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1. Introduction

A persistent puzzle in the macroeconomics and finance literature has been the failure of the

Consumption Capital Asset Pricing model (C-CAPM), which measures risk by consumption beta,

first to explain empirically the differences in expected stock returns by the variation in the covariance

of consumption and returns, and second to provide plausible levels of risk aversion.1 In this paper

we re-evaluate the validity of the C-CAPM and provide additional insights into the relationship

between returns and long-term consumption dynamics, as well as its implications for risk aversion,

by assessing the explanatory power of consumption risk over the frequency domain. Our findings

indicate that as lower frequencies of consumption risk are taken into account and thus the horizon

of consumption growth increases (eventually reaching infinity), consumption risk explains almost

entirely the cross-sectional variation of expected returns and, moreover, is consistent with reasonable

and statistically significant values of the coefficient of risk aversion.

The idea of measuring the risk of a portfolio by its covariance with consumption over longer

time horizons is not novel. Brainard et al. (1991) have shown that the performance of the C-CAPM

improves as the horizon increases. Breeden et al. (1989) argue that at short horizons consumption

should be replaced with a portfolio that exhibits higher correlations with long-run movements in

consumption. Daniel and Marshall (1997) find that aggregate returns and consumption growth are

more correlated at lower frequencies and that the behavior of the equity premium becomes less

puzzling. More recently, Bansal and Yaron (2004), Bansal et al. (2005), and Hansen et al. (2005)

show that when consumption risk is measured by the covariance between long-run cashflows from

holding a security and long-run consumption growth in the economy, the differences in consumption

risk provide useful information about the expected return differentials across assets.

The papers closest in spirit to ours are Parker (2001, 2003) and, in particular, Parker and Julliard

(2005). These studies focus on the ultimate risk to consumption, which is defined as the covariance

between an asset’s return during a quarter and consumption growth over the quarter of the return

and several following quarters. According to the empirical evidence, ultimate consumption risk

explains the cross-sectional variation in returns surprisingly well, but the equity premium puzzle

1See, among others, Mankiw and Shapiro (1986) and Breeden et al. (1989). Mehra (2003) and Cochrane (2005)
provide extensive surveys of the relevant literature.
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persists and high levels of risk aversion are required to line up the model with the data. While similar

in spirit, our approach allows for long-term consumption dynamics by performing a dynamic analysis

of consumption risk with the C-CAPM at several frequencies rather than over the time domain.

As pointed out by Granger and Hatanaka back in 1964, according to the spectral representation

theorem a time series can be seen as the sum of waves of different periodicity and, hence, there

is no reason to believe that economic variables should present the same lead/lag cross-correlation

at all frequencies. We incorporate this rationale into the context of the single-factor C-CAPM by

using well-developed techniques to estimate the coherency (the analog of the correlation coefficient

in the time domain) and the gain (the analog of the regression coefficient) between returns and

consumption risk over the frequency domain.2

The advantage of measuring the portfolio risk of consumption over the whole frequency domain

is that it enables us to separate different layers of dynamic behavior within the standard C-CAPM

by distinguishing between the short run (fluctuations of 2 to 6 quarters), the medium run or

business cycle (lasting from 8 to 32 quarters), and the long run (oscillations of duration above 32

quarters). If consumption risk is a more persistent process than suggested by the conventional

analysis, identifying the impact of lower frequencies of consumption risk can alter the implied

long-run riskiness in ways that are empirically important and cannot be addressed by standard

time-domain techniques, which aggregate over the entire frequency band and are not robust when

frequency variations are large.3 Moreover, our approach can circumvent several caveats associated

with unmodeled frictions, time aggregation or measurement error in the consumption data, which

are often found to account for the short-run predictability of the pricing errors.4

In this respect, cross-spectral analysis provides a powerful tool for the exploration of unknown

relationships between two series where the correlation structure may vary over the time horizon

considered. To our knowledge, the spectral estimation of the C-CAPM has only been previously

considered by Berkowitz (2001), who provides a framework for estimating parameters of a wide

2See Hamilton (1994) for a general overview of spectral analysis.
3For example, employing a standard VAR model between 2 variables and k lags requires the solution of a 2k

eigenproblem for both eigenvalues and eigenvectors to assess the relative importance of each cyclical component.
More importantly, the limiting covariance structure as the horizon tends to infinity cannot be estimated.

4See Grossman et al. (1987) and Wheatley (1988).
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class of dynamic rational expectations models in the frequency domain. The author applies his

Generalized Spectral estimation technique to the C-CAPM under the assumption of constant rel-

ative risk aversion and finds that when the focus is oriented towards lower frequencies both risk

aversion and the discount factor attain more plausible values. These findings indicate that the

empirical failure of the C-CAPM is due to high-frequency noise that the model is not capable nor

intended to match in the time domain. Going a step further in this direction, the approach adopted

here allows us to examine the (range of) frequencies along which C-CAPM performs poorly or well

rather than simply rejecting or accepting its empirical fit.

We use the 25 Fama-French size and book-to-market portfolios to explore the implications of

spectral analysis for the C-CAPM. We find that at lower frequencies consumption risk explains

up to 98% of the cross-sectional variation of expected returns and the equity premium puzzle is

eliminated. In addition, we show that the value of risk aversion implied by the use of long-run

consumption risk of stockholders becomes as low as 3.3 to 4.3. This range of values stems mainly

from the increased variability of long-run consumption, which is inversely related to risk aversion,

and is far below the level of 10 considered as reasonable by Mehra and Prescott (1985). Our

findings are robust to the definitions of the variables, the sample span and the set of portfolios

utilized. We also relate the use of consumption risk over the frequency domain with the ultimate

consumption risk approach by Parker and Julliard (2005), and we are able to find a significant

reduction for the estimates of risk aversion. Finally, given the importance of long-run consumption

risk for the dynamics of the C-CAPM, we address the impact of long-term risk-free rates within

the spectral approach. We find that the model preserves its significance and continues to yield

plausible values of risk aversion for low frequencies of consumption risk, which lie between 3.5 and

1 for risk-free rates with longer maturity. Thus, we confirm that long-term consumption risk can

provide useful information for the variation of excess returns in the context of the single-factor

C-CAPM by reconciling through our spectral approach the increased importance of consumption

dynamics over the very long run with plausible values of constant relative risk aversion.

The rest of the paper is organized as follows. Section 2 presents long-term consumption risk

within the C-CAPM and its modified version in the context of spectral analysis. Section 3 describes
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the estimation method and the data. Section 4 presents the empirical results for consumption risk

over the frequency domain. Section 5 presents some robustness tests and section 6 provides a

comparison with ultimate consumption risk. Section 7 investigates the impact of long-term risk-

free rates and, finally, section 8 concludes the paper.

2. Expected returns and the risk to consumption over the frequency domain

The standard C-CAPM assumes that the representative household maximizes the expected

present discounted value of utility flows from consumption by allocating wealth to consumption

and different investment opportunities. At the optimal allocation a marginal investment at time

t in any asset should yield the same expected marginal increase in utility at t + 1, which for the

constant relative risk aversion utility function implies that:

Et[C
−γ
t+1Rj,t+1] = Et[C

−γ
t+1]R

f
t,t+1 (1)

where Ct+1 is consumption at t+1, Rj,t+1 is the gross real return on portfolio j of stocks unknown

at t and known at t+1, Rf
t,t+1 is the gross real return on a risk-free asset between t and t+1, and

γ is the representative household’s constant coefficient of relative risk aversion. Equation (1) can

be written as a model of average cross sectional returns by manipulating it to a beta representation

or factor model, in which the expectation of the equity premium, E[Re
j,t+1] = E[Rj,t+1−Rf

t,t+1], is

given in terms of covariances by:

E[Re
j,t+1] = α0 + βj,0λ0 (2)

where α0 = 0, βj,0 =
Cov[∆ lnCt+1,Re

j,t+1]

V ar[∆ lnCt+1]
, λ0 =

γV ar[∆ lnCt+1]
E[1−γ∆ lnCt+1] . Equation (2) provides an exter-

nal test of the structure embodied in the model with consumption growth, ∆ lnCt+1, being the

stochastic discount factor that prices returns. The estimated α0 should be equal to zero and the

expected excess return on a portfolio is equal to the scaled consumption risk of the portfolio, βj,0λ0.

