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Abstract

The Purchasing Power Parity (PPP) Puzzle refers to the difficulty of reconciling the enormous

short-run variability of real exchange rates with their longer-than-expected deviations from equi-

librium (Rogoff, 1996). Recently, Imbs, Mumtaz, Ravn and Rey (2005, hereinafter IMRR) have

argued that much of the PPP puzzle is due to upwardly-biased estimates of persistence. According

to their view, the source of the bias is the existence of heterogeneous price adjustment dynamics

at the sectoral level. As they put it, “the aggregate real exchange rate is persistent because its

components have heterogeneous dynamics”.

This paper re-examines this claim in two steps. Firstly, we demonstrate that IMRR’s measures

of sectoral persistence are systematically downwardly-biased because they are based on an inaccurate

definition of the “average” Impulse Response Function (IRF). We then show that standard estimates

of shock persistence are recovered after this bias is corrected. Secondly, building on the results

in Mayoral (2007), that prove that aggregate and micro models induce similar shock persistence

behavior, we show that estimates based on aggregate and sectoral exchange rates are in fact highly

compatible. Therefore, aggregation does not solve the puzzle and further research is still necessary.
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1. INTRODUCTION

The so-called purchasing power parity puzzle is considered to be among the six major puzzles

in international economics (Obstfeld and Rogoff, 2000). The puzzle refers to the difficulty of rec-

onciling the high volatility of exchange rates with long-lasting deviations from their equilibrium

levels, as defined by the theory of purchasing power parity (PPP). Rogoff (1996) highlighted

this problem and, based on a reading of panel and long-span studies, noticed that the estimated

half-lives (HLs) of real exchange rate adjustment tend to fall into the range of three to five years.

On the one hand, explanations of short-term exchange rate volatility point to financial factors

(asset price bubbles, monetary shocks, etc.). On the other, the slow adjustment to PPP can

be easily justified in models where real shocks (such as shocks to tastes or to technology) are

predominant. The puzzle arises because existing models based on real shocks cannot account

for the large short-term exchange rate volatility.

The literature documenting and trying to find an explanation for the puzzle is very large.

Some authors have noticed that Rogoff’s consensus of 3 to 5 year half-lives of PPP deviations

was based on univariate or panel studies using OLS estimates, which are known to be biased

downwards. When the bias is corrected, it is generally found that HL point estimates are well

above the “consensus view”, implying that the size of puzzle is even larger than was originally

believed (see Murray and Papell, 2002, 2005, Lopez et al., 2003, 2004).

In the opposite direction, there have been several attempts to solve the puzzle, most notably

departures from linearity (such as nonlinear dynamics in real exchange rate adjustment or the

existence of structural breaks)1 and, in a linear setting, aggregation problems due to heterogene-

ity in the speed of price adjustment at the goods level, as advocated by Imbs, Mumtaz, Ravn

and Rey (2005, hereinafter IMRR). The present paper looks at the latter potential solution to

the PPP puzzle.

IMRR argue that estimated half lives are so large because the corresponding estimates are

biased upwards. According to their view, the existence of heterogeneous dynamics at the sectoral

level (that is neither taken into account explicitly nor handled in an appropriate manner in most

1By introducing non-linearities into the real exchange rate adjustment, several authors have succeeded in

enlarging the evidence of reversion, as in Michael et al. (1997) and Taylor et al. (2001). In the approach that

considers structural breaks, Hegwood and Papell (1998) and Gadea et al. (2004), breaks have been able to reduce

half-lives noticeably.
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studies based on time series or panel data) gives rise to an ‘aggregation bias’ when aggregate

data is used to draw inferences about the speed of price adjustment. By employing sectoral

real exchange rates and explicitly allowing for heterogeneity, they report estimates of price

adjustment that are completely in line with models of slow nominal price adjustment, with an

‘average’ half-life of price adjustment of about 1 year. Hence, they claim to have solved this

long-debated puzzle and conclude that “the aggregate real exchange rate is persistent because its

components have heterogeneous dynamics”.2

However, we argue that aggregation is not the solution to the puzzle. We build our argu-

ment in two steps. Firstly, we show that the IMRR measures of persistence computed with

sectoral data systematically underestimate (average) persistence. IMRR’s conclusions are basi-

cally drawn from the analysis of the HL, which, in turn, is computed from an ‘average’ impulse

response function. The source of the bias is precisely the definition of average impulse response

function (IRF) used by these authors. Instead of computing the individual impulse responses

and averaging them in order to produce an estimate of the average impulse response, they first

estimate the mean value of the (heterogeneous) model coefficients in a panel of countries and,

then, use this value to estimate their ‘average’ IRF, as if the model was one of homogeneous

coefficients given by the mean value of the heterogeneous parameters. Since the IRF is a highly

nonlinear function, averaging the IRFs or averaging the coefficients and then computing the IRF

may yield very different results. In fact, Jensen’s inequality ensures that, for most empirically

relevant cases, the former measure is always larger than the latter. The intuition of this result is

clear: the IRF grows faster than linearly for highly persistent sectors. Hence, when averaging the

individual responses, these highly persistent sectors increase the mean considerably. However, in

the computations of IMRR, highly persistent sectors are eliminated in the first stage when aver-

aging model coefficient’s estimates, so that their impact on average persistence is much smaller.

