
The Gap Between the Rich and the Poor:

Patterns of Heterogeneity in the Cross-Country Data

Oya Pınar Ardıç∗†
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Abstract

Persistent income inequalities across nations have led to the emergence of a vo-
luminous literature, focusing on cross-country growth regressions. Using the same
regression model for all countries in the sample, the majority of these studies ig-
nore the inherent heterogeneity that can actually lead to different regression models
for different countries. This paper explores whether this assessment is valid, and
in doing so, provides a way to overcome it. Bayesian classification analysis is used
to reveal patterns of heterogeneity and to identify groups of countries with similar
growth processes. Standard growth regressions can then justifiably be performed
on each subsample. The method is illustrated using a cross-country data set that
includes the Solow growth model variables.
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1 Introduction

The real GDP per capita, the widely used measure of the standard of living, in the

Democratic Republic of Congo was $216 whereas it was $19,474 in the United States

in 1996. This striking fact exemplifies the gap between the rich and the poor, and

suggests that the richest are about 90 times richer than the poorest. Furthermore, there

is evidence that this gap is widening: in 1977, the real GDP per capita in the Democratic

Republic of Congo was $557 while it was $14,832 in the US, which indicates a 27 times

difference. Why is there a huge gap between the rich and the poor? How can the poor

catch up with the rich?

The gap between the rich and the poor nations has been a perennial concern of econo-

mists. In the face of persisting income inequalities across nations, a voluminous literature

has emerged, mainly focusing on cross-country growth regressions to investigate the re-

lationship between the per capita income growth and a set of other indicators of country

characteristics. Though these empirical models have improved our understanding of the

mechanics of economic growth significantly, they have not been free from serious criti-

cisms. An important criticism is that the majority of these studies treat countries which

have intrinsic differences as homogeneous units, using the same regression model for all

countries in the sample, thereby ignoring the high degree of heterogeneity in the cross-

country growth data. Therefore, empirical methods that allow for heterogeneity might

yield substantially different findings regarding the important determinants of growth.1

The purpose of this study is to reconsider the empirical growth models by exploring

the uncertainty for heterogeneity in the cross-country growth data. Although some

studies have attempted to resolve this problem in a systematic way, the general practice

is to ignore it. Using fixed effects in panel data regressions, or including dummy variables

based on geographic locations or informal groupings of the data, will neither reveal the

underlying patterns of heterogeneity nor provide an adequate solution to the problem,

since such ad hoc adjustments assume a particular pattern of heterogeneity.
1See Durlauf (2000) and Brock and Durlauf (2001) for details.
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The paper proposes the use of Bayesian classification analysis (or cluster analysis)

in order to first systematically reveal the patterns of heterogeneity in the data set. The

objective of classification analysis is to partition the data into subsamples that display

systematic differences, and the Bayesian method aims to find the classification that fits

the data with the highest probability. The second step, then, is to use this information on

heterogeneity in the cross-country growth regressions and in the tests of (cross-country)

convergence hypothesis by performing a separate regression analysis for each subsample.

To illustrate, an exemplifying cross-country data sets are used, which includes the

standard Solow growth model variables (Solow, 1956). This data set have also been used

by Mankiw et al. (1992) (MRW hereafter), which is an essential study in the empirical

growth literature. The findings of the analysis on this data set indicate that once the

heterogeneity in the sample is accounted for according to the underlying statistical dis-

tributions, the regression outcomes differ from what the Solow model predicts. Thus,

this two-step method helps us better understand the properties of the sample, i.e. the

patterns of heterogeneity, and of the cross-country growth process, i.e. the possibility of

multiple regimes.

The rest of the paper is organized as follows. The next section briefly notes the

existing empirical studies. The third section describes the Bayesian classification method.

The results of MRW model are analyzed and reported in the fourth section. The fifth

section concludes.

2 Existing Empirical Studies

In the 1990s, there have been various studies on the relationship between the growth

rate of income per capita and different measures of standard of living in a cross-country

setting to investigate the growth process. These studies focus on a model of the form:

gi = αXi + βyi0 + εi (1)
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where gi is the growth rate of country level variable, yi0 is the value of the country level

variable at the beginning of the period of analysis, Xi includes country-specific variables

that are controlled for, and εi is the disturbance term. The initial value of the variable,

yi0, is included for the purpose of testing for the convergence hypothesis (Durlauf, 2000).2

The convergence hypothesis states that the poor countries tend to grow faster than

the rich due to diminishing marginal returns, since the returns to capital would be

higher in those countries with lower initial conditions. One of the convergence concepts

commonly used in the literature is β-convergence. There exists a β-convergence across

countries if there is a negative relationship between the per capita income growth rate

and the initial value of per capita income. That implies poor countries grow faster than

rich ones. In terms of equation (1), β-convergence means a negative β when gi is the

growth rate of per capita income and yi0 is the initial value of per capita income in

country i. If the country-specific controls, Xi, are not used in the analysis, a negative

relationship between the growth rate and the initial value implies unconditional (or

absolute) convergence, whereas it indicates conditional convergence when controls are

included (Barro and Sala-i Martin, 1995). Therefore, equation (1) facilitates the tests of

convergence hypothesis.