The estimated λ0 and moments of consumption growth imply a level of the risk aversion for the

representative investor according to:

γ =
λ0

E[∆ lnCt+1]λ0 + V ar[∆ lnCt+1]
(3)
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Equations (1) to (2) evaluate the risk of a portfolio based solely on its covariance with contem-

poraneous consumption growth. They maintain the assumption that the intertemporal allocation

of consumption is optimal from the perspective of the textbook model of consumption smoothing,

so that any change in marginal utility is reflected instantly and completely in consumption.

Now, departing from the time domain to the frequency domain, we can rewrite equations (2)

and (3) for each frequency. After dropping the time subscript for notational simplicity, we get that

the beta-form representation is given by the response of excess returns to consumption risk over

the whole band of frequencies, ω, where ω is a real variable in the range 0 ¹ ω ¹ π:5

E[Re
j ] = αω + βj,ωλω (4)

where

αω = 0, βj,ω = GRe
j ,∆ lnC

(ω), λω =
γf∆ lnC,∆ lnC(ω)

E[1− γ∆ lnC,ω]
(5)

The cross-spectrum between any two variables is complex-valued, therefore it can be decomposed

into its real and imaginary components, which are given here by:

fRe
j ,∆ lnC

(ω) = CRe
j ,∆ lnC

(ω)− iQRe
j ,∆ lnC

(ω), (6)

where CRe
j ,∆ lnC

(ω) is the co-spectrum and QRe
j ,∆ lnC

(ω) is the quadrature spectrum. The measure

of comovement between returns and consumption risk over the frequency domain is the well-known

squared coherency, c2Re
j ,∆ lnC

(ω), defined as:

c2Re
j ,∆ lnC

(ω) ≡

¯̄̄
fRe

j ,∆ lnC
(ω)
¯̄̄2

f∆ lnC,∆ lnC(ω)fRe
j ,R

e
j
(ω)

=
C2Re

j ,∆ lnC
+Q2Re

j ,∆ lnC

f∆ lnC,∆ lnC(ω)fRe
j ,R

e
j
(ω)

(7)

5In general, the spectrum of a process, say xt, can be written as fxx(ω) = ρ0 +2
∞

k=1

ρk cos(kω), where ρk is the k-

order autocovariance function of the series. In turn, we can consider the multivariate spectrum, Fyx(ω), for a bivariate
zero mean covariance stationary process Zt = [yt, xt]

> with covariance matrix Γ(·), which is the frequency domain
analog of the autocovariance matrix. The diagonal elements of Fyx(ω) are the spectra of the individual processes,
fyy(ω) and fxx(ω), while the off-diagonal ones refer to the cross-spectrum or cross spectral density matrix of yt and

xt. In detail, Fyx(ω) = 1
2π

∞

k=−∞
Γ(k)e−ikω =

fxx(ω) fyx(ω)
fxy(ω) fyy(ω)

, where Fyx(ω) is an Hermitian, non-negative definite

matrix, i.e. Fyx(ω) = F ∗yx(ω), with * denoting the complex conjugate transpose since fyx(ω) = fxy(ω).
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where 0 ≤ cRe
j ,∆ lnC

(ω) ≤ 1. Intuitively, coherency provides a measure of the correlation between
the two series at each frequency and can be interpreted as the frequency domain analog of the

correlation coefficient. We can then define the gain as:

GRe
j ,∆ lnC

(ω) ≡

¯̄̄
fRe

j ,∆ lnC
(ω)
¯̄̄

f∆ lnC,∆ lnC(ω)
(8)

which provides a scalar measure of the amplitude of the relationship between the components at

hand at each frequency. The gain can be interpreted here as the beta coefficient of the ω−frequency
component of Re

j on the corresponding component of ∆ lnC.

Once the price of risk, λω, is estimated from a cross-section regression, the implied relative risk

aversion of the representative agent at each frequency can be retrieved by:

γω =
λω

E[∆ lnC,ω]λω + f∆ lnC,∆ lnC(ω)]
(9)

which is the analog of (3) in the frequency domain.

3. Estimation methodology and data

In this section we first outline the estimation methodology of the C-CAPM in the context of the

spectral analysis developed above and then we present the dataset and briefly discuss the spectral

properties of the data.

3.1. Estimation methodology

Estimation of (2) is typically performed in the literature within a two-step approach. The

first step involves a time series regression of the return of the j portfolio onto a constant and

consumption growth, ∆ lnCt+1, in order to obtain an estimate of the slope coefficient βj,0. As a

second step, the estimated coefficients are employed in the cross-section regression (2) in order to

get the estimate of the price of risk, λ0.6 By employing excess returns, we can test whether our

model contains an equity premium by simply testing the significance of the constant. The adjusted

R2 of this equation measures the fraction of the cross-sectional variation explained by the data.

6See Fama and French (1992). Alternatively, the Fama and MacBeth (1973) methodology can be employed.
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Furthermore, inference regarding the risk aversion of the representative investor can be conducted

taking as given the mean and variance of consumption growth by employing (3) with the standard

errors of γ calculated by the delta method.

Our methodology differs in the way betas are obtained by calculating from (8) the gain between

each portfolio excess return and consumption growth for every frequency. Specifically, the spectra

and co-spectra of a vector of time-series for a sample of T observations can be estimated for a

set of frequencies ωn = 2πn/T , n = 1, 2, ..., T/2. The relevant quantities are estimated through

the periodogram, which is based on a representation of the observed time-series as a superposition

of sinusoidal waves of various frequencies; a frequency of π corresponds to a time period of two

quarters, while a zero frequency corresponds to infinity. However, the estimated periodogram is an

unbiased but inconsistent estimator of the spectrum because the number of parameters estimated

increases at the same rate as the sample size. Consistent estimates of the spectral matrix can

be obtained by either smoothing the periodogram, or by employing a lag window approach that

both weighs and limits the autocovariances and cross-covariances used.7 We use here the Bartlett

window that assigns linearly decreasing weights to the autocovariances and cross-covariances in the

neighborhood of the frequencies considered and zero weight thereafter.8

3.2. Data

For our portfolios and returns series we use quarterly returns on the 25 Fama and French

portfolios, which are the intersections of 5 portfolios formed on size (market equity, ME) and 5

portfolios formed on the ratio of book equity to market equity (B/M). B/M used during a fiscal

year is based on the book equity for the previous fiscal year divided by ME for December of the

previous year. The B/M breakpoints are the NYSE quintiles. The portfolios include all NYSE,

AMEX, and NASDAQ stocks for which there is market equity data for December and June of the

previous fiscal year, and (positive) book equity data for the previous fiscal year. The series are

available on a monthly basis and excess returns are constructed by subtracting the three-month