This translates, not surprisingly, into lower persistence estimates. Using the same data set and

the same estimation strategy as that employed in their paper, we have quantified the size of the

bias that affects IMRR measures of persistence. It turns out that the bias is substantial and

that, once it is corrected, persistence estimates increase considerably. Moreover, the classical

results of 3-5 year half-lives of PPP deviations are recovered. It is important to emphasize that

2This paper has generated a considerable debate, see Engel and Chen, (2005) and Imbs et al. (2004). Never-

theless, our arguments are very different from those discussed in the above-mentioned articles.
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the only difference between their results and the ones reported in this paper stems from the

definitions of average IRF employed, since in all other aspects we have closely followed their

estimation approach.

Secondly, we consider the question of whether an aggregation bias exists, that is, whether

persistence, as measured by the IRF, differs across aggregation levels. We use the results in

Mayoral (2007) that show that the standard IRF associated with the aggregate model is simply

the expected value of the individual responses. This implies that aggregate persistence is directly

determined by (average) sectoral persistence. In other words, the aggregate is persistent if the

sectors are, on average, persistent, but not because they present heterogeneous dynamics, as

argued by IMRR. We illustrate this theoretical result by showing that standard time series

techniques allow one to obtain measures of persistence computed with aggregate data that are

highly compatible with those obtained using sectoral data.

Thus, in our opinion the results in IMRR should be read as follows: if the economy was

characterized by a representative sector (that they compute by averaging the coefficient estimates

of the individual models), then the speed of price adjustment would be compatible with models

based on nominal rigidities. But then, this analysis is far from explaining the PPP puzzle and

it gives raise to two important questions: firstly, what is the interpretation of such an artificial

representative sector, which is not constructed as an average of the sectors themselves but rather,

by averaging only the coefficients of the individual models? And secondly, even if one considers

that this could be a valid ‘average’ of the individual sectors, the fact that this ‘average’ is

low-persistent does not solve the puzzle because it does not explain why some sectors are so

persistent.

Summarizing, our results suggest that the different persistence behavior between aggregate

and sectoral exchange rates reported by IMRR is not due to an upwards bias in the estimates

based on aggregate data deriving from the existence of sectoral heterogeneity but rather, to a

negative bias affecting their sectoral persistence estimates.

Hence, the bad news are that we do not yet have a convincing solution to the PPP puzzle

since aggregation seems not to be the solution. The good news, however, are that applied

macroeconomists can still rely on aggregate data for their studies since estimates derived from

these data are trustable and should be very in much in line with micro estimates even when the

assumption of individual homogeneity is violated.
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The outline of the paper is as follows. Section 2 summarizes the main theoretical arguments

needed to establish our results. Section 3 presents our estimates of persistence based on sectoral

data and quantifies the magnitude of the negative bias affecting IMRR’s estimates of persistence

computed with sectoral data. Section 4 reports measures of persistence computed with aggregate

data and shows that they are highly compatible with the ones obtained in Section 3, illustrating

the lack of “aggregation bias”. Section 5 concludes.

2. MEASURING PERSISTENCE AT DIFFERENT AGGREGATION LEVELS

In this section we present the theoretical background needed for developing the empirical

results. We consider two aspects. Firstly, we analyze the issue of measuring (average) persis-

tence with sectoral data and describe the bias affecting IMRR sectoral estimates. Secondly, we

study the relation between the (population) IRFs associated with the aggregate and the sectoral

models. It is shown that the IRF of the former is simply the expected value of sectoral impulse

responses. This implies that the aggregate process is persistent if the sectors are themselves, on

average, persistent, but not because they present heterogeneous dynamics. It also suggests that,

provided the aggregate and the disaggregate models are properly specified, highly compatible

measures of persistence should be found, irrespective of the level of aggregation. The latter

results are fully developed in Mayoral (2007) and we only present a brief summary here.

2.1. Measuring persistence with sectoral data

IMRR consider a panel of sectoral exchange rates for several European countries defined

against the U.S. dollar.3 In its simplest version, they assume that for each country c, each sector

in the panel can be represented as (see equation (1) in IMRR),

qcit = γci + ρciqcit−1 + ucit, i = 1, ..., N, c = 1, ..., C; t = 1, ..., T, (1)

where i, c and t denote sector, country and period, respectively, qcit is the real exchange rate

for country c, sector i at time t, γci = γ̄ + η
γ
ci, ρci = ρ̄+ η

ρ
ci, γ̄ and ρ̄ are constants, and ρci has

support on the interval (0, 1). Furthermore ηγci and η
ρ
ci are i.i.d zero-mean random variables,

3Sectoral exchange rates are defined as qict = log(SctPict/Pi,US, t), where Sct denotes the nominal bilateral

exchange rate between the US and country c at date t, Pict is the price of good i in country c at time t while

Pi,US,t is the corresponding US price.
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mutually independent of uit, which is independently distributed, with zero mean and variance

σ2ci. Contemporaneous correlation across sectors and countries is allowed.

As argued by IMRR, impediments to arbitrage or nominal rigidities vary considerably across

goods. Since these factors are usually believed to be behind cross-country price differences, these

impediments could bring about important heterogeneity in the speeds of reversion to parity

across sectors and countries.4 Model (1) can account for different sources of heterogeneity: in

addition to country and sector fixed effects (captured by the parameter γci), it also allows for

different speeds of shock adjustment by letting ρci be heterogeneous.