Note however that there are also studies that criticize this approach of testing for

convergence. For example, Bernard and Durlauf (1996) state that once this analysis is

applied to a data set of countries that can be correctly specified with a model with multi-

ple steady states, an estimated negative β coefficient implying convergence for the whole

sample can actually arise from within-subsample convergence to group-specific steady

states. In addition, Quah (1993, 1996b) suggests the tests of convergence hypothesis

suffer from Galton’s fallacy, i.e. once the average growth rates are regressed on initial

levels, a negative β coefficient is estimated due to regression toward the mean, which

does not necessarily imply convergence.
2Generally the growth rate of income per capita is used, however it is possible to use the growth rate

of any standard of living indicator.
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The theory of growth is not clear on the true set of explanatory variables to be

included in the growth regression, leaving the question of which variables can explain

the growth process unanswered. Various measures including investment rate, education,

policy indicators among many others have been found to explain the growth rate of

different indicators by researchers.3 For example, Barro (1991) reports the empirical

regularities about growth, education, fertility and investment in cross-country data, and

finds evidence supportive of convergence across countries. Mankiw et al. (1992) pro-

vide an empirical analysis of the Solow model with a production function with human

capital, physical capital and labor as factors, and conclude that there exists conditional

convergence among the countries in their data set. Further examples include Barro

and Lee (1993) who consider the relationship between income growth and education,

Mauro (1995) who focuses on corruption and growth, and Barro (1996) who investigates

the relationship between democracy and income growth among numerous other stud-

ies.4 Overall, around 90 different standard of living indicators have been used in this

literature.

Levine and Renelt (1992) propose the use of extreme bounds analysis to find the

robust explanatory variables, and conclude that there are few. Sala-i Martin (1997)

computes the distribution of the coefficient estimates in equation (1) and uses confidence

levels based on these distributions to find variables that are correlated with growth rather

than labeling variables as robust or non-robust. Easterly (1999) provides an extensive

investigation of the relationship between the quality of life and income per capita, con-

centrating on a variety of indicators of quality of life to observe the ones that are related

to growth of income per capita. Brock and Durlauf (2001) allow for uncertainty in model

specification, and use Bayesian techniques to determine the explanatory variables.

All of the studies mentioned above, with the exception of Brock and Durlauf (2001),

essentially ignore the underlying patterns of heterogeneity in the data, by imposing an

identical regression model for all countries in the sample. Some of them use dummy
3See, for example, Sala-i Martin (1997).
4See Durlauf and Quah (1999) for an extensive review of the literature.
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variables for Latin America and/or Sub-Saharan Africa to account for the differences

in growth processes for these groups of countries, however this does not capture the

statistical groupings in the data set.5 As a result, these studies estimate identical pa-

rameters for each country. To put this into the perspective of the theory that underlies

these empirical studies, these estimated identical parameters imply that the production

function for each country in the data set is identical, and the growth processes of each

are modeled the same way.6 On the other hand, it is natural to expect that the countries

at different levels of development have production functions with different parameters,

and exhibit different growth processes.

Studies that incorporate a systematic form of heterogeneity include Canova (1999)

who proposes the use of a predictive density approach to jointly test for the groupings

of unknown size and estimate the parameters for each group in identifying convergence

clubs and applies this to European and OECD data, and various studies by Quah (1996a,

1997) who adopts the distribution dynamics approach and concludes that the cross-

country data supports the twin-peaks hypothesis. In addition, Durlauf and Johnson

(1995) use regression tree analysis and they find evidence supporting the presence of

multiple regimes in cross-country growth data in which each group of countries follows

different linear models, namely growth models that produce multiple steady states in

per capita output. Kourtellos (2001) uses projection pursuit regression and finds cross-

country evidence supporting two equilibria with different convergence parameters. Brock

and Durlauf (2001) propose modeling heterogeneity as a form of model uncertainty using

Bayesian techniques. Durlauf et al. (2001) use the Solow growth model, and allow the

parameters to differ across countries according to initial income.

Hobijn and Franses (2001) study the cross-country convergence problem using three

different techniques: regression analysis, distribution dynamics, and (classical) classifi-
5For example, Barro (1991) uses dummy variables for Sub-Saharan Africa and Latin America.
6The baseline regressions of the form (1) can be derived from the Solow model, and the coefficient

estimates in these regressions are the parameter estimates of the production function. See Mankiw et al.
(1992).
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cation analysis.7 The major question the paper proposes is whether there exists similar

convergence patterns for standard of living indicators other than income per capita to

those observed for income per capita. Hobijn and Franses (2001) use equation (1) and

subsamples from their data set based on the World Bank country classification to test

for β-convergence in each subsample, and find evidence indicating a possible convergence

in the tails of the distribution in terms of income per capita. They utilize kernel den-

sity estimation for the distribution dynamics approach and again find a similar result.

These results for real GDP per capita also hold for the other indicators in their data

set. Finally, they apply (classical) classification analysis to each variable in the sepa-

rately. Their main conclusion is that there is not much evidence of convergence in any

of the indicators in their data set, and that convergence in one indicator does not imply

convergence in another.

The analysis of this paper differs from Hobijn and Franses (2001) in crucial respects.

First note that, although being helpful in identifying the presence of multi-modality in the

data set, kernel density estimation cannot provide enough information about the specific

groupings of countries in the data set.8 Second, applying classification analysis on the

whole set of standard of living indicators rather than examining each variable separately

yields insight as to how countries are clustered in terms of the level of development

measured by a variety of indicators. Third, once the countries are grouped into clusters

that display systematic differences, it is possible to discuss the existence of within-cluster

convergence. Fourth, Bayesian classification analysis has advantages over the classical

classification analysis as mentioned in Section 3 below.
7See Hobijn and Franses (2000) for the method of classification used in Hobijn and Franses (2001).

where the authors develop a cluster algorithm and apply it on the cross-country per capita productivity
levels.