7For example, the spectrum of xt is estimated by fxx(ω) = 1
2π

T−1

k=−(T−1)
w(k)ρke

−ikω, where the kernel, w(k), is a

series of lag windows.
8The lag, k, is set using the rule k = 2

√
T , as suggested by Chatfield (1989).
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Treasury Bill rate, which proxies the risk-free rate. To match consumption data we use a quarterly

frequency and set our timing convention so that Rj,t+1 represents the return on portfolio j during

the quarter t+ 1. We measure consumption as personal consumption expenditures on nondurable

goods from the National Income and Product Accounts. We make the ‘end-of-period’ timing

assumption that consumption during quarter t takes place at the end of the quarter. The data are

made real using a chain weighted price deflator, spliced across periods, produced by the Bureau of

Economic Analysis. These series determine the sample, which covers the second quarter of 1947 to

the last quarter of 2001, and the frequency (quarterly) utilized.9

3.3. Spectral properties of the data

Before moving on with the estimation results, we report some evidence on the comovement

between returns and consumption growth in the frequency domain. Figures 1A and 1B depict the

spectra of the series under scrutiny (along with 95% confidence intervals) and can be interpreted as

the variance decompositions over various frequency bands (stated as a fraction of π).10 As can be

readily observed, the variability of returns does not exhibit substantial changes over the frequency

domain. On the other hand, the variability of non-durables consumption is muted for 2 to 32

quarters; however, for horizons exceeding 32 quarters a steep increase is prevalent. As t approaches

infinity, the variance of consumption is seven times greater than its 32-quarter value and 52 times

greater than its short-run value. The concentration of variance in low frequencies is an indication

of short-term correlation in consumption growth, such as an AR(1) with a positive coefficient,

rather than an indication of non-stationarity of the process, which can be ruled out for the series

at hand.11 This finding has direct implications for the subsequent analysis, especially when the

coefficient of risk aversion is calculated from the estimates of our model. Since the variance of

consumption growth is inversely related to the coefficient of risk aversion by (3), we expect that as

9We obtained the Fama and French portfolio data from Kenneth French’s web page
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). The rest of the data were ob-
tained from Jonathan Parker’s web page (http://www.princeton.edu/~jparker/research/crisk.html); see Parker and
Julliard (2005) for a more detailed description of the dataset.
10Confidence intervals were derived based on a normal approximation of the spectra of the series; see Priestley

(1981) for a detailed description.
11See Campbell (2003, section 3.2) and the references cited therein for some evidence the properties of US con-

sumption growth.
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the lower frequencies are taken into account, risk aversion will decrease.

Figure 1C presents the coherency (along with 95% confidence intervals) between the market

excess return and non-durables consumption growth for all frequencies. This analysis has been

undertaken for every portfolio but to save space we report only the results for the aggregate market

return. Overall our estimates suggest that the correlation (measured by coherency) between re-

turns and consumption growth exhibits an upward trend as we move from high to low frequencies.

Specifically, as regards the short-run correlation for frequencies between π and 7π/8 corresponding

to around 2 quarters, coherency fluctuates around 20%. Then it plunges to around 5% and steadily

increases to reach a local peak of 60% at frequencies corresponding to 3-4 quarters. Two more

cycles are observable with peaks at 6 and 16 quarters. The maximum is reached at zero frequency,

i.e. for an infinite horizon. In this case, the coherency between the series at hand is estimated

at 79%. On the whole, the short-run correlation between returns and consumption growth is low,

the business-cycle correlation amounts on average to roughly 50%, while the long-run correlation

exceeds 70%.

4. Empirical findings

This section asks whether consumption risk explains the cross-sectional variation in expected

returns for various frequencies. In particular, the questions we seek to answer are the following.

First, does consumption risk at various frequencies explain a large share of variation of average

returns? Second, is the price of risk, λω, statistically significant? Third, does the estimate of αω

corroborate the existence of an equity premium? Last, what is the estimate of the risk aversion

coefficient, γω?

To allow for comparisons with the rest of the literature, in this section we take the standard route

and we estimate the model by employing non-durables consumption and gross excess returns from

the Fama-French 25 portfolios. As a first step, we estimate model (4) by imposing the coefficient

restriction αω = 0. Table 1 (Panel A) reports the estimation results for a range of frequencies

corresponding from 2 quarters to infinity. The first row reports the results for the highest frequency

considered (which corresponds to two quarters in the time domain). Our results suggest that at this

frequency consumption risk does not explain variation in returns and is associated with a significant
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and positive price of risk (given by the estimate of λω). Moreover, the coefficient of risk aversion

is estimated at 71 and is found to be significant. These findings are in line with those typically

reported in the literature on the C-CAPM. As we move to lower frequencies (and consequently

increase the time horizon) consumption risk still fails to explain a larger share of the cross-sectional

variation; however, the implied risk aversion declines almost monotonically and reaches 8.8 for

the 16-quarter horizon. When even lower frequencies are taken into account the performance of

the model improves substantially. For the 32-quarter horizon, consumption risk is positive and

significant and explains 66% of the cross-sectional variation of the returns. More importantly, the

coefficient of risk aversion is significant and reduced to 4.6. The performance of the C-CAPM is

further improved at zero frequency (infinite horizon). The model succeeds in explaining 98.1% of

the cross-sectional variation of returns. The associated price of risk is significant and estimated at

0.007, almost three times greater than, for example the one at 2-quarters. More importantly, risk

aversion is estimated at just 4.3 and remains significant.

Next, we assess model (4) by estimating αω rather than imposing αω = 0. In this respect, we

separately evaluate the ability of the model to explain the equity premium and the cross section of

expected stock returns, and we are able to measure the extent to which the model addresses the

equity premium puzzle. Panel B of Table 1 reports the estimation results. The evidence suggests

that at a high frequency consumption risk does not explain variation in returns and is associated

with a significant equity premium of the magnitude of 2.3% per quarter. Moreover, the coefficient

of risk aversion is estimated at 42.5 and found to be insignificant. This poor performance of con-

temporaneous consumption risk is also depicted in the left upper panel of Figure 2, which plots the

consumption betas (gains) and the average realized returns along with the second-stage regression

line associated with this frequency. The overall picture indicates an almost flat relationship between

consumption risk and returns at this frequency. Figure 3 plots in turn the predicted and average

returns of the portfolios. The horizontal distance between a portfolio and the 45-degree line is the

extent to which the expected return based on fitted consumption risk (on the vertical axis) differs

from the observed average return (on the horizontal axis). As expected, at the 2-quarter horizon

there is almost no relation between predicted and realized returns.
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When we move to lower frequencies consumption risk explains a larger share of the cross-

sectional variation, reaching 12% for the 8-quarter horizon. However, the implied premium remains

large and significant, whereas the price of risk turns out insignificant and negative. This general

picture is also depicted in the regression line in the upper right part of Figure 3. Furthermore,

a significant and high risk aversion is estimated at this frequency reaching 20.9. Similar findings

pertain with respect to the 16-quarter frequency with risk aversion now declining and reaching 6.8,

but with a large standard error.

As lower frequencies are further considered the performance of the model improves substantially.

For the 32-quarter horizon, consumption risk is positive and significant, and explains 66% of the

cross-sectional variation of the returns. These findings are depicted in left lower panel of Figures

2 and 3. The regression line is positive, quite steep and suggests a strong relationship between

betas and returns. As expected, the deviation between fitted and realized returns is sufficiently

reduced. More importantly, the coefficient of risk aversion becomes significant and is now reduced

to 4.6. Associated with this horizon is a negligible and insignificant equity premium of -0.3%. The

performance of the C-CAPM is further improved at zero frequency (infinite horizon). The model

succeeds in explaining 98.6% of the cross-sectional variation of returns coupled with an insignificant

pricing error. The associated price of risk is significant and estimated at 0.007; however, at this

frequency our model overpredicts average returns by just 0.2%, which is marginally significant.