How could one compute a measure that summarizes the persistence of a collection of sectoral

real exchange rates? One of the most popular tools for shock persistence evaluation is the impulse

response function, defined as the “effect of a change in the innovation by a unit quantity on the

current and subsequent values of the variable of interest” (Andrews and Chen, 1994, p.189). For

each unit in the panel, the response to a unitary shock, occurring at time t, h periods ahead,

can be computed as the difference between two forecasts (see Koop et al., 1996),

IRF ci(t, h) = E (qcit+h|ucit = 1; zcit−1)− E (qcit+h|ucit = 0; zcit−1) , (2)

where the operator E (.|.) denotes the best mean squared error predictor and zit−1 =
(
qcit−1, qcit−2 ...

)
′

;

Applied to the simple model in (1) , it yields that the response of sector i in country c to a unitary

shock in t, h periods ahead is

IRF ci(t, h) = ρhci, for h ≥ 0. (3)

If one is interested in the average response across sectors to a unitary shock, a natural measure

of average persistence would be to consider the expected value of (3) over the distribution of

units. The expected impulse response to a unitary shock h periods ahead is then given by

E (IRF (t, h)) = E
(
ρh
)
, for h ≥ 0, (4)

where E (.) denotes expectation across the distribution of units (sectors and countries). Then,

the expected IRF associated with (1) is given by the hth−moment of the distribution of ρ. From

this expression, it is straightforward to define other popular measures of shock persistence, such

as the half life (HL), defined as the number of periods it takes until half the effect of a shock

4See Cheung et al. (2001) and Bils and Klenow (2002) for some evidence.
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dissipates, and the cumulated impulse response (CIR), which measures the total cumulative

effect of a shock over time. Application of these definitions to the mean IRF defined in (4)

allows us to compute the HL as the value of h that verifies

E(IRF (t, h = HL)) = 0.5, (5)

whereas the CIR is

CIR =
∞∑

i=0

E(IRF (t, i)). (6)

Let us now revise how the calculations reported in IMRR relate to the measures defined in

(4), (5) and (6) . Their approach is to estimate the expected value of ρci, ρ̄ and, in a second step,

to compute the IRF defined in (4) , as if the true DGP was given by qcit = γ̄+ ρ̄qcit−1+ acit, for

all i = 1, .., N, c = 1, ...C, that is, as if the DGP was a panel with a homogeneous autoregressive

parameter given by ρ̄. Therefore, they provide estimates of the function,

IRF (t, h) = ρ̄h = E (ρ)h , for h ≥ 0. (7)

They estimate ρ according to different approaches and they plug these values into (7) to

produce different IRF estimates, finding, in general, HL estimates considerably lower than those

implied by the “consensus view”.

Clearly, under heterogeneity, (7) does not correspond to the average of the individual re-

sponses, which is defined in (4). Furthermore, it can be easily seen that, in most empirically

relevant cases, (7) systematically underestimates the true average response. Whenever the sup-

port of ρ is positive, which is a very realistic assumption in this case, then ρh is strictly convex

and application of Jensen’s inequality yields

E(IRF (t, h)) > IRF (t, h) , for all h > 1, (8)

or, in other words, (7) systematically underestimates average shock response.5 Since the HL and

the CIR are directly computed from the IRFs above, the same inequality also holds for these

measures.

The relation established in (8) does not only hold in the simple AR(1) case but also for more

general AR dynamics. For instance, for heterogeneous AR(2) processes, whenever the support

5Although, in their empirical exercise, more general AR(p) dynamics are considered, the same procedure for

obtaining the average response to shocks is employed and thus, similar criticisms apply.
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of the first autoregressive coefficient ρ1 is positive (which implies that the largest autoregressive

root is greater than zero and greater in absolute value than the other root), a similar inequality

holds. Since we are dealing with very persistent processes, this is a very realistic situation. More

generally, in the AR(p) case, the individual IRF can be written for large h as (see Rossi, 2005)

IRF i = αh1ib (1)
−1 ,

where α1i is the largest autoregressive root and b (L) = (1− α2i) ... (1− αpi) is the polynomial

containing the remaining autoregressive roots. Again, it can be seen that, provided the support

of α1 is positive, then IRF is a convex function and Jensen’s inequality ensures the result above.

To illustrate the inequality in (8), Figure 1 presents the graphs of several IRFs corresponding to

model (1), computed according to (7) or to (4). The heterogeneous autoregressive lag coefficient

has been generated according to a Uniform as well as to a Beta distributions (top and bottom

graphs, respectively), with mean values of ρ equal to 0.8 and 0.9, for each of the distributions.6

The solid line depicts the expected IRF as defined in (4) while the dashed line shows the IRF

computed as in IMRR. Two main conclusions can be drawn. Firstly, the gap between the two

lines is considerable, even at long horizons. Secondly, the denser the distribution is around 1,

the higher the gap, as illustrated by the IRFs corresponding to AR coefficients generated with

the beta distribution. Since real exchange rates are highly persistent, these plots suggest that

the bias implied by (7) can be very large.

(Figure I about here)

Summarizing, the results above show that IMRR persistence estimates computed with sectoral

data are likely to underestimate the true average shock response of the real exchange rates.

But, so far, we have not said anything about their major claim, namely, that the existence

of heterogeneous dynamics at the sectoral level introduces a positive bias into estimates of

persistence computed with aggregate data. We analyze this argument in the following subsection.

