high yield spreads and EMBIG spreads we

found that spill over e¤ects in both ways are equally important. Therefore, the feedback

between EME bond markets and markets for risky debt in developed countries appears

to be an important channel through which crises in EMEs can negatively a¤ect mature

markets.

We carried out robustness checks to show that our results are not sensitive to the ex-

act choice of the regime windows, using a multivariate mixture model to choose volatility

regimes endogenously. We also tested for parameter stability by te-estimating the model

for two subsamples of our dataset.

Apart from providing some interesting new evidence on �nancial transmission chan-

nels between emerging and mature bond markets, our analysis can hopefully be of further

use for monitoring the development of international �nancial markets. Comparing how

estimated coe¢ cients change as the sample grows might lead to interesting insights into

how the importance of di¤erent transmission channels has changed. This can help to

evaluate the risk that shocks to EMEs could spill over to mature markets.
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7 Appendices

A Estimating regimes using a multivariate mixture model

This appendix provides more detailed information on how volatility regimes can be

estimated using a multivariate mixture model.19 Let be et a vector containing the

period t VAR residuals,

et =
h
eus3m;t eus10y;t eushy;t eembig;t

i0
and assume that for each period t, et is drawn from a di¤erent probability distribution,

depending on the current realization of an underlying, unobserved variable st which we

call the state (some realizations of st will later correspond to our volatility regimes).

Assume that there are M states, so that st = f1; 2; :::;Mg. Let the unconditional

probability that a given state, say st = j, is realized in t be given by

p (st = j;�) = �j ,

where � is a vector that contains all parameters of the model, as de�ned below. If the

underlying state in t is st = 1 our residuals et are assumed to have been drawn from a

multivariate normal distribution with mean �1 and covariance matrix �1; if the current

state is st = 2, the residuals are drawn from a normal distribution with mean �2 and

covariance matrix �2. In general, we have

etjst = j;� � N
�
�j ;�j

�
The corresponding probability density function (conditional on st = j) is denoted by

f (etjst = j;�). The vector � summarizes all parameters in our model. Thus � will
contain the unconditional probabilities of the M states, �1; :::; �M , the elements of the

mean vectors �j for each state j = 1; :::;M , and the unique elements of theM covariance

matrices �j .

The idea is then to choose the parameters in � such that the probability of observing

our sample of residuals is maximized. To compute the likelihood function, consider �rst

the joint probability of observing et while the underlying state is st = j. This is given

19For an introduction into the formulation and estimation of univariate mixture distributions see
Hamilton (1994), chapter 22.
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by

p (et; st = j;�) = f (etjst = j;�) � �j

Summing over all possible states M , the unconditional density of et is then

f (et;�) =

MX
j=1

p (et; st = j;�)

From this, the log likelihood is computed as

L (�) =
TX
t=1

log f (et;�)

where T is the number of observations in the sample. The likelihood function is then

maximized with respect to � using the EM algorithm. This algorithm has the advantage

that it increases the value of the likelihood function in each iteration; thus, if the algo-

rithm converges, we have found the maximum of the likelihood function. The estimation

is performed using the MATLAB toolbox h2m, written by Cappé (2001).

Once the parameters have been estimated, we can compute the probability that the

underlying state in some period t is st = j. This is done using Bayes�rule:

p (st = jjet;�) =
p (et; st = j;�)

f (et;�)

We then say that the underlying state in period t is j if this is the state which has the

highest conditional probability: formally, st = j if p (st = jjet;�) > p (st = ijet;�) for
all i.

Next, we need to decide which of the M states correspond to our volatility regimes.

Recall that for identi�cation purposes, we would like to choose N = 1 + n regimes:

one "tranquility" regime, and n regimes where only one variable is volatile, while the

others have a low volatility. Thus we pick those of the M states that best match this

description.

How should the number of states, M , be determined? We take M = n2 to cover all

possible volatility combinations that can arise if each variable is either volatile or not.20

For example there could be one state where only US short rates are volatile, another

20Of course, the estimated variances do not need to con�rm intuition; for example, one variable could
be estimated to have a low variance in all states, while another variable exhibits several di¤erent levels
of volatility across states. However, allowing for a greater number of states would further increase the
dimensionality of the maxization problem.
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state where US short and long rates are volatile, a third state where US short rates

and US high yield spreads are volatile and so forth. We set starting values for the EM

algorithm to point estimation in the direction of such volatility combinations.

It is worth noting that the dimension of the problem can become quite large, so

that the algorithm may take long to converge. Convergence is signi�cantly faster if

the covariance matrices �j are diagonal. Unfortunately this is unrealistic as the VAR-

residuals will be correlated (unlike the underlying structural shocks which we are trying

to uncover).21 Alternatively we could also work with the standard deviations of the

residuals - however, in this case it is not clear whether or not it is reasonable that, for

example, �2us10;t and �
2
embig;t will be correlated in a given state.