More importantly, risk aversion is estimated at 4.3 and is significant. These features are also

illustrated in the lower right part of Figures 2 and 3, in which the average realized and fitted

returns are almost perfectly aligned on the regression line and the 45-degree line, respectively.

To sum up, we find that when higher frequencies of consumption risk are considered the results

replicate the typical findings of the literature, i.e. the C-CAPM fails to explain the differences in

expected stock returns by the variation in the covariance of consumption and returns, and to provide

plausible levels of risk aversion. In contrast, as lower frequencies of consumption risk are taken into

account, consumption risk explains almost entirely the cross-sectional variation of expected returns

and the equity premium puzzle is eliminated. Moreover, the coefficient of risk aversion implied by

the cross-sectional reward for long-run consumption risk is found to be approximately 4.3 and is
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statistically significant.

5. Robustness tests

In this section we present some sensitivity tests on the relationship between consumption risk

and the expected returns over the frequency domain. We first consider the impact of alterna-

tive specifications by using a smaller sample size as well as alternative definitions of returns and

consumption, and subsequently we examine the impact of alternative portfolios on our results.

5.1. Alternative specifications

Some studies (including, among others, Fama and French, 1992, 1993, and Lettau and Lud-

vigson, 2001) have used a shorter time period than the one analyzed in our baseline results. To

allow for comparisons, Panel A of Table 2 shows the results of estimating our model on a sample

of returns that starts in the third quarter of 1963. In this sub-period, the pattern of coefficients

and the fit tell a similar story, except that low-frequency consumption risk does even better at

explaining expected returns. Around 67% and almost 100% of the variation in expected returns

is explained by consumption risk over the 32-quarter and infinite horizons with the level of risk

aversion again found to be slightly larger than 4 (reaching 4.6 and 4.3, respectively). Similar to

the baseline specification, the fitted model understates the average return on all portfolios by 0.5%

and 0.2%. The fit of the model for the infinite horizon is depicted on the upper part of Figure 4.

Second, we measure consumption risk using total consumption instead of non-durables con-

sumption. Ait-Sahalia et al. (2004) argue that the consumption risk of equity is understated by

NIPA nondurable goods because it contains many necessities and few luxury goods. As pointed out

by the authors, consumers have more discretion over their consumption of luxury goods than essen-

tial goods, and consumption of the former is found to covary more strongly with stock returns.12

Panel B of Table 2 shows that using total consumption risk in place of nondurable consumption

risk leads to a slightly different picture. Long-run total consumption risk fits the cross-section of

expected returns somewhat better than non-durables consumption and, interestingly, lowers the

12See also Parker (2001). The usual concern when total consumption is used is that it contains the flow of
expenditures on durable goods instead of the -theoretically desired- stock of durable goods. However, expenditures
and stocks are cointegrated and, hence, the long-term movement in expenditures following an innovation to equity
returns also measures the long-term movement in consumption flows.
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level of risk aversion relative to the previous specifications at 3.3. This finding accords well with

nonseparability over time (or habits) in the utility function, which is expected to be stronger for

durable consumption goods, which are now included in consumption. Past consumption levels are

expected to affect more negatively the marginal utility of consumption for durable goods when

longer horizons are considered, which drives down the estimates of risk aversion. The bottom part

of Figure 4 plots the performance of the specification with total consumption.

Finally, we use consumption risk over the frequency domain to price long-horizon returns.

Long-horizon returns are calculated as cumulative returns over the next 11 quarters.13 Panel C

of Table 2 shows some improvements of our model for shorter horizons compared to the baseline

specification. Specifically, for an horizon of 8 quarters, the model succeeds in explaining almost

half the cross-sectional variation of returns; however, the price of risk is negative and the associated

risk aversion is found to be quite high, estimated at 18.8. As we move to lower frequencies, and

specifically to the 32-quarter horizon the explanatory power of the model is lower than the baseline

specification (42.2% as opposed to 65.5%), but the remaining attributes of the model are in line with

the theoretical one. The price of risk is positive and significant, the equity premium is insignificant

and the estimated risk aversion decreases to 4.7. This specification yields similar findings to the

baseline specification for the infinite horizon and its performance is depicted at the bottom part of

Figure 4.

5.2. Other portfolios

The C-CAPM as any asset pricing model should be able to explain expected returns on any

set of portfolios. So far, the portfolios considered are the double-sorted 25 Fama-French B/M and

ME value-weighted portfolios, which basically aim at capturing the value and size premia. We

consider here alternative portfolios sorted on both firm characteristics and overall economic factors

or systematic risk factors in order to check whether consumption risk over the frequency domain

succeeds in explaining risk premia generated by these portfolios.

As a first step, we consider a slightly different set of returns, namely the equal-weighted Fama

13For comparison purposes, the choice of the horizon is the one that corresponds to the selected model of Parker
and Juliard (2005).
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and French 25 portfolios that is also examined by Parker and Julliard (2005). In line with these

authors, low-frequency consumption risk does an even better job of explaining the cross-sectional

pattern of expected returns for these portfolios (see Panel A of Table 3). A slightly increased

proportion of the variation in expected returns is explained along with low coefficients of risk

aversion (reaching 4.3), whereas the equity risk premium is found to be insignificant. The fit of the

model for the infinite horizon is depicted on the upper right part of Figure 5.

Second, we consider a set of single sorted portfolios, namely the 10 size (ME), 10 book to

market (B/M) and 10 dividend yield (D/P) portfolios of Fama and French. These portfolios sort

firms on the basis of their characteristics that lead to cross-sectional dispersion in measured risk

premia and are behind the factor models of Fama and French (1993).14 This set of portfolios aims

at disentangling the value and size premia. To the extent that the C-CAPM holds, we expect to

find growth firms to have less exposure to consumption risk than value firms and smaller firms to

be exposed to higher consumption risk when compared to larger firms.15 Our results (reported

in Panel B of Table 3) are in line with those of our baseline specification. At a high frequency,

the C-CAPM explains 13% of the cross-sectional variation in expected returns associated with a

significant risk premium and a high coefficient of risk aversion estimated at 57.7. The estimate of

risk aversion decreases with the frequency decline, whereas the fit of the model improves. At the

32-quarter horizon, half of the variation is explained and risk aversion declines to 4.6, while at an

infinite horizon, the respective figures are 93.9% and 4.3. The upper part of Figure 5 plots the

actual and the predicted returns for this set of portfolios.

Third, we use the 20 risk-sorted portfolios employed by Campbell and Vuolteenaho (2004).16

The authors follow Daniel and Titman’s (1997) point that sorting only on firm characteristics

14The 10 size value-weighted portfolios are formed on the basis of market capitalization and include all NYSE,
AMEX, and NASDAQ stocks in the CRSP database which are ranked at the end of June of each year using NYSE
capitalization breakpoints. The 10 B/M portfolios are formed at the end of each June using NYSE breakpoints.
The BE used in June of year t is the book equity for the last fiscal year ending in t-1 and ME is price times shares
outstanding at the end of December of t-1. The 10 D/P portfolios include all NYSE, AMEX, and NASDAQ stocks
for which ME for June of year t, and at least 7 monthly returns (to compute the dividend yield) from July of t-1 to
June of t are available. Portfolios are formed on D/P at the end of each June using NYSE breakpoints. The dividend
yield used to form portfolios in June of year t is the total dividends paid from July of t-1 to June of t per dollar of
equity in June of t. The returns on these portfolios are taken from Kenneth French’s web site, where more details on
their construction can be found.
15See also Jagganathan and Wang (2005), and Cochrane (2005).
16These portfolios are available at http://post.economics.harvard.edu/faculty/vuolteenaho/papers.html.
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could generate a spurious link between premia and risk measures, and sort common stocks into

20 portfolios according to their past loadings with state variables that are useful in predicting the

aggregate market return.17 The purpose of their strategy is to generate portfolios with a large

spread in these loadings and thus overcome Daniel and Titman’s (1997) problem. Panel C of Table

3 reports our results for this set of portfolios. Interestingly, the C-CAPM fails in at least one of

its aspects for all the frequencies under consideration with the exception of the infinite horizon.