6The Uniform distribution has been defined in the (0.6,0.99) and (0.8,0.99) intervals while the parameters

for the Beta distribution are (p=2.5, q=0.5) and (p=4.5, q=0.5) corresponding to the cases E(ρ) = {0.8, 0.9},

respectively.
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2.2. Comparing aggregate and sectoral persistence

We now turn to examine the relation between our preferred measure of sectoral persistence,

the average of sectoral IRFs as defined in (4), and the standard IRF associated with the model

obtained by aggregating (1) across sectors. This question has been addressed in Mayoral (2007)

and we only summarize those results briefly here.

Under homogeneity, the relation between disaggregate and aggregate IRFs is trivial. The

aggregate and individual model dynamics are the same and, therefore, the IRF also remains

the same across aggregation levels. Nevertheless, under individual heterogeneity, aggregation of

(1) yields a process with rather different dynamics than the micro units, as has been shown by

many authors.7 Hence, before deriving the IRF of the aggregate model we explicitly consider

aggregation of (1) across sectors. This issue has been considered by Lewbel (1994), who followed

the approach introduced by Stoker (1984). The latter author defines an aggregate function as

one given by the expected value across individuals of the disaggregate relations. Hence, the

aggregate real exchange rate for country c could be obtained as

Qct = E(γc) +Et(ρcQct−1) + Uct. (9)

where Et (.) denotes expectation over the cross-section distribution and provides the time path

of the dependent variable mean, Qct = Et (qct) is the aggregate real exchange rate for country

c at time t and Uct = Et (uct) is an aggregate shock. Lewbel (1994) showed that, under certain

assumptions, expression (9) is equivalent to,

Qct =
∞∑

s=1

AsQct−s + Uct, (10)

for constants A1, A2, ... that satisfy the equation

As = ms −
s−1∑

r=1

ms−rAr. (11)

where ms = E (ρs) is the moment of order s of ρ. It follows that, under heterogeneity, the

aggregate model displays very complicated dynamics even when the behavior of the micro units

7See Granger (1980), Robinson (1978) and Zaffaroni, (2004).
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is very simple, as it is in this case. The standard aggregate IRF associated with model (10) can

be computed as the difference between the forecasts,

IRFAG(t, h) = E (qct+h|Uct = 1;Zt−1)− E (qct+h|Ut = 0;Zt−1) , (12)

where Zt−1 = (Yt−1, Yt−2, ...). Application of this definition to (10) yields,

IRFAG (t, 1) = A1; IRFAG (t, 2) = A21 +A2

IRFAG(t, 3) = A1
(
A21 +A2

)
+A2A1 +A3,

and in general,

IRFAG (t, h) =
h∑

j=1

AjIRFAG (h− j) .

Now, noticing that (11) can be rewritten as ms =
∑s−1
r=0mrAs−r, one can iterate the latter

expression and check that

IRFAG (t, 1) = m1 = E (ρ) ,

IRFAG (t, 2) = m2 = E
(
ρ2
)
,

...

IRFAG(t, h) = mh = E
(
ρh
)
.

That is, the aggregate IRF equals the non-centered moments of the distribution of the AR

coefficients which, in turn, coincide with the expected value of the individual IRFs, defined in

(4). It turns out that our preferred measure of (average) sectoral persistence coincides with the

aggregate IRF, implying a tight relation between sectoral and aggregate shock response. This

result can be extended to more general micro AR dynamics, as shown in Mayoral (2007).

Two important considerations should be emphasized at this point. Firstly, since the pop-

ulation values of aggregate and (average) sectoral persistence are the same, under the usual

hypothesis of correct specification, similar estimates should be obtained with either type of

data, as in the case where no individual heterogeneity is present. There is, however, an impor-

tant difference between the homogeneous and the heterogeneous case. In the latter situation, the

dynamics of the aggregate process become very complex in such a way that Qct might not admit

a representation with a finite number of parameters, as illustrated by (10). Notice, however,

that, even in this situation, it is still possible to obtain consistent estimates of the autoregressive
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lag parameters of the aggregate model provided a sufficiently long AR model is specified, where

the number of lags grows at an appropriate rate with respect to the sample size. See Berk,

(1974) and Ng and Perron, (2001).

To illustrate that these theoretical considerations hold for reasonable sample sizes and when

very standard techniques are employed, we have run a small Monte Carlo experiment. We have

generated 300 heterogeneous AR(1) processes, allowing for heterokesdacity and contemporaneous

correlation across individuals. Two distributions were employed to generate the autoregressive

coefficients, namely, a Uniform and a Beta distribution, with mean equal to 0.8 in both cases.8

The aggregate process was computed as the arithmetic average of the micro units. The sample

size was set at 180, to match the sample size of this paper’s data set. Next, an AR(p) process

was fitted, where p was chosen according to the AIC. The maximum number of lags was set

at 20 (the maximum number of lags usually considered by IMRR in their calculations). Notice

that from equation (11) , A1, the first AR coefficient of the aggregate model, equals the mean

of the AR(1) lag coefficients, E (ρ). In this simple simulation, the mean value of A1 was found

to be equal to 0.81 and 0.79, with standard deviations of 0.080 and 0.086, for the uniform

distribution and the beta distributions, respectively, which are very good estimates of the true

value of E (ρ)= 0.8.

Secondly, the results above highlight the source of the bias reported in the analytical calcula-

tions of IMRR. In order to show that aggregate time series data overestimate persistence, they

consider the same model specification for the aggregate and the for disaggregate data, namely,

an AR(1) specification. They consider whether the estimate of the first AR coefficient of the ag-

gregate model is a consistent estimator of E (ρ). But, as is clear from (10), the aggregate model

is misspecified and, not surprisingly, Â1 is not a consistent estimator of A1 = E (ρ). Thus, it

is important to emphasize that the source of the bias discussed in IMRR is the misspecification

of the aggregate model rather than a bias arising as a consequence of the aggregation of het-

erogeneous processes. As illustrated above, consistent estimates of E (ρ) can be obtained when

aggregate data is employed provided a longer AR structure is specified.