8In addition, Bayesian classification analysis also is useful in studying the dynamics of the distribution
of standard of living across countries when it is applied to a cross section of countries at different periods
of time. See, for example, Ardıç (2004).
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3 Bayesian Classification Based on Finite Mixture Models

Classifying a set of data, i.e. arranging data into groups of similar nature, can be

supervised or unsupervised. Supervised classification refers to grouping objects into given

labeled clusters. The predefined classes are differentiated by criteria that maximizes in-

class similarity and out-class dissimilarity. In unsupervised classification, there are no

preexisting clusters, and all features of new observations are predicted. The goal is

to discover natural classes that arise from the underlying mechanisms, to divide the

data into groups that display systematic differences. In the current context, the aim

is to classify the countries, based on their standard of living indicators, into groups to

identify countries with similar growth processes.

The classical approach to classification analysis aims to maximize between-cluster

variation relative to within-cluster variation. The clustering procedure starts with K

measures of I objects, and thus, an I×K data matrix. This matrix is then transformed to

an I×I matrix of pairwise similarities or dissimilarities. Finally, an algorithm that defines

the rules of classifying the objects into subgroups is selected (Dillon and Goldstein, 1984).

The problems involved with the classical approach include sensitivity to the variables

(or to the features of data) used in the analysis, the definition and measurement of

similarity (and dissimilarity), and deciding on the procedure and the number of clusters

(Dillon and Goldstein, 1984). In most cases, the researcher needs to use some ad hoc

criteria to decide on the number of clusters. The classical approach lacks a widely

accepted measure of success, and the method favors singleton clusters.9 In addition,

small changes in the decision criteria might alter all the results by changing the clusters

that the boundary cases belong to (Stutz and Cheeseman, 1996).

The Bayesian approach to unsupervised classification aims to find the classification

that fits the data with the highest probability. This procedure looks for the natural

classes in the data. The outcome is the probabilities of having certain numbers of classes

in the data set. Furthermore, instead of assigning each case to a class, the Bayesian
9For example, Hobijn and Franses (2001) find a large number of clusters.
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approach yields the probabilities of each case being members of different classes.10 This

helps overcome the problems related to the decision criteria; the boundary cases are no

longer a problem. The number of classes are determined according to the probability

assignments, i.e. the classification with the highest probability is chosen. Note that it is

also possible to rank the alternative classifications with this approach (Stutz and Cheese-

man, 1996). Furthermore, the Bayesian approach trades off complexity for goodness of

fit. However, it is important to note that Bayesian classification is also sensitive to the

variables included in the analysis.

Bayesian approach to statistics in general enables us to express all forms of uncer-

tainty in terms of probability. Bayesian theory explains how beliefs should be formulated

in a consistent way and how they should change with new evidence. Let Y denote ev-

idence (or data) and θ denote the parameters of the model that we are interested in.

Also let P (θ) denote the prior belief in θ before the data Y is observed, P (Y | θ) be

the likelihood of the data for each possible θ, and P (Y, θ) be the joint distribution of

Y and θ. Then, this joint distribution can be obtained from the observable likelihood,

P (Y | θ), and the assumed prior, P (θ). That is, it is possible to think of the joint

probability distribution of the data, Y , and the parameters, θ, as the multiplication of

the likelihood of the data and the probability distribution summarizing the prior belief

over the different possible values that the parameters, θ, can take.

The joint distribution, P (Y, θ), should remain the same once the parameters, θ, are

inferred from the data. Therefore, it is possible to consider the joint distribution as

a multiplication of the probability distribution of the parameters given the data set,

P (θ | Y ), which is called the posterior distribution of the parameters, and the prior

predictive distribution, P (Y ). P (Y ) is called the prior predictive distribution because

it is the distribution of an observable quantity that does not depend on any previously

observed values, that is, it is not derived. Given these, the posterior belief in θ, P (θ | Y ),

becomes a function of the likelihood, the prior, and the prior predictive distribution. In
10This is also termed as “fuzzy” classification.
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other words, the probability distribution of the parameters, θ, given the evidence, Y ,

is found by the likelihood times the prior belief, normalized by the prior predictive

distribution, the distribution of the evidence that does not depend on the parameters.

The advantages of using Bayesian analysis include a good theoretical basis, the pos-

sibility of using background knowledge as an input, and getting output in terms of

probabilities rather than a definite answer. Most of the disadvantages put forth are in

terms of the ambiguities involved in choosing a prior, which are not important in practice

since a broad range of priors are found to perform well under most situations (Hanson

et al., 1991).

A Bayesian approach based on finite mixture distributions is the recent focus of a

study of the Bayes group at the Ames Research Center.11 The group has been working

on a software called AutoClass that utilizes the Bayesian approach to unsupervised

classification. Their method is applied in this paper, and the remainder of this section

closely follows their treatment.

Mixture distributions arise when one samples from a heterogeneous population. If

the number of subcomponents of the population is finite, then it is a finite mixture

distribution. Mixture modeling provides a natural way to handle the unobserved het-

erogeneity in the data set since the aim is to model the distribution of the whole sample

as a mixture, or weighted sum, of the distribution of subsamples.