21Recall that et = A�1 (�zt + �t) + "t, where "t represents the error in estimating our reduced-form
parameters A�1�(L).
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B Tables and graphs
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Table 8: Bootstrap results for benchmark speci�cation (threshold rule)

Estimated structural-form coe¢ cients (matrix A)
bootstrap

Point estimate mean standard error p-value
US 3m!US 10y -0.1709*** -0.1571 0.0501 0
US 3m!US HY -0.0018 -0.0090 0.0264 0.3660
US 3m!EMBIG 0.0064 0.0091 0.0293 0.3920

US 10y!US 3m -01001** -0.0905 0.0506 0.0440
US 10y!US HY 0.5316*** 0.5217 0.0383 0
US 10y!EMBIG -0.0209 -0.0221 0.0254 0.1840

US HY!US 3m 0.0270 0.0358 0.0408 0.1580
US HY!US 10y 0.0606* 0.0804 0.0678 0.0640
US HY!EMBIG -0.2030*** -0.2048 0.0319 0

EMBIG!US 3m 0.0552** 0.0571 0.0361 0.0380
EMBIG!US 10y 0.1048*** 0.1048 0.0216 0
EMBIG!US HY -0.0379** -0.0359 0.0191 0.0480

Estimated reduced-form coe¢ cients (matrix A�1)
bootstrap

Point estimate mean standard error p-value
�us3m !US 3m 1.0221*** 1.0170 0.0061 0
�us3m !US 10y 0.1828*** 0.1684 0.0511 0
�us3m !US HY -0.0962*** -0.0798 0.0337 0.0040
�us3m !EMBIG -0.0223 -0.0221 0.0294 0.2260

�us10y !US 3m 0.1273*** 0.1227 0.0443 0
�us10y !US 10y 1.0662*** 1.0708 0.0326 0
�us10y !US HY -0.5701*** -0.5601 0.0285 0
�us10y !EMBIG -0.0943*** -0.0921 0.0200 0

�ushy !US 3m -0.0498** -0.0615 0.0372 0.0420
�ushy !US 10y -0.0950*** -0.1207 0.0769 0.0100
�ushy !US HY 1.0585*** 1.0668 0.0340 0
�ushy !EMBIG 0.2132*** 0.2162 0.0334 0

�embig !US 3m -0.0717** -0.0733 0.0363 0.0200
�embig !US 10y -0.1254*** -0.1262 0.0227 0
�embig !US HY 0.1052*** 0.1019 0.0230 0
�embig !EMBIG 1.0192*** 1.0178 0.0045 0

*,** and *** denote signi�cance at the 90%, 95% and 99% level, respectively. Results
from 500 bootstrap replications. Regime choice using threshold rule.



Table 9: Bootstrap results for �rst subsample (pre-2000)

Estimated structural-form coe¢ cients (matrix A)
bootstrap

Point estimate mean standard error p-value
US 3m!US 10y 0.1941 0.2584 0.4876 0.2180
US 3m!US HY 0.1004 -0.0630 0.5382 0.7960
US 3m!EMBIG -0.0218 -0.0361 0.1353 0.2840

US 10y!US 3m 0.0284 0.1599 0.3262 0.3140
US 10y!US HY -0.4676*** -0.4435 0.1222 0.0040
US 10y!EMBIG 0.0476 0.0604 0.0806 0.1140

US HY!US 3m -0.1882 -0.1991 0.1790 0.1180
US HY!US 10y -0.2132*** -0.3407 0.2454 0.0060
US HY!EMBIG 0.1108*** 0.1309 0.0976 0.0080

EMBIG!US 3m -0.0512 -0.0228 0.0802 0.3320
EMBIG!US 10y -0.1499* -0.1209 0.0763 0.0820
EMBIG!US HY 0.0734 0.0588 0.0626 0.1260

Estimated reduced-form coe¢ cients (matrix A�1)
bootstrap

Point estimate mean standard error p-value
�us3m !US 3m 1.0045 0.7308 2.4302 0.1180
�us3m !US 10y 0.1948 -0.2513 3.9427 0.5800
�us3m !US HY 0.0089 0.3565 3.8658 0.2360
�us3m !EMBIG -0.0117 0.0159 1.3741 0.6000

�us10y !US 3m 0.1303 0.1193 1.2692 0.2040
�us10y !US 10y 1.1369 0.9804 1.6499 0.1140
�us10y !US HY -0.5190 -0.3503 1.2805 0.1200
�us10y !EMBIG -0.0062 -0.0152 0.5584 0.5260

�ushy !US 3m -0.2265 -0.0878 1.7015 0.1520
�ushy !US 10y -0.3015 -0.1062 2.8583 0.1180
�ushy !US HY 1.1267** 0.8440 3.0454 0.0360
�ushy !EMBIG 0.1154* 0.0682 0.9345 0.0600

�embig !US 3m -0.0876* -0.0827 0.0619 0.0760
�embig !US 10y -0.2025*** -0.1918 0.0733 0.0040
�embig !US HY 0.1601** 0.1469 0.0721 0.0200
�embig !EMBIG 1.0100*** 1.0080 0.0256 0

*,** and *** denote signi�cance at the 90%, 95% and 99% level, respectively. Results
from 500 bootstrap replications. Regime choice using multivariate mixture model.34



Table 10: Bootstrap results for second sub-sample (post-2000)