For this horizon, 82% of the cross-sectional variation of the returns is explained and risk aversion

is estimated at 4.3. Figure 5 (bottom part), which plots realized returns versus predicted returns,

shows that the spread in returns across portfolios is lower than the one generated by the portfolios

considered so far explaining the somewhat worse performance of this model.

Fourth, we consider 34 industry-sorted portfolios, which have posed a particularly challenging

feature from the perspective of systematic risk measurement (see Fama and French, 1997). Value-

weighted industry portfolios are formed by sorting all NYSE, AMEX, and NASDAQ stocks by

their CRSP four-digit SIC Code at the end of June of each year.18 Similar to the previous set of

portfolios, our findings suggest that systematic industry-specific risk is priced only for the infinite

horizon (see Panel D of Table 3). The risk aversion for the 32-quarter and the infinite horizon is

estimated at 4.2, a value that is very close to the one attained by every specification and portfolio

considered when non-durables consumption is employed.

6. A connection with ultimate consumption risk

As discussed earlier on, in a series of papers Parker (2001, 2003) and Parker and Julliard

(2005) have allowed for the slow response of consumption to market returns and have evaluated

the risk/return trade-off among portfolios of stocks by focusing on the ultimate consumption risk

measured by the covariance of the return at t+1 and the change in consumption from t to t+1+s,

17These state variables include the excess log return on the market, the term yield spread (computed
as the difference between ten-year and short-term bonds) and the small stock-value spread (computed as
the difference between the log(B/M) of the small high B/M portfolio and the small low B/M portfolio).
More details can be found at the Appendix of Campbell and Vuolteenaho (2004), which is available at
http://kuznets.fas.harvard.edu/~campbell/papers.html.
18The industry definitions are available at Kenneth French’s web site. We include in our analysis the portfolios for

which we have returns for the whole sample period.
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where s is the horizon over which the consumption response is studied:

Cov[ln

µ
Ct+1+s

Ct

¶
, Re

j,t+1] (10)

In beta representation we have:

E[Re
j,t+1] = αs + βj,sλs (11)

where αs = 0, βj,s =
Cov[ln
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Ct

,Re
j,t+1]

V ar[ln
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E[1−γs ln
Ct+1+s

Ct
]
. When S = 0, equation (11)

yields the standard beta representation (2). For S > 0, the stochastic discount factor considered

is one minus the long-horizon consumption growth times the risk aversion of the representative

agent, γs. The estimated λs and moments of consumption growth imply then a level of relative

risk aversion given by:

γs =
λs

E[ln
³
Ct+1+s
Ct

´
]λs + V ar[ln

³
Ct+1+s
Ct

´
]

(12)

Equations (11) and (12) show a modification of the standard C-CAPM developed in section

2 over the time domain. Clearly by varying the horizon, S, consumption risks take a range of

values from the short-run to the long-run along with the corresponding asset pricing implications

of these risks. In their empirical results, Parker and Julliard (2005) find a model improvement as

the horizon increases accompanied by lower estimates of the risk-free rate and the coefficient of risk

aversion. However, the authors do not report results beyond 15 quarters, as the trade-off between a

larger horizon and optimal inference leads to a choice of 11 quarters as the preferred specification.

We relate the methodology of Parker and Julliard (2005), which is based on the employment

of ultimate consumption risk in the time domain, to the current one conducted in the frequency

domain. To study the implications of ultimate consumption risk for our methodology, we utilize the

11-quarter consumption growth rate that coincides with the preferred specification of Parker and

Julliard (2005), and contrast it with our specification.19 To gain some insight on the effects that

this transformation of consumption growth has on the spectral estimates, Figure 6A depicts the log-

spectrum of 1-quarter consumption growth rate versus the 11-quarter one.20 Significant differences

19To save space the results reported here refer to the total market return. The results for the individual portfolios
are qualitatively similar.
20We plot the spectral densities in a log scale to accentuate the cyclical properties of the data.
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between the spectral densities of the two series are detected for frequencies lower than 5π/16 (beyond

5.3 quarters). At zero frequency the 11-quarter consumption growth variance is 125 times greater

than the 1-quarter ahead. This is expected since the transformation employed strengthens lower

frequencies and attenuates the impacts of the higher ones. Defining ln (Ct+1+s/Ct) ≡ ∆s lnCt, we

can show that we can obtain ∆s lnCt from ∆ lnCt through the transformation H(L) = (1 + L +

L2 + ...+ Ls), where L is the usual lag operator. The spectrum of ∆s lnCt is then linked with the

one of ∆ lnCt by f∆s lnCt = H(e−iω)H(eiω)f∆ lnCt .21 For ω = 0, the variance of ∆2 lnCt is 4 times

the variance of ∆ lnCt, while the respective variance for ω = π is eliminated.

Turning to Figure 6B that plots the estimated coherencies between the two measures of con-

sumption growth and returns, we observe that the transformation over the following 11 quarters

has increased the short-run comovement of consumption with returns, which is estimated at around

50% as opposed to around 20% for the 1-quarter ahead consumption growth. Given that our cross-

section analysis is based on the estimated gains, the most important finding is the change imposed

on the gain through this transformation of the data. Figure 6C plots the respective estimated gains

over the frequency domain. The results suggest that the aggregation of consumption growth now

leads to an escalation of the short-term gain combined with an attenuation of the long-run one. On

the other hand, the gain corresponding to the 1-quarter consumption growth remains fairly stable

over the whole frequency domain.

The preceding analysis on the spectral properties of ultimate consumption growth compared to

the ones of typical consumption growth seems to stress the high frequency gains. If this result is

combined with a similar responsiveness for the portfolios at hand, we expect to find increased em-

pirical validity over the short-term as well. Our results (see Table 4) of the cross-section estimation

corroborate to some extent such a conjecture. Specifically, for a short-run horizon (ranging from 2-3

quarters) our model explains half of the cross-sectional variation of expected returns, as opposed

to 25% based on the 1-quarter consumption growth (see Table 1). However, the other features of

the model, like the negative prices of risk, the significant pricing errors and the high values of risk

aversion, point to the empirical failure of the C-CAPM; this is expected since the risk aversion

21For example, for s = 2, f∆s lnCt = (2 + 2 cosω)f∆ lnCt .
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is calculated on the basis of the relative contribution of the variance over the specific wavelength

and not over the whole domain. As the frequency approaches zero, the empirical validity of the C-

CAPM is restored and the model explains 64% and 98% of the cross-sectional variation of expected

returns. Moreover, in accordance with our general findings, lower frequencies are associated with

significant decreases of the equity premium, leading to an even lower risk aversion estimated at 2.3

generated by the increased low-frequency variance.