In terms of exploring the heterogeneity in the cross-country data set, the mixture

model can be motivated as follows. The data set is a mixture distribution with J

components, that is, the sample has J subgroups, J is unknown. Within each subgroup,

the countries have the same growth process, i.e. the same regression model can be applied

to subsamples as the data for the countries in a subsample have the same statistical

distribution. Thus, Bayesian classification in this setting would allow us to identify J ,

the number of subsamples, and the countries belonging to each subsample. Below is a

formal description of Bayesian classification based on finite mixture distributions.
11See http://ic.arc.nasa.gov/ic/projects/bayes-group/autoclass/, and Stutz and Cheeseman (1996) and

Hanson et al. (1991).
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Let y = {y1, ..., yI} be the data set where i = 1, ..., I shows the observations. y

is sampled from a heterogeneous population, the components of which are indexed by

j = 1, ..., J . Let k = 1, ...,K be the attributes. Thus, each yi is a (1×K) vector, and y

is an (I ×K) matrix of data sampled from a population of J components.

Further, let F = F1, ..., FJ denote the mathematical form of the probability distri-

bution function associated with J components, and θ = θ1, ..., θJ be the parameter set

for each of the J distributions. That is, for each class that is to be identified, there is a

distribution function for the attributes, Fj , with parameters θj .

Let T denote the inter-class mixture model. Fj is weighted by a mixture model T ,

i.e. the probability distribution that any yi is a member of class j, Cj , regardless of

its attribute values. The parameters of T are πj which are defined as follows. The

proportion of the population that is from component j is given by πj ,
∑J

j=1 πj = 1, and

π = (π1, ..., πJ). Then it is possible to write the likelihood of the observation yi as:

P (yi|θ, π) = π1P (yi|θ1, F1) + ... + πJP (yi|θJ , FJ)

=
J∑

j=1

πjP (yi|yi ∈ Cj , θj , Fj)
(2)

where πj = P (yi ∈ Cj | π, T ) as described above. π = {π1, ..., πJ} can be taken as

a mixing distribution that describes the variation of θj across the population. Thus,

ν = (θ, π) is the set of parameters of the model. Let M = (F, T ), and M∈ S where S is

the space of possible mixture models. Then the likelihood of the whole sample is given

by:

P (y|ν,M) =
∏

i

∑

j

πjP (yi|yi ∈ Cj , θj , Fj) (3)

The joint distribution of the data and the parameters can be written as prior times

the likelihood:

P (y, ν|M) = P (ν|M)P (y|ν,M)

= P (ν|M)
∏

i

∑

j

πjP (yi|yi ∈ Cj , θj , Fj)
(4)
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where the prior can be expressed as:

P (ν|M) = P (π|T )P (θ|F ) (5)

since π and θ are independent.

The objective is to find the posterior distribution of the parameters, and the MAP

(maximum a posteriori) values of the parameters. The posterior distribution is:

P (ν|y,M) =
P (y, ν|M)
P (y|M)

=
P (y, ν|M)∫
P (y, ν|M)dν

(6)

In addition, the posterior probability of the model given the data is also calculated,

in order to enable comparisons of alternative classifications:

P (M|y) = P (M, y)/P (y)

=
[∫

P (y, ν|M)P (M)dν

]
/P (y)

∝
∫

P (y, ν|M)dν = P (y|M)

(7)

where the proportionality in equation (7) holds if P (M) is assumed to be uniform. This

is sensible since there is no reason to favor one model over another. P (M|y) provides a

measure of how well the possible classification models can describe the data.

To find the MAP parameter values, direct optimization is not useful. Recall the

assumption underlying the mixture models that each observation is the member of only

one class. Thus, P (yi|yi ∈ Cj , θj , Fj) = 0 whenever yi 6∈ Cj . This enables us to eliminate

the summation and rewrite equation (4) as:

P (y, ν|M) = P (ν|M)
∏

j

∏

yi∈Cj

πjP (yi|θj , Fj) (8)

Note that for the case of supervised classification where J is known, it is straight-

forward to maximize equation (8). However, in unsupervised classification, the number

of classes is unknown, and searching for every single partitioning of the data and max-

imizing does not seem plausible with large data sets. In this case, the EM algorithm

(Dempster et al., 1977) can be used given the set of Fj and the current MAP estimates
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of ν, the expectation step of the algorithm yields class assignments, ωij , in the following

form:

ωij = P (yi ∈ Cj |ν,M) ∝ πjP (yi|yi ∈ Cj , θj , Fj) (9)

These weights allow the construction of statistics that can be used in the maximiza-

tion step, i.e. in finding the MAP parameter values in the equation (8). Successive

implementation of these two steps lead to MAP parameter values converging to a stable

local maximal point. Note, however, that there is more than one such point. Thus, the

Autoclass software searches and collects a set of such local maxima. Next, P (y|M) is

computed for each, which is used to approximate P (M|y) (see equation (7)), and the

models are ranked according to their largest P (y|M).

Autoclass uses Bernoulli distributions with Dirichlet prior for discrete variables. For

continuous variables, Gaussian model is used with Gaussian prior for the mean and

inverse-Wishart distribution for the variance. In both cases, it is possible to model the

variables as independent or covariant. When a continuous variable is bounded below,

i.e. for example it cannot take negative values, the log transform is taken first, and then

the Gaussian model is applied. The proportions πj have a multinomial distribution with

a Dirichlet prior. Note that conjugate priors are used so that the posterior has the same

form as the prior which enables its use as prior in the subsequent steps. In addition, the

prior on the number of classes and the class distributions, P (M), is taken to be uniform.

This paper proposes the use of Bayesian classification method outlined above as the

first step in empirical analysis of cross-country growth. This enables to group the data

into classes such that the statistical distribution of the data in each class is different. The

second step is to estimate cross-country growth regressions for each class. An alternative

approach is regression tree analysis used by Durlauf and Johnson (1995). Regression

tree groups countries with similar linear regression models, and diminishes country-

specific heterogeneity as it accounts for the possibility of multiple steady states. As

Bayesian classification groups countries with similar statistical distributions, it eliminates

uncertainty for heterogeneity.
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4 MRW Model

This section reports the results of the analysis of the MRW Model using the proposed

two-step method for two different empirical cross-country growth models. The same set

of explanatory variables, which is derived from the Solow model, as in MRW is used.