Estimated structural-form coe¢ cients (matrix A)
bootstrap

Point estimate mean standard error p-value
US 3m!US 10y 0.1138** 0.1235 0.0758 0.0440
US 3m!US HY -0.0237 -0.0246 0.0805 0.3760
US 3m!EMBIG -0.0293 -0.0144 0.0746 0.4660

US 10y!US 3m 0.1462* 0.1304 0.1044 0.0680
US 10y!US HY -0.5352*** -0.5221 0.0541 0
US 10y!EMBIG -0.0732 -0.0593 0.1009 0.2820

US HY!US 3m -0.0370 -0.0305 0.1772 0.3200
US HY!US 10y -0.0382 -0.0665 0.1025 0.2320
US HY!EMBIG 0.2232** 0.2359 0.1425 0.0420

EMBIG!US 3m 0.0413 0.0431 0.1165 0.3220
EMBIG!US 10y -0.1603* -0.1598 0.1121 0.0840
EMBIG!US HY 0.1235 0.1159 0.1221 0.1580

Estimated reduced-form coe¢ cients (matrix A�1)
bootstrap

Point estimate mean standard error p-value
�us3m !US 3m 1.0202*** 1.0053 0.0301 0
�us3m !US 10y 0.1300** 0.1378 0.0826 0.0480
�us3m !US HY -0.1014 -0.1013 0.0954 0.1020
�us3m !EMBIG -0.0621 -0.0457 0.0822 0.2260

�us10y !US 3m 0.1710*** 0.1488 0.0532 0.0040
�us10y !US 10y 1.0779*** 1.0808 0.0490 0
�us10y !US HY -0.6080 *** -0.5906 0.0379 0
�us10y !EMBIG -0.2196*** -0.2053 0.0672 0.0020

�ushy !US 3m -0.0421 -0.0381 0.1635 0.2920
�ushy !US 10y -0.0857 -0.1180 0.1247 0.1140
�ushy !US HY 1.0775*** 1.0629 0.0729 0
�ushy !EMBIG 0.2481 ** 0.2549 0.1455 0.0440

�embig !US 3m 0.0095 0.0164 0.1129 0.4580
�embig !US 10y -0.1780* -0.1799 0.1211 0.0680
�embig !US HY 0.2264* 0.2168 0.1402 0.0780
�embig !EMBIG 1.0633*** 1.0375 0.0415 0

*,** and *** denote signi�cance at the 90%, 95% and 99% level, respectively. Results
from 500 bootstrap replications. Regime choice using multivariate mixture model.35



Table 11: Bootstrap results for regime choice with multivariate mixture model

Estimated structural-form coe¢ cients (matrix A)
bootstrap

Point estimate mean standard error p-value
US 3m!US 10y -0.0764*** -0.1307 0.0501 0.0020
US 3m!US HY -0.0206 -0.0089 0.0264 0.4500
US 3m!EMBIG 0.1542*** 0.1606 0.0293 0

US 10y!US 3m -0.2206*** -0.2495 0.0100 0
US 10y!US HY 0.5476*** 0.5306 -0.0541 0
US 10y!EMBIG -0.0673*** -0.1055 -0.0779 0.0060

US HY!US 3m 0.1105*** 0.1236 0.1236 0
US HY!US 10y -0.0280 -0.0541 -0.0541 0.1080
US HY!EMBIG -0.0785** -0.0779 -0.0779 0.0400

EMBIG!US 3m 0.0338 0.0201 0.0361 0.1480
EMBIG!US 10y 0.1348*** 0.1371 0.0216 0
EMBIG!US HY -0.0633*** -0.0647 0.0191 0.0060

Estimated reduced-form coe¢ cients (matrix A�1)
bootstrap

Point estimate mean standard error p-value
�us3m !US 3m 1.0317*** 1.0526 0.0214 0
�us3m !US 10y 0.0986*** 0.1553 0.0533 0
�us3m !US HY -0.0426** -0.0825 0.0330 0.0460
�us3m !EMBIG -0.1558*** -0.1576 0.0488 0

�us10y !US 3m 0.2838*** 0.3181 0.0433 0
�us10y !US 10y 1.0089*** 1.0118 0.0341 0
�us10y !US HY -0.5478*** -0.5331 0.0286 0
�us10y !EMBIG -0.0188 -0.0132 0.0384 0.4100

�ushy !US 3m -0.1124*** -0.1187 0.0292 0
�ushy !US 10y 0.0064 -0.0228 0.0519 0.3920
�ushy !US HY 1.0003*** 0.9928 0.0289 0
�ushy !EMBIG 0.0963*** 0.0991 0.0451 0.0080

�embig !US 3m -0.0803*** -0.0723 0.0264 0.0080
�embig !US 10y -0.1390*** -0.1398 0.0309 0
�embig !US HY 0.1386*** 0.1389 0.0397 0
�embig !EMBIG 1.0139*** 1.0076 0.0078 0

*,** and *** denote signi�cance at the 90%, 95% and 99% level, respectively. Results
from 500 bootstrap replications. Regime choice using multivariate mixture model.36