7. Long-run risk-free rates and consumption risk over the frequency domain

The previous sections have established that the low frequencies of consumption risk, which are

associated with the long-run pattern of C-CAPM, improve the empirical fit of the model and provide

plausible values of risk aversion. An extension of this approach envisages the impact of risk-free rates

of longer maturity, which are likely to embed useful information when the horizon of consumption

risk widens. Intuitively, if long-term interest rates are negatively related to consumption growth,

then they provide a hedge against bad states and individuals will sell short-term bonds and buy

long-term bonds to receive payoffs when their consumption level is expected to be lower, thus

resulting in a falling or negative term structure. On the flip side, if long-run rates earn a low

return when consumption growth is negative, holding long-term bonds exacerbates consumption

risk resulting in a rising term premium.22

To assess the impact of long-run risk-free rates and consumption risk over the frequency domain,

we develop in the next section a variant of the model presented in section 2 that incorporates risk-

free rates of longer maturity in the C-CAPM and then we present some empirical results.

7.1. A beta representation of long-run risk-free rates and consumption risk

The solution of the investor optimization problem implies that:

Et[
1

1 + ρ
(1 +Rf

t+1,t+1+s)
u0(Ct+1+s)

u0(Ct)
] = 1 (13)

22Estrella and Mishkin (1996) have found that inverted yield curves can be leading indicators of recessions and
hence of reduced consumption growth rates. The empirical implications of long-run risk-free rates (and the associated
term structure) for the C-CAPM have been investigated by several studies including, among others, Harvey (1988,
1989, 1991 and 1993), Estrella and Hardouvelis (1991), Plosser and Rouwenhorst (1994), Kamara (1997), Roma and
Torous (1997), and Hamilton and Kim (2002). The general empirical contention from these studies is that the slope
of the term spread is positively associated with future economic activity.
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where ρ is the rate of time preference and Rf
t+1,t+1+s is the risk-free rate with s-periods ahead

maturity. In turn, we can re-write the Euler equation (1) as:

Et[R
f
t+1,t+1+s

u0(Ct+1+s)

u0(Ct)
Rj,t+1] = Et[R

f
t+1,t+1+s

u0(Ct+1+s)

u0(Ct)
]Rf

t,t+1 (14)

Assuming that Rf
t+1,t+1+s is orthogonal to R

f
t,t+1, we can get the following beta representation

for the excess return of portfolio j:

E[Re
j,t+1] = αs + βsjλ

s (15)

where
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Cov[Rf
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,
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γsV ar[Rf
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u0(Ct) ]

E[Rf
t,t+1+s

u0(Ct+n)
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Equation (15) renders an alternative specification to (2) and shows how risk-free rates of longer

maturity affect the single factor C-CAPM with the interaction of the long-term risk-free rate scaling

consumption growth over the corresponding period and affecting risk aversion. In turn, defining

Rf
t+1,t+1+s ≡ Rf

s,t for notational simplicity and adopting the standard constant relative risk aversion

parametrization, which implies that u0(Ct+1+s)
u0(Ct) ' 1− γ∆s lnCt, we get that:

αs =
Cov[Rf

s,t(1− γ∆s lnCt), R
f
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The implied risk aversion can be given in terms of the long-term price of risk, λs, and equals:

γs =
λsRf
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s lnCt]λ
s + V ar[Rf
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(16)
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which can be larger or smaller than the one implied by (3) depending upon the magnitude of the

long-run risk-free rate and the expected value and variance of scaled consumption growth.

Following the spectral approach adopted in section 2, equation (15) can be estimated over the

frequency domain as:

E[Re
j,t+1] = αsω + βsj,ωλ

s
ω (17)

where the components, after dropping the time subscript, are given by:

αsω =
G
Rf
s (1−γ∆s lnC),Rf (ω)

E[Rf
s (1− γ∆s lnC)]

, βsj,ω = G
Re
j ,R

f
s∆s lnC

(ω), λsω =
γsωfRf

s∆s lnC,Rf
s∆s lnC

(ω)

E[Rf
s (1− γsω∆

s lnC), ω]
(18)

and the coefficient of risk aversion is given by:

γsω =
λsωE[R

f
s , ω]

E[∆s lnC,ω]λsω + f
Rf
s∆s lnC,Rf

s∆s lnC
(ω)]

(19)

which is the analog of (9) when long-term risk-free rates are taken into account.

7.2. Empirical results with long-term risk-free rates

To estimate equation (17) we use data on long-term risk-free interest rates. Since data for each

maturity, s, are not readily available to match our consumption and return series, we employ risk-

free interest rates with maturities of 1, 3, 5 and 10 years starting in 1953:Q2.23 Risk-free interest

rates are made real by employing as a measure of inflation the q-o-q change in the chain weighted

price deflator, spliced across periods, produced by the Bureau of Economic Analysis. In this respect,

we proxy expected interest rates and expected inflation with their realized counterparts over the

holding period of the corresponding risk-free asset.

First, we briefly discuss the spectral properties of the data. The first row of Figure 7 presents

the log-spectra of 1, 3, 5, and 10-year consumption growth for all frequencies (stated as a fraction

of π).24 As expected, the volatility of consumption growth at any horizon increases sharply for

lower frequencies and, given the propeties of consumption growth over the time domain, the low-

23The series codes are GS1, GS3,GS5 and GS10 and are available from the Board of Governors of the Federal
Reserve System (http://www.research.stlouisfred.org/fred2/).
24Notice that the consumption data for the 3-year horizon are close to the 11-quarter horizon framework advocated

by Parker and Julliard (2005) and examined in section 6.
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frequency variability of consumption growth is amplified when the time horizon increases (see also

Figure 6A). Again, the relative concentration of fluctuations in low frequencies is an indication of

short-term correlation in consumption growth, which drives the estimates for the coefficients of

risk aversion. The second row of Figure 7 plots the estimated coherencies between the long-term

returns and the corresponding measures of consumption growth and shows that the relationship

remains fairly stable over the whole frequency domain for all four horizons considered. The third

row of Figure 7 plots the respective estimated gains over the frequency domain and, as can be

readily seen, as the horizon of returns and the corresponding consumption growth rates increases

the gains for higher frequencies are substantially lower.

Moving on to the main empirical results, Table 5 presents the estimates for the four maturities

considered. The evidence from the 1-year interest rates (Panel A) replicates the usual failure of the

C-CAPM; at a high frequency consumption risk explains only a small fraction of the variation in

returns and is associated with a significant equity premium of the magnitude of 3.4% per quarter,

whereas the coefficient of risk aversion is found to be 79.7 and is significant. For the 16-quarter

horizon the coefficient of risk equity premium falls to 2%, but the model is overall unable to explain

the cross-section of returns and the coefficient of risk aversion is statistically equal to zero. As we

move to lower frequencies, the picture changes starkly. For the 32-quarter horizon, the performance

of the model improves dramatically, the equity premium is negligible, and moreover the coefficient

of risk aversion is estimated at 4.5 with a small standard error. The picture is further improved at

the zero frequency, where the model explains 96.4% of the variability in returns with a zero equity

premium and a significant coefficient of risk aversion found to be as low as 3.4.

A similar picture emerges from other risk-free rates of long-term maturities (Panels B to D of

Table 5). In all cases, the model fails at high frequencies, but its performance is consistent with the

C-CAPM at lower frequencies. The coefficient of risk aversion attains plausible values for horizons

above 16-quarters for the 3 and 5-year interest rates, whereas the specification with the 10-year risk

free rate produces plausible results with the 16-quarter horizon as well. Notably, when the 10-year

rate is used the model yields a coefficient of risk aversion for the zero frequency (infinite horizon)

that is in the vicinity of unity, thus providing evidence in favor of a log-utility specification for the
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long-run investment problem. These patterns are corroborated by Figure 8, in which the average

realized and fitted returns from the various risk-free rates are found to be closely aligned.