This section presents the Solow model briefly, and then summarizes the results of the

two step analysis.

The Solow model implies that the log of income per capita, Y/L can be expressed

in terms of the log of saving rate, s, and log of population growth rate, n, plus the

exogenous rates of technical change, g, and depreciation, δ:

ln
Y

L
= a +

α

1− α
ln(s)− α

1− α
ln(n + g + δ) + ε (10)

where ε is the disturbance term. When the Solow model is augmented with human

capital, an equation for log income per capita similar to (10) can be derived:

lnY
L = lnA0 + gt− α+β

1−α−β ln(n + g + δ)

+ α
1−α−β ln(sk) + β

1−α−β ln(sh)
(11)

where sk and sh are the saving rates in terms of physical and human capital respectively.

In addition, to test for unconditional convergence the following equation is used:

lnyt − lny0 = (1− e−λt)lny∗ − (1− e−λt)lny0 (12)

where y is the per capita income, and λ is the convergence rate. Note that once the

determinants of the steady state are substituted in equation (12) the outcome is similar

to equation (1). In the context of the Solow model and its augmented version outlined

above, this substitution implies the following equation:

lnyt − lny0 = (1− eλt) α
1−α−β ln(sk) + (1− eλt) β

1−α−β ln(sh)

−(1− eλt) α+β
1−α−β ln(n + g + δ)− (1− eλt)ln(y0)

(13)

See Mankiw et al. (1992) for the derivation of these equations. Equations (10) through (13)

can be estimated using cross-country data to test the validity and the predictive power
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of the Solow model in a cross-country setting. In the remainder of this section, data

on each subsample resulting from Bayesian classification are utilized to estimate these

relationships.

As noted earlier, the same data set as in MRW is used in this section, however

extending the period of analysis. The data set includes real per capita GDP, y, saving

rate, sk, population growth rate, n, and schooling, sh for the period 1960-1995 for 105

countries.12 Table 1 summarizes the descriptive statistics. Saving rate, schooling and

population growth are in terms of the averages over the period of analysis. Schooling

variable, education, is the gross secondary school enrollment ratio, i.e. it is the ratio

of total enrollment in secondary school regardless of age to the population of the age

group that officially corresponds to secondary school. Saving rate is defined as the ratio

of investment to GDP.

Preliminary analysis of the data though the descriptive statistics implies that per

capita real GDP increased in the 35-year period on average, and it is accompanied by

an increase in the cross-section variation. The range of incomes also increased. There

are large discrepancies between the maximum and minimum average schooling in the

sample. Saving rate and population growth rate show a similar pattern, all supporting

the existence of heterogeneity in the sample.

The results of the replication of the analysis of MRW with the extended data set are

reported in the next subsection. Then, Bayesian classification is performed on this data

set to obtain the clusters. Finally, regression analyses are performed for equations (10)

through (13).

4.1 MRW Analysis - No Heterogeneity

Part of the analysis in MRW is replicated with the different data set described above.

Tables 2, 3, and 4 below summarize the findings. As in MRW g + δ is taken as 0.05.

Following the analysis of MRW the sample is divided into three subgroups: non-oil
12Source: http://www.www.worldbank.org/research/growth/GDNdata.htm, World Bank’s Global De-

velopment Network Database.
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producers, intermediate, OECD countries. In oil-producing countries, a large part of

the recorded GDP represents the extraction of oil and therefore leaving those countries

out of the sample might yield more accurate results in terms of economic growth. The

intermediate sample excludes those countries that are reported to have low-quality data,

or population below 1 million, due to measurement error and the argument that the

determination of income may be idiosyncratic. For OECD countries, the data is assumed

to be of high-quality, and variation in omitted country-specific variables is expected to be

small. The number of countries in the whole sample is 105 which includes 5 oil producers,

18 OECD countries, and 34 countries that have low-quality data or population less than 1

million. This yields 100 observations for the non-oil producers subsample, 71 observations

for the intermediate subsample, and 18 observations for the OECD subsample.

The Solow growth model predicts a positive relationship between income per capita

and the saving rate in terms of both human and physical capital, and a negative rela-

tionship between income per capita and n+g+δ in equations (10) and (11). The results

support the findings of MRW for equation (10) as signs of the estimated coefficients are

as expected, and highly significant for the non-oil and intermediate subsamples. For the

OECD subsample, the estimated coefficient for the saving rate is not significant at any

conventional level. These are summarized in Table 2.

The relationships implied by the Solow growth model break once the estimates of

equation (11) are obtained. While the saving rate for physical capital negatively impacts

income per capita for the non-oil and intermediate subsamples and statistically insignif-

icant for the intermediate group, increases in population growth raise income per capita

for these two groups. The estimated coefficients for population growth are insignificant

at any conventional level for all groups.

Table 3 reports the estimation results for equation (12) and the implied rate of un-

conditional convergence in each subsample. The coefficient estimates are not statistically

significant for the intermediate sample. The results indicate that in the non-oil and in-

termediate subsamples exhibit divergence (-0.4% and -1%, respectively) while the OECD
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countries converge at a rate of 1.3% unconditionally. These convergence coefficients are

statistically significant for the non-oil and OECD samples.