8The uniform distribution was defined in the intervals (0.65, 0.95). The p, q parameters in the beta(p,q)

distribution were set at 4 and 1, respectively. The error in the AR(1) units was defined as the sum of two

Gaussian shocks, one idyosincratic and the other common to all units. The number of replications was 1000.
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3. RESULTS FOR SECTORAL DATA

This section quantifies the magnitude of the negative bias affecting IMRR measures of sectoral

shock persistence. We employ the same data set as in their paper, that is, nineteen monthly

exchange rates covering, at most, the period 1981:1 to 1995:12. (Non-harmonized) price indexes

are provided by Eurostat and real exchange rates (RERs) are defined against the U.S dollar.

See IMRR, Appendix 3, for more details.

IMRR consider the model

qict = γci +
K∑

k=1

ρcikqcit−k + ucit, (13)

where they assume that sectors are homogeneous across countries, so that γci = γi, ρcik = ρik for

all i, k. IMRR are interested in the average values across sectors of the autoregressive coefficients,

ρ̄k, for k = 1, ...K. They apply the Mean-Group (MG) estimator (see Pesaran and Smith, 1995),

with and without correction for cross-sectional correlation in the errors and with and without

correction for downward bias in the OLS estimates. The procedure consists of applying the

corresponding panel technique to estimate sector-specific coefficients and then the parameters

ρ̄k are estimated as a simple average of the corresponding sector-specific estimates. To correct

for non-zero cross-sectoral correlations in the residuals, the Seemingly Unrelated Regression

(MG-SURE) and the Common Correlated Effects estimator (MG-CCE) are implemented (see

Pesaran, 2006, and IMRR for details). Finally, they re-compute the MG, MG-SURE and MG-

CCE, correcting for the OLS small-sample bias using Kilian’s (1998) bootstrap-after-bootstrap

method. Next, IMRR use the averages of the original estimates to compute their estimates of

sectoral IRF, as described in Section 2.

In order to gauge the magnitude of the bias of IMRR’s measure of sectoral persistence, we

have closely followed their estimation strategy to obtain sector-specific coefficients. The only

difference between IMRR’s approach and ours is that, instead of averaging the sectoral estimates

and using the resulting averages to estimate an IRF (and the corresponding HL), we estimate

an IRF for each of the sectors and then average these functions across sectors. In addition,

we have also considered the possibility that sectors are heterogeneous across countries so the

above-described calculations have been performed for each of the countries individually.

Tables I and II present our results. To facilitate the comparison, IMRR’s notation for the

different estimation approaches has been preserved and HLs computed according to their proce-
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dure are also reported. Table I contains the HLs obtained by applying the MG estimator (with

and without correcting for the OLS small-sample bias). HLIMRR is the HL computed as in

IMRR, that is, averaging the AR coefficients and then computing the IRF from these average

values. HLm and HLw are the HLs associated with a simple arithmetic average and with a

weighted average of the individual IRFs, respectively. Ideally, in order to facilitate the compar-

ison with HL measures computed with aggregate data, the weights should be those employed to

construct aggregate exchange rates. Unfortunately, Eurostat does not publish non-harmonized

price weights so harmonized price weights (corresponding to 2006) have been employed instead.

Thus, our preferred measure of sectoral persistence is HLw, since it weighs sector-specific re-

sponses in a similar manner to which the aggregate function weighs sectors. As for the rows,

the first one displays panel data estimates (calculated under the assumption that sectors are

homogeneous across countries), while the remaining ones present time series estimates, obtained

by allowing for cross-country sectoral heterogeneity. In all cases, AR(p) processes were specified.

The order of the autoregressive was 19 for the panel data case, to match IMRR’s estimates. For

the remaining rows, it was chosen according to a general-to-specific criterion with a maximum

number of lags of 20, as in IMRR’s paper.9 Confidence intervals have been calculated using

bootstrap techniques.

In order to compute bias-corrected estimates, Kilian’s (1998) method has been employed and

we have followed an indirect approach, that amounts to computing bias-corrected autoregressive

coefficients and, then, deriving the corresponding bias-corrected HL from these coefficients. Al-

ternatively, IMRR advocate a direct approach, by which the estimated HL is corrected directly

using the bootstrap. We have conducted a Monte Carlo analysis to determine which method

performs best for our definition of HL. It turned out that the direct approach tends to under-

estimate the true HL whereas the indirect one performs reasonably well. The intuition of this

result is clear. When the HL is computed according to (5) and the data is very persistent, the

small-sample bias affecting the autoregressive estimates produces a very large bias in the IRF,

since this function is highly sensitive to small changes of the coefficients when they are close

to the non-stationarity boundary. As a consequence, the HL is also severely biased downwards

and, when the direct approach is implemented, the bias is not entirely corrected by the boot-

strap algorithm. This problem affects IMRR’s calculations to a lesser extent because the impact

9The AIC was also employed and very similar results were obtained.
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of highly persistent sectors on their measure of average persistence is less important than in

our case (since sectoral coefficient estimates are averaged in the first stage) so, the resulting

“average” IRF does not present such a large bias. However, when the IRF is computed using

bias-corrected AR estimates, in accordance with the indirect approach, very accurate estimates

of the HL are obtained.10

Several conclusions can be drawn from Table 1. Firstly, we are able to match IMRR’s panel

estimates very closely and, as expected, HLIMRR figures are always smaller than HLm and HLw.