8. Conclusions

In this paper we re-evaluated the C-CAPM by adopting a spectral approach to measure the

covariance of an asset’s return with consumption growth and its impact on expected stock returns

over the frequency domain. We established that when lower frequencies of consumption risk are

considered the validity of the C-CAPM is restored. For low frequencies the C-CAPM can explain

almost entirely the cross-sectional variation of expected returns accompanied by a decrease in the

equity premium, whereas the implied coefficient of risk aversion is found to lie between 1 to 4 and

is statistically significant.

The paper is part of the upcoming literature that aims at capturing the behavior of aggre-

gate and cross-sectional stock returns via the long-term dynamics of consumption. The approach

adopted here remains, however, agnostic about the driving force of these dynamics. For instance,

our findings are consistent with the general class of models that relax the assumption of costless

adjustment in consumption plans by including the time spent to calculate and implement a new

consumption-savings decision, or constraints in information and search costs that lead investors in

making infrequent consumption and portfolio allocation decisions at discrete points in time. The

impact of consumption risk measured over the frequency domain can also be consistent with mod-

els that entail monitoring costs and heterogeneous agents, in which only a fraction of households

adjusts its consumption over discrete intervals.25

Recently, there have been some attempts to bring together longer-term consumption dynamics

with theoretical explanations. Panageas and Yu (2005) claim that over the short run, consumption

growth is dominated by small frequent shocks, while unpredicted and large technological innova-

tions, which are embodied in the capital stock, prevail in the long run. The authors then show that

this framework implies that consumption growth over the long run can reveal information about the

degree to which the economy has absorbed a major technological shock. Malloy et al. (2005) show

25See, for instance, Grossman and Laroque (1990), Lynch (1996), Marshall and Parekh (1999), Gabaix and Laibson
(2001) and Jagganathan and Wang (2005).
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that in a model with recursive preferences the covariance of returns with long-run consumption

growth of households who bear stock market risk captures the cross-sectional variation of average

stock returns better than the covariance of returns with long-run aggregate or non-stockholder

consumption growth. Thus, the question on why consumption takes so long to adjust to news in

stock returns and what the underlying shocks driving stock returns and consumption are remains

open and offers a promising route for further research.
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Table 1. Expected excess returns and consumption risk frequencies 

Panel A 

Frequency (Quarters) R-sq(adj) λω 
standard 

error 
Relative risk 

aversion 
standard 

error 

1 (2.000) -2.728 0.003 0.000 71.002 0.581 

15/16 (2.133) -4.460 0.008 0.001 69.735 0.888 

7/8 (2.286) -1.931 0.010 0.001 68.572 0.594 

13/16 (2.462) -3.428 0.008 0.001 46.676 0.362 

3/4 (2.667) -5.218 0.011 0.002 48.650 0.229 

5/8 (3.200) -1.325 0.003 0.000 33.314 0.344 

1/2 (4.000) -0.298 0.004 0.000 36.222 0.057 

3/8 (5.333) -2.076 0.003 0.000 27.510 0.186 

1/4 (8.000) -3.160 0.004 0.000 17.857 0.073 

3/16 (10.667) -1.401 0.004 0.000 14.095 0.061 

1/8 (16.000) -0.443 0.003 0.000 8.822 0.031 

1/16 (32.000) 0.660 0.007 0.000 4.621 0.002 

0 (inf) 0.981 0.007 0.000 4.297 0.002 
       

Panel B 

Frequency (Quarters) R-sq(adj) Equity 
premium 

standard 
error λω 

standard 
error 

Relative risk 
aversion 

standard 
error 

1 (2.000) -0.026 0.023 0.003 0.000 0.000 42.463 36.590 

15/16 (2.133) 0.257 0.032 0.003 -0.003 0.001 96.259 8.239 

7/8 (2.286) 0.006 0.029 0.003 -0.002 0.002 154.260 131.933 

13/16 (2.462) 0.042 0.029 0.004 -0.002 0.001 80.082 40.057 

3/4 (2.667) -0.030 0.026 0.002 -0.001 0.001 101.154 161.341 

5/8 (3.200) -0.043 0.025 0.006 0.000 0.001 -6.818 103.596 

1/2 (4.000) -0.003 0.019 0.005 0.001 0.001 33.174 2.724 

3/8 (5.333) 0.242 0.037 0.006 -0.002 0.001 35.221 2.675 

1/4 (8.000) 0.121 0.031 0.004 -0.001 0.001 20.935 1.526 

3/16 (10.667) 0.022 0.031 0.006 -0.001 0.001 17.991 3.572 

1/8 (16.000) -0.032 0.022 0.008 0.000 0.001 6.807 4.592 

1/16 (32.000) 0.655 -0.003 0.003 0.008 0.001 4.629 0.007 

0 (inf) 0.986 -0.002 0.001 0.007 0.000 4.323 0.010 
 
Notes:  
1) Frequency is expressed as a fraction of π. 
2) See the text for the definition of λω. 
3) Newey-West heteroskedasticity and autocorrelation corrected standard errors. 



Table 2.  

Expected excess returns and consumption risk frequencies: Robustness tests 

Frequency (Quarters) R-sq(adj) Equity 
premium 

standard 
error λω standard 

error 
Relative risk 

aversion 
standard 

error 

A. Original Fama-French start date (1963:03) 

1 (2) 0.296 0.017 0.002 0.001 0.000 60.739 3.902 

1/2 (4) -0.008 0.028 0.009 -0.001 0.001 45.227 12.923 

1/4 (8) 0.314 0.033 0.003 -0.002 0.000 19.945 0.317 

1/8 (16) -0.016 0.017 0.007 0.001 0.001 7.468 2.107 

1/16 (32) 0.671 -0.005 0.002 0.009 0.001 4.612 0.006 

0 (inf) 0.995 -0.002 0.000 0.007 0.000 4.269 0.007 

B. Total consumption 

1 (2) 0.016 0.018 0.006 0.001 0.001 23.540 4.031 

1/2 (4) 0.000 0.020 0.005 0.000 0.000 23.674 4.005 

1/4 (8) 0.098 0.012 0.006 0.002 0.001 9.721 0.287 

1/8 (16) -0.033 0.022 0.007 0.000 0.001 5.367 3.551 

1/16 (32) 0.712 0.003 0.003 0.008 0.001 3.545 0.006 

0 (inf) 0.989 0.000 0.001 0.009 0.000 3.311 0.007 

C. Long-horizon returns 

1 (2) -0.006 0.506 0.078 -0.011 0.013 76.719 1.777 

1/2 (4) 0.022 0.407 0.033 0.016 0.011 37.100 0.205 

1/4 (8) 0.421 0.529 0.030 -0.009 0.002 18.768 0.071 

1/8 (16) 0.272 0.205 0.071 0.010 0.003 9.112 0.044 

1/16 (32) 0.422 0.013 0.093 0.012 0.003 4.653 0.008 

0 (inf) 0.979 0.017 0.018 0.007 0.000 4.306 0.013 
 
Notes: See Table 1. 

 



Table 3.  