Equation (13) is estimated twice, with and without saving rate in terms of human

capital. Table 4 summarizes the results, as well as the implied rates of conditional

convergence. The signs of the coefficient estimates in both cases are as expected. The

results for the regression without human capital show that the saving rate is statistically

significant for all three subsamples, while population growth is not significant for OECD

countries, and initial income is not significant for non-oil and intermediate samples. The

rate of conditional convergence is 0.1%, 0.4%, and 1.1% for the non-oil, intermediate,

and OECD subsamples respectively, however it is insignificant statistically for the non-oil

producers sample.

The inclusion of human capital in terms of schooling increases the adjusted R2 for all

samples. Estimated coefficients for population growth are statistically insignificant for

all samples although the signs are as the Solow model predicts. Schooling is insignificant

for OECD countries. The estimated rates of conditional convergence are higher for this

regression: 0.7%, 1%, and 1.7% respectively for the non-oil, intermediate, and OECD

subsamples, and all are statistically significant.

These results imply that when the period of analysis is extended from 1960-85 to

1960-95, the sharp outcomes supportive of the Solow model in the cross-country setting

deteriorate.

4.2 Classification Analysis

The results of Bayesian classification are summarized in Tables 5, 6 and 7. The classi-

fication with the highest probability groups the data into four clusters. Class 1 has 24

members, Class 2 has 22, Class 3 has 43, and Class 4 has 16 members. Table 5 lists the

log posterior probabilities of a few best possible alternative classification models. These

probabilities can be used to calculate relative probability of two alternative models by

taking the exponential of the difference between the log posterior probabilities of the two
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models, i.e. the result will yield P (M1|y)/P (M2|y) which gives the number of times

M1 is more likely than M2.

Table 6 lists the countries in each class. For the majority of the countries, the

probability of being a member of the classes shown is larger than 0.8. The countries with

membership probability less than 0.8 are as follows: Belize is in Class 3 with probability

0.79, in Class 2 with probability 0.21; Mexico is in Class 3 with probability 0.63, in

Class 2 with probability 0.37; Chile is in Class 2 with probability 0.57, in Class 3 with

probability 0.4; Tunisia is in Class 2 with probability 0.57, in Class 3 with probability

0.43; and Zambia is in Class 4 with probability 0.75, in Class 3 with probability 0.24. In

Table 6 the countries are listed under the groups for which their membership probability

is the highest.

Table 7 summarizes the descriptive statistics for each class. Class 1 has the highest

average values for real GDP per capita in 1960 and in 1995, as well as schooling, and the

lowest for population growth, and the second highest saving rate, after class 2. Class 4

has the lowest real GDP per capita both in 1960 and in 1995, as well as the saving rate

in terms of both physical and human capital on average. The highest population growth

on average is in Class 3.

There is a large discrepancy among the classes in terms of average per capita income

in both 1960 and 1995. Income per capita increased during the period on average for

Classes 1, 2 and 3, however it decreased for Class 4 in real terms. We also observe an

increase in the cross-section variation of income per capita within groups. On the other

hand, the average group saving rates do not show as large a discrepancy as does average

per capita incomes. Secondary school enrollment differs widely on average across groups.

Population growth in average is low for those classes with high average per capita income.

In Class 2, Saudi Arabia has a very high population growth rate relative to the rest of

the group, once it is excluded, the average growth rate of population drops to 3.11%.

A point of caution is to be made. As indicated earlier, the results of a classification

analysis depends crucially on the data set. Although the classification procedure used
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in this paper is also prone to this issue, as the outcome is totally probabilistic, no de-

terministic statements are made. It is possible to strengthen the classification outcomes

by using a concept similar to the one used in Hobijn and Franses (2000). In their pa-

per, Hobijn and Franses (2000) use a concept that they call cluster correlation. They

define cluster correlation as the degree of overlap of two outcomes for the same set of

countries. Such an exercise is not carried out in this paper as it might be very difficult

to obtain cluster correlation results for all classification models M∈ S. Therefore, pos-

terior probabilities of the best alternative models are used as the sole basis of statistical

comparison.13

4.3 Empirical Solow Model Within Groups

The classification summarized in Tables 6 and 7 displays the aspects of heterogeneity in

the data. Rather than dividing the sample according to non-oil producers, intermediate

group, and OECD countries as in MRW, the subsamples are formed according to the

statistical distribution each country belongs to. This partitioning of the data set is based

on the idea that the data is sampled from a heterogeneous population, and enables us

to form systematic groupings accordingly. Within each subsample, countries have the

same growth process, and thus, a separate regression analysis is performed on each

subsample. Equations (10) through (13) are estimated for each subsample. The results

are summarized below.

Table 8 reports the estimation results for equations (10) and (11). Note that the

signs of the estimated coefficients do not turn out to be what the Solow model predicts

once heterogeneity in the sample is accounted for. The estimates of equation (10) show a
13At this point, it might be useful to look at the Herfindahl index measure for the classification outcome

of this section. The data set has 105 countries, and as the result of the Bayesian classification analysis
carried out, the countries are partitioned into four groups, one with 24 countries, the second with 22, the
third with 43 and the fourth with 16 countries indicating a Herfindahl index value of 0.71. This shows
that the degree of diversity within the data set is quite high. (Note that this index is calculated using
the formula 1−∑n

i=1
s2

i where n is the number of groups and si is the size of group i in proportion to the
total sample size.) As stated above for the case of cluster correlation, the calculation of the Herfindahl
index for all possible classification models M ∈ S might be quite difficult and is thus left out. The
comparison of alternative classification models is based on the posterior probabilities of the models.
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positive relationship between per capita income and population growth rate for Classes

1 and 2, and a negative relationship between the saving rate and per capita income for

Class 2, though these estimates are not significant at conventional levels. Further, the

estimated coefficients of saving rate for Class 1 and population growth for Class 4 are

insignificant as well.