In addition, this table allows us to quantify the negative bias affecting IMRR’s estimates. When

no small-sample bias correction is introduced (first three columns), the HLIMRR panel estimate

is below the “consensus view” (26 months). Nevertheless, the conclusions are reversed when HLm

and HLw are considered, as they present values slightly above three years, (36 and 37 months,

respectively) in line with the standard literature. Allowing for cross-country heterogeneity does

not substantially modify the conclusions: the HLIMRR estimates are, in general, below 36 months

(with the only exception of Spain), whereas HLm and HLw are in general above the latter figure

(only GR, NL, FI and UK present values of HLw below 36 months).

When the OLS small-sample bias is corrected, the gap between HLIMRR and HLm-HLw

estimates becomes much larger (columns 4 to 6). All estimates increase considerably, suggesting

that the negative bias affecting the OLS estimates is, in fact, quite large. This is not surprising

since this type of bias is known to be large when OLS is applied to highly persistent data, in

which case, the IRF is very sensitive to small changes in the parameters. HLIMRR values are

significantly higher than before (and, with few exceptions, lie in the 3-5 year interval). The

increase is even more important for the HLm and HLw measures, whose point estimates are, in

most cases, larger than 15 years and have no finite upper bound.11 It is also remarkable that

cross-country heterogeneity increases considerably, raising doubts about the adequacy of panel

estimates, that are computed under the hypothesis of cross-country sectoral heterogeneity.

(Table I about here)

If the errors are contemporaneously correlated, as is likely to be the case here, more efficient

estimators than OLS can be employed. When N is relatively small with respect to T , the

10For the sake of brevity the figures are omitted but they are available upon request.
11Similar results have been reported in a purely time series context after small-sample bias correction, by

Murray and Papell (2002) and Lopez et al. (2003, 2004).
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standard approach is to treat the group of equations as a system of seemingly unrelated equations

(SURE) and then estimate the system by GLS, which would be efficient in this case. In addition

to the SURE estimates, IMRR also present figures computed according to a common correlated

effects procedure (CEE, Pesaran, 2006), based on regressions

qict =
K∑

k=1

ρickqict−k +
H∑

h=0

φichq̄t−h + eict,

where q̄ is the cross-sectional average of qic.

Table II presents analogous figures to Table I but, in this case, the SURE and the CCE

estimators have been computed. For the sake of brevity, only small sample bias-corrected figures

are reported since, as illustrated in Table I, this bias is substantial.12

Accounting for contemporaneous correlation in the errors produces a substantial decrease in

persistence estimates but, otherwise, many of the conclusions drawn from Table I are still valid.

The HLIMRR estimates are always smaller than HLm and HLw and the size of the gap changes

considerably with the estimation method. The SURE technique tends to homogenize the model

estimates across sectors and, hence, the gap between the corresponding figures for HLIMRR,

HLm and HLw is smaller. In general, the three measures lie in the 3-5 year interval in this case.

However, unlike the SURE, the CCE estimator reduces persistence in the mean but noticeably

increases the variability across sectors. This brings about an important reduction in HLIMRR

estimates, which are close to those reported in the first column of Table 1, with a panel point

estimate slightly higher than one year and a half and an upper bound of less than two years

and a half. Nevertheless, the existence of a high variability in coefficient estimates across sectors

(more specifically, the fact that a few sectors are very persistent) translates into very large

values for both the HLm and HLw. It follows that the gap between IMRR’s measure and ours

is particularly large in this case: while the HLIMRR panel estimate is around 20 months, the

HLm and HLw panel estimates exceed 180 months. However, notice that according to the CCE

estimates countries are very heterogeneous, so one should interpret panel estimates with caution

since they are obtained under the assumption of country homogeneity.

12When computing panel estimates according to the SURE technique, N is in fact larger than T (N=204,

T=180) and the SURE estimate is not feasible. So, as in IMRR, we use Engel’s truncated version of the Eurostat

dataset, which has fewer observations than theirs. However, in country-by-country calculations the same data as

in Table I has been employed since that problem is not present. The number of lags for computing CCE estimates

was chosen according to the AIC.
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Summarizing, it turns out that when sectoral persistence is correctly measured, HL estimates

are not below the“consensus view” since the standard result of half-lives (HLs) of real exchange

rate adjustment falling into the 3 to 5 year range (or even higher values when small-sample bias

corrections are introduced) is recovered.

(Table II about here)

4. RESULTS FOR AGGREGATE DATA

The aim of this section is to show that the existence of sectoral heterogeneity at the individual

level does not necessarily introduce a bias in measures of persistence computed with aggregate

data and that, in fact, highly compatible results can be obtained across aggregation levels using

standard techniques. We assume that aggregate prices in country c are constructed as the

geometric average of sector-specific prices, that is

Pct = Π
N
i=1p

ωic
ict

where ωci are weights that verify
∑N
i=1 ωci = 1 and are not time-varying and that ωci = ωus,i

for all i, where ωus,i are U.S price weights, the bilateral aggregate real exchange rate Qc,t can

be written as

Qc,t =
N∑

i=1

ωciqict. (14)

that is, it is a weighted sum of sectoral RERs. Since, in order to build a price index, a large num-

ber of individual prices are considered, the results in Section 2 suggest that the IRF associated

with Qc,t can be reasonably approximated by the weighted average of goods-specific responses

(see Mayoral, 2007 and Lewbel, 1994). In reality, however, weights are not equal across countries

and Qc,t is equal to

Qc,t =
N∑

i=1

ωiqict +
N∑

i=1

(ωus,i − ωc,i)qict, (15)

that is, the aggregate RER is the sum of a weighted sum of individual RERs plus an addi-

tional term that captures cross-country differences in price weights. If weights are time-varying,

additional terms should be included in (15).