Expected excess returns and consumption risk frequencies: Alternative portfolios 

Frequency (Quarters) R-sq(adj) Equity 
premium 

standard 
error λω standard 

error 
Relative risk 

aversion 
standard 

error 

A. Equally weighted portfolios 

1 (2) 0.092 0.021 0.003 0.001 0.000 58.129 8.248 

1/2 (4) -0.025 0.032 0.011 -0.001 0.001 43.895 13.017 

1/4 (8) 0.034 0.032 0.004 -0.001 0.001 21.468 2.216 

1/8 (16) 0.091 0.014 0.007 0.001 0.001 8.373 0.491 

1/16 (32) 0.733 0.001 0.003 0.007 0.001 4.625 0.007 

0 (inf) 0.992 -0.001 0.000 0.007 0.000 4.311 0.006 

B. 10 size, 10 B/M and 10 D/P portfolios 

1 (2) 0.132 0.019 0.001 0.001 0.000 57.694 3.898 

1/2 (4) 0.110 0.017 0.002 0.001 0.000 25.304 2.874 

1/4 (8) 0.052 0.019 0.002 0.001 0.000 20.240 1.723 

1/8 (16) 0.198 0.014 0.002 0.001 0.000 8.225 0.267 

1/16 (32) 0.507 0.008 0.002 0.004 0.000 4.570 0.014 

0 (inf) 0.939 -0.000 0.001 0.007 0.000 4.300 0.016 

C. 20 risk-sorted portfolios 

1 (2) -0.056 0.019 0.001 0.000 0.000 -1.509 60.938 

1/2 (4) 0.024 0.022 0.002 -0.000 0.000 52.154 14.198 

1/4 (8) -0.051 0.019 0.001 -0.000 0.000 -24.615 168.524 

1/8 (16) -0.046 0.020 0.002 -0.000 0.000 -12.211 64.929 

1/16 (32) -0.054 0.019 0.002 0.000 0.000 1.908 5.983 

0 (inf) 0.818 -0.003 0.003 0.008 0.001 4.333 0.040 

D.  34 industry portfolios 

1 (2) -0.019 0.019 0.002 0.000 0.000 27.162 36.261 

1/2 (4) 0.003 0.022 0.002 0.000 0.000 52.657 43.332 

1/4 (8) 0.062 0.016 0.002 0.001 0.000 20.054 3.040 

1/8 (16) -0.030 0.020 0.004 0.000 0.000 2.306 17.053 

1/16 (32) 0.066 0.017 0.002 0.001 0.000 4.180 0.223 

0 (inf) 0.853 0.002 0.001 0.006 0.001 4.240 0.036 
 
Notes: See Table 1. 

 



Table 4.  

Expected excess returns and consumption risk frequencies: 11-quarter consumption growth 

Frequency (Quarters) R-sq(adj) Equity 
premium 

standard 
error λω 

standard 
error 

Relative risk 
aversion 

standard 
error 

1 (2.000) -0.006 0.022 0.004 0.001 0.001 50.752 25.363 
15/16 (2.133) 0.278 0.030 0.002 -0.003 0.001 104.919 11.447 

7/8 (2.286) 0.011 0.028 0.004 -0.002 0.003 93.301 25.406 
13/16 (2.462) -0.019 0.028 0.005 0.000 0.001 75.992 61.753 

3/4 (2.667) 0.515 0.038 0.003 -0.004 0.001 54.989 1.068 
5/8 (3.200) -0.041 0.023 0.007 0.000 0.001 12.433 42.601 
1/2 (4.000) 0.194 0.010 0.006 0.004 0.002 35.935 0.575 
3/8 (5.333) 0.321 0.037 0.005 -0.003 0.001 35.656 2.140 
1/4 (8.000) 0.223 0.035 0.006 -0.005 0.002 22.618 2.294 

3/16 (10.667) 0.085 0.017 0.003 0.005 0.003 12.423 0.992 
1/8 (16.000) 0.141 0.011 0.004 0.013 0.005 7.318 0.540 

1/16 (32.000) 0.638 0.008 0.002 0.048 0.006 3.797 0.090 
0 (inf) 0.984 -0.001 0.001 0.084 0.001 2.255 0.019 

 
Notes: See Table 1. 



Table 5.  

Expected excess returns and consumption risk frequencies: Long-term interest rates 

Frequency (Quarters) R-sq(adj) Equity 
premium 

standard 
error λω standard 

error 
Relative risk 

aversion 
standard 

error 

A. 1-year interest rate 

1 (2) 0.143 0.034 0.006 0.000 0.000 79.742 1.324 
1/2 (4) 0.156 0.013 0.006 0.000 0.000 37.199 0.579 
1/4 (8) 0.103 0.032 0.005 -0.003 0.002 29.116 9.198 
1/8 (16) -0.017 0.020 0.006 0.002 0.003 4.711 3.308 

1/16 (32) 0.730 -0.002 0.003 0.027 0.003 4.494 0.034 
0 (inf) 0.964 0.000 0.001 0.029 0.001 3.450 0.043 

B. 3-year interest rate 

1 (2) 0.127 0.029 0.003 -0.001 0.001 112.306 22.363 
1/2 (4) 0.059 0.016 0.006 0.003 0.003 35.623 3.243 
1/4 (8) 0.499 0.035 0.003 -0.008 0.002 23.432 0.777 
1/8 (16) 0.215 0.008 0.005 0.016 0.005 7.541 0.564 

1/16 (32) 0.659 0.010 0.002 0.046 0.005 3.882 0.094 
0 (inf) 0.968 0.002 0.001 0.082 0.003 2.177 0.047 

C. 5-year interest rate 

1 (2) 0.008 0.023 0.002 0.001 0.002 49.154 24.811 
1/2 (4) 0.008 0.022 0.003 0.002 0.003 29.901 9.287 
1/4 (8) 0.215 0.036 0.004 -0.010 0.003 25.273 1.514 
1/8 (16) 0.266 0.001 0.008 0.028 0.010 8.252 0.550 

1/16 (32) 0.760 0.010 0.002 0.102 0.012 3.978 0.101 
0 (inf) 0.939 0.003 0.002 0.139 0.009 1.561 0.061 

D.  10-year interest rate 

1 (2) 0.021 0.023 0.002 0.002 0.003 20.723 15.347 
1/2 (4) 0.011 0.021 0.003 0.003 0.003 13.238 8.227 
1/4 (8) 0.295 0.034 0.003 -0.040 0.012 32.108 3.351 
1/8 (16) 0.072 0.012 0.006 0.039 0.020 5.796 1.162 

1/16 (32) 0.442 -0.003 0.003 0.450 0.054 4.021 0.117 
0 (inf) 0.929 0.001 0.002 0.341 0.022 0.945 0.042 

 
Notes: See Table 1. 



 Figure 1A. Spectrum of non-durables consumption growth 

 

 

 

 

 

 

 

 

 

 

Figure 1B. Spectrum of excess returns 

 

 

 

 

 

 

 

 

 

 

Figure 1C. Coherency over the Spectrum: Excess returns and non-durables consumption growth 

 

 

 

 

 

 

 

 

 
Notes: 95% confidence intervals in dashed lines. 
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Figure 2. Average returns and betas 
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Figure 3. Fitted and average returns 
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Figure 4. Fitted and average returns (alternative specifications, infinite horizon) 
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Figure 5. Fitted and average returns (alternative portfolios, infinite horizon) 
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Figure 6A. Log-spectrum of consumption growth 
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Figure 6B. Coherency of consumption growth and returns 
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Figure 6C. Gain of consumption growth and returns 
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 Figure 7. Spectral properties of C-CAPM and the term structure of interest rates 
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Figure 8. Fitted and average returns (term structure, infinite horizon) 
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