Once human capital is taken into account, population growth and per capita income

is estimated to have a positive relationship for all of the subsamples as well as the whole

sample. Note, however, that most of these estimates are not significant. Furthermore,

there is a negative relationship between the saving rate and per capita income, this time

for Classes 3 and 4. In fact, this is not inconsistent with the descriptive statistics in

Table 7. It has been noted above that although there is a large discrepancy among the

groups in terms of average income per capita, the saving rates do not seem to differ as

much on average. This might suggest that the saving rates do not matter for income per

capita in poorer countries. The coefficient estimates for schooling, on the other hand,

have the expected signs. Classes 1 and 2, those that have the highest education levels

on average, also have significant and positive estimates for schooling. The implication of

these results is that the relationships predicted by the Solow model do not hold once the

data set is partitioned into subsamples, each of which is generated by a different process.

Table 9 reports the estimation results for equations (12) and (13). The results indi-

cate unconditional convergence for Class 1, Class 2, and Class 4 at 1.8%, 2%, and 1%

respectively. Class 3, the largest, show divergence at a rate of -0.2% while there is diver-

gence in the whole sample of -0.4%. Note however that these results are not significant

for Class 3 and Class 4. Thus, there is not much evidence of unconditional convergence

except for the groups that are toward the high-end of the distribution.

Equation (13) is estimated twice, once without schooling, and once with schooling.

There is evidence of convergence for all subsamples as well as the whole sample in the

first case, though it is not significant. The rates of convergence are 1%, 0.9%, 0.4%, 1%,

and 0.1% for Class 1, 2, 3, 4, and the whole sample respectively. There is insignificant
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evidence within-cluster convergence for Classes 2, 3, and 4, but significant for Class 1.

Note, however, that in addition to the initial income per capita, for Class 2, the sign of

the saving rate is also the opposite of what the Solow model predicts. Further, population

growth is insignificant for Classes 1 and 4.

When schooling is included, again positive convergence within clusters and for the

whole sample is found. The rates are 1.9%, 1.1%, 0.4%, 0.1% and 0.7% for Class 1,

2, 3, 4, and the whole sample respectively. These coefficients are again insignificant

for Classes 2, 3, and 4. Contrary to the predictions of the Solow model, the regression

outcomes imply a positive relation between population growth and growth of per capita

income for Classes 1 and 2, and a negative relation between schooling and growth of per

capita income for Class 4. Schooling is statistically insignificant in Class 3.

The results of this section indicate that once the heterogeneity in the sample is ac-

counted for according to the underlying statistical distributions, the regression outcomes

differ from what the Solow model predicts in terms of the signs of some of the estimated

coefficients. In addition, it is possible to find divergence within some groups uncondi-

tionally. Estimated conditional convergence coefficients are larger and the results are

more supportive of the Solow model when the partitioning is ad hoc.

5 Conclusion

The purpose of this study is to reconsider the empirical growth models by exploring the

patterns of heterogeneity in the data set that would lead to the use of different regression

models in different subsamples. The paper proposes the use of Bayesian classification to

systematically reveal the patterns of heterogeneity in the data. The second step, then, is

to use this information on heterogeneity in the cross-country growth regressions and in

the tests of convergence hypothesis by performing a separate analysis for each subsample.

The data set used to illustrate the methodology includes the standard Solow growth

model variables, which are also used by Mankiw et al. (1992). The results of the analysis

20



indicate that once the heterogeneity in the sample is accounted for according to the

underlying statistical distributions, the regression outcomes differ from what the Solow

model predicts in terms of the signs of some of the estimated coefficients.

The important point to note is that this method does not explain the underlying

reasons for the differences between the groups. It is based on the idea that the data comes

from different statistical distributions, however it cannot characterize the determinants

of the differences. In addition, the analyses indicate that although countries in the same

group experience the same growth process, there is no significant evidence supporting

within group convergence in income levels, except perhaps for the group that includes

all the advanced economies. The reasons for these two issues are beyond the scope of

this paper, and are left as future research questions to be explored.

The findings imply that it would be misleading to run cross-country growth regres-

sions on the whole sample without taking the subsample differences into account. In

addition, once the underlying factors of the differences across groups are identified, more

accurate policy prescriptions can be made to improve the conditions and to enhance

growth in the less developed countries so that they catch up with the rich.
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y1960 y1995 sh (%) sk (%) n (%)
Mean 2,251 5,038 45.78 21.32 3.37
Std.Dev. 2,154 5,194 29.32 5.81 0.05
Minimum 257 225 3.69 7.45 0.07
Maximum 9,895 18,975 104.44 37.33 10.45
Range 9,638 18,750 100.75 29.88 10.38
# of Obs. 105

Table 1: Desctiptive Statistics.
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Dependent Variable: log GDP/capita in 1995

Sample Non-Oil Intermediate OECD
# of Obs. 100 71 18
Constant 3.984 3.848 5.900

(1.182) (1.270) (2.186)
ln(I/GDP ) 1.652 1.529 0.101

(0.286) (0.379) (0.537)
ln(n + g + δ) -2.609 -2.648 -1.315

(0.379) (0.388) (0.689)