The “aggregation bias” argument states that, even in the situation described in (14) , i.e., when

the aggregate RER is exactly a weighted sum of sectoral RERs, measures of persistence derived
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from Qc,t would tend to overestimate average sectoral persistence if qict present heterogeneous

dynamics. Hence, in order to isolate this potential source of bias from other sources of divergence

derived from the non-constant and non-homogeneous character of price weights across time and

countries, we have constructed an aggregate variable, computed as the weighted sum of sectoral

prices, so that equation (14) holds exactly. In order to construct the artificial aggregate RERs,

Eurostat harmonized price weights corresponding to 2006 have been employed. Notice that these

are also the weights used in the elaboration of HLw in Tables 1 and 2, so the corresponding figures

are directly comparable.

Table 3 presents the HLs associated with the original aggregate RERs (denoted as Qc,t) as well

as the above-described artificially aggregated data (Q∗c,t). Long autoregressive models have been

fitted to the data and the order of the autoregression has been chosen according to a general-

to-specific criterion.13 The first column of Table 1 reports the HLs computed with the original

data while the second column displays similar values, this time computed with the artificially

generated data.

HL values corresponding to Q∗c,t are very much in line with those obtained with sectoral

data. The correlation coefficient between (non biased-corrected) HLw in Table 1 and the figures

reported in Table II is 0.93 and the mean divergence between the two measures is less than

4 months. These figures illustrate how close the results obtained with sectoral or aggregate

data are. When the original aggregate RERs are analyzed, the problem described above applies

since non-harmonized Eurostat weights are different across countries, are time-varying and, in

addition, are unknown. This implies that the aggregate real exchange rates is a weighted average

of sectoral exchange rates plus additional terms that can introduce a bias between sectoral and

aggregate measures. Nevertheless, the figures reported in Table III, column 1, are still a good

approximation of weighted sectoral HLs. The correlation coefficient is still very high (0.8) and,

although the estimates in Table III are slightly higher than those reported in Table I, the mean

difference is only 8.8 months. Furthermore, the qualitative conclusion does not change: when

aggregate data is employed, HL estimates lie, in general, in the 3 to 5 year interval.

(Table III about here)

13The maximum number of lags was set equal to 30. Very similar results were obtained using the AIC.
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5. CONCLUSIONS

This paper offers bad and good news. The bad news are that we do not yet have a convincing

solution to the long-debated PPP puzzle. In particular, it is argued that aggregation does not

solve the puzzle. We have shown that the divergence between IMRR’s aggregate and sectoral

persistence estimates is due to a downward bias affecting their sectoral estimates, rather than to

an upward bias in aggregate estimates deriving from the existence of individual heterogeneity,

as argued by IMRR. The source of the bias is the definition of “average” response function

employed by these authors. This function is computed as in a model where coefficients are

homogeneous and equal to the mean value of sector-specific coefficients. Clearly, by averaging

the model’s coefficients in the first stage, highly persistent sectors are eliminated so that, not

surprisingly, lower estimates of persistence are obtained in the second stage. Nevertheless, when

IRFs are computed for each sector and then averaged, standard estimates of persistence are

recovered. Finally, it is also shown that very similar persistence values can be obtained when

aggregate data is employed, as implied by the theoretical results in Mayoral (2007).

The good news, however, are that estimates derived from aggregate data are reliable even

when the assumption of individual homogeneity is violated, which is likely to be the case in a

wide variety of contexts. Thus, applied macroeconomists can still rely on aggregate data for their

studies. Notwithstanding, when heterogeneity is suspected, it is important to remember that

the dynamics of the aggregate process can be very complex. Hence, careful model specification

is needed in this case since, otherwise, the aggregation problems highlighted in IMRR would

apply.
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TABLE I

H��� L��	
 ���� 
�
����	���	 
���

Mean Group (MG) MG, Bias corrected

HLIMRR HLm HLw HLIMRR HLm HLw

Panel 26.40
(20.98,31.28)

36.39
(26.85,38.09)

37.42
(26.76,39.90)

43.04
(19.20,68.46)

>180
(51.84,∞)

144.84
(53.60,∞)

BE 27.96
(22.66,33.40)

37.68
(32.57,39.47)

36.81
(31.34,38.77)

59.68
(40.45,75.32)

>180
(78.36,∞)

>180
(53.60,∞)

DE 26.23
(20.56,31.55)

31.42
(20.09,33.76)

39.53
(19.54,52.68)

51.37
(19.15,63.81)

>180
(30.39,∞)

>180
(28,87,∞)

DK 33.10
(25.06,44.14)

45.43
(36.78,49.53)

43.90
(33.41,48.33)

87.65
(27.84,119.68)

>180
(74.72,∞)

>180
(49.70,∞)

ES 37.16
(28.78,45.98)

51.57
(44.41,55.35)

44.31
(35.51,49.21)

100.80
(32.92,138.34)

>180
(155.36,∞)

>180
(88.58,∞)

IT 29.78
(23.02,34.71)

37.36
(31.77,38.64)

35.63
(26.14,37.17)

96.71
(25.62,143.98)

>180
(98.41,∞)

>180
(28.47,∞)

FR 27.32
(22.48,31.46)

36.49
(27.95,39.55)

38.46
(27.88,41.97)

62.92
(24.79,81.89)

>180
(95.62,∞)

>180
(61.93,∞)

GR 26.38
(20.66,31.01)

32.73
(27.07,34.01)

28.01
(22.97,33.91)

47.17
(20.87,60.12)

178.53
(37.62,∞)

99.12
(27.52,∞)

NL 23.05
(18.90,26.94)

26.93
(19.94,27.37)

27.29
(19.79,28.47)

37.54
(20.54,48.04)

104.69
(31.24,∞)

44.55
(26.34,52.57)

PT 32.79
(25.87,42.14)

57.60
(46.07,62.92)

59.07
(44.40,66.30)

110.19
(26.18,152.03)

>180
(120.29,∞)

>180
(1,110.87,∞)

FI 20.55
(17.28,24.23)

20.94
(17.93,21.89)

20.85
(17.80,22.28)

30.92
(19.19,39.32)

31.87
(25.52,54.85)

30.96
(25.11,49.58)

UK 17.74
(14.59,19.95)

21.53
(14.20,21.38)

21.07
(14.82,22.17)

33.12
(16.52,39.81)

42.10
(26.55,∞)

38.03
(21.91,∞)
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TABLE II

H��� L��	
 ���� 
�
����	���	 
���

MG-SURE, Bias corrected MG-CCE, Bias corrected

HLIMRR HLm HLw HLIMRR HLm HLw

Panel 42.87
(17.54,76.83)

45.57
(19.69,62.13)

49.70
(20.25,78.43)

20.09
(10.75,31.40)

>180
(50.93,>180)

>180
(48.53,>180)

BE 34.85
(27.23,42.49)

37.52
(29.75,47.32)

40.07
(29.93,51.76)

21.75
(16.57,26.27)

>180
(62.14,>180)

29.05
(21.38,91.05)

DE 40.76
(31.65,48.31)

47.58
(34.97,60.79)

46.35
(30.45,58.47)

27.83
(15.87,42.08)

81.59
(31.72,>180)

147.79
(25.20,>180)

DK 45.28
(33.14,55.21)

54.29
(39.78,69.16)

60.02
(39.79,79.30)

25.18
(14.76,33.37)

35.78
(15.42,49.98)

39.90
(15.90,71.80)

ES 35.46
(26.08,44.76)

38.61
(30.78,47.53)

40.48
(30.08,52.30)

25.05
(14.81,32.08)

157.02
(26.55,>180)

64.02
(22.59,150.06)

IT 40.32
(31.19,48.81)

43.57
(32.34,52.14)

48.11
(35.32,63.60)

23.75
(15.06,34.89)

44.76
(18.05,69.48)

38.66
(16.31,64.27)

FR 30.76
(24.18,38.27)

32.68
(24.22,39.85)

35.49
(28.47,42.98)

25.31
(14.54,34.50)

177.83
(37.39,>180)

94.72
(26.98,175.40)

GR 27.40
(23.31,32.83)

30.56
(24.28,37.66)

33.54
(25.87,42.58)

32.16
(44.44,60.65)

166.74
(28.22,>180)

179.62
(30.19,>180)

NL 33.48
(26.79,40.97)

35.55
(28.06,44.87)

38.77
(29.56,49.19)

20.89
(10.31,32.25)

32.71
(13.64,56.73)

39.95
(18.47,63.39)

PT 31.17
(24.58,37.60)

38.47
(28.89,49.03)

38.80
(29.75,45.91)

20.84
(14.23,27.30)

>180
(33.83,>180)

>180
(33.84,>180)

FI 30.93
(25.12,36.23)

32.04
(24.50,38.10)

33.38
(24.73,42.28)

13.85
(9.66,20.14)

24.41
(12.74,37.77)

24.05
(12.32,39.52)

UK 36.87
(28.74,46.85)

39.50
(29.35,49.07)

41.49
(30.35,50.07)

19.20
(12.36,25.88)

104.30
(26.59,170.95)

28.08
(14.01,42.48)
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TABLE III

H��� L��	
 ���� ����	���	
 
�����
	

Qc,t Q∗c,t

Panel 43.86
(37.61,47.43)

36.85
(29.72,38.41)

BE 45.20
(33.04,55.90)

40.28
(18.74,50.03

DE 45.97
(16.13,72.42)

40.04
(16.22,87.98)

DK 49.12
(19.64,58.46)

42.20
(17.05,48.82)

ES 50.82
(41.36,56.61)

42.25
(39.22,64.11)

IT 37.44
(29.23,42.03)

38.19
(28.18,40.51)

FR 40.16
(18.26,49.86)

39.86
(17.38,50.60)

GR 57.37
(39.54,67.38)

39.71
(16.49,49.88)

NL 39.50
(16.07,50.76)

29.29
(17.04,37.57)

PT 73.60
(52.82,87.16)

70.54
(42.05,87.51)

FI 23.36
(16.46,24.41)

21.18
(16.00,23.94)

UK 31.58
(8.27,44.44)

17.82
(6.36,34.32)
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