R
2

0.537 0.534 0.097

Sample Non-Oil Intermediate OECD
# of Obs. 100 71 18
Constant 6.846 8.408 11.037

(0.910) (1.089) (1.760)
ln(I/GDP ) -1.016 -0.418 0.558

(0.323) (0.400) (0.588)
ln(n + g + δ) 0.302 0.134 -0.143

(0.253) (0.327) (0.346)
ln(school) 0.940 1.249 1.599

(0.100) (0.159) (0.334)

R
2

0.756 0.756 0.633

Table 2: The OLS estimates of equations (10) and (11)
Note: Standard errors are in parantheses.
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Dependent Variable: log difference of GDP/capita 1960-95

Unconditional Convergence

Sample Non-Oil Intermediate OECD
# of Obs. 100 71 18
Constant -0.653 0.397 4.029

(0.505) (0.597) (0.882)
ln(y60) 0.169 0.042 -0.365

(0.068) (0.079) (0.103)

R
2

0.049 -0.010 0.404
Implied λ -0.004 -0.001 0.013

(0.002) (0.002) (0.005)

Table 3: The OLS estimates of equation (12)
Note: Standard errors are in parantheses.

27



Dependent Variable: log difference of GDP/capita 1960-95

Conditional Convergence

Sample Non-Oil Intermediate OECD
# of Obs. 100 71 18
Constant 1.639 2.372 3.278

(0.655) (0.721) (0.963)
ln(I/GDP ) 1.332 1.542 0.803

(0.155) (0.212) (0.239)
ln(n + g + δ) -0.548 -0.672 -0.551

(0.244) (0.271) (0.301)
ln(y60) -0.042 -0.131 -0.319

(0.062) (0.071) (0.080)

R
2

0.495 0.489 0.702
Implied λ 0.001 0.004 0.011

(0.002) (0.002) (0.003)

Sample Non-Oil Intermediate OECD
# of Obs. 100 71 18
Constant 3.152 4.238 5.167

(0.728) (0.973) (1.689)
ln(I/GDP ) 0.895 1.057 0.609

(0.185) (0.270) (0.273)
ln(school) 0.348 0.432 0.441

(0.091) (0.159) (0.328)
ln(n + g + δ) -0.359 -0.287 -0.173

(0.233) (0.395) (0.406)
ln(y60) -0.228 -0.301 -0.442

(0.076) (0.092) (0.120)

R
2

0.558 0.533 0.718
Implied λ 0.007 0.010 0.017

(0.003) (0.004) (0.006)

Table 4: The OLS estimates of equation (13)
Note: Standard errors are in parantheses.
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# of Classes 1 2 3 4 5 6

log probability -4063 -4012 -4022 -4002 -4012 -4020

Table 5: Alternative Classification Models
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Class 1 Class 2 Class 3 Class 4

Australia Argentina Algeria Indonesia Burkina Faso
Austria Botswana Bangladesh Iran Burundi
Bahamas Chile Belize Kenya C. Afr. Rep.
Barbados China Benin Mexico Chad
Belgium Guyana Bolivia Morocco Congo, D.R.
Canada Hong Kong Brazil Nepal Guinea-Bissau
Denmark Jamaica Cameroon Nicaragua Haiti
Finland Korea, Rep. Colombia Nigeria Madagascar
France Lesotho Congo, Rep. Pakistan Malawi
Greece Malaysia Costa Rica Panama Mali
Hungary Mauritius Cote d’Ivoire Paraguay Mauritania
Iceland Oman Dominican R. Peru Mozambique
Israel Romania Ecuador Philippines Niger
Italy Saudi Arabia Egypt Senegal P.N. Guinea
Japan Singapore El Salvador S.Africa Rwanda
Malta Sri Lanka Ethiopia Sudan Zambia
Netherlands Suriname Fiji Swaziland
New Zealand Syria Gambia, the Togo
Norway Thailand Ghana Turkey
Spain Trinidad & Tobago Guatemala Uganda
Sweden Tunisia Honduras Zimbabwe
UK Venezuela India
USA
Uruguay

Table 6: Classification Results: List of Countries
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Class 1 Class 2 Class 3 Class 4
GDP/Capita-60 - Average 5,234 2,059 1,247 736
GDP/Capita-60 - Standard Deviation 2,212 1,665 621 280
GDP/Capita-60 - Minimum 1,374 313 257 380
GDP/Capita-60 - Maximum 9,895 6,338 2,946 1,235
GDP/Capita-95 - Average 12,498 5,763 2,143 630
GDP/Capita-95 - Standard Deviation 3,728 4,350 1,277 346
GDP/Capita-95 - Minimum 4,870 1,142 331 225
GDP/Capita-95 - Maximum 18,975 18,051 5,919 1,787
Schooling - Average 87.98 50.51 33.28 9.56
Schooling - Standard Deviation 9.77 16.65 15.46 5.34
Schooling - Minimum 69.02 20.22 8.59 3.69
Schooling - Maximum 104.44 81.12 64.84 19.86
Saving Rate - Average 22.95 26.49 19.75 15.95
Saving Rate - Standard Deviation 4.07 4.73 4.60 6.04
Saving Rate - Minimum 15.97 19.65 11.25 7.45
Saving Rate - Maximum 32.46 37.33 33.70 26.67
Population Growth - Average 1.10 3.44 4.40 3.88
Population Growth - Standard Deviation 0.03 0.07 0.03 0.03
Population Growth - Minimum 0.07 0.66 2.90 2.52
Population Growth - Maximum 4.64 10.45 7.37 5.78

Table 7: Descriptive Statistics for the Classes
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Dependent Variable: log GDP/capita in 1995

Sample Class 1 Class 2 Class 3 Class 4 All Sample
# of Obs. 24 22 43 16 105
Constant 10.565 8.891 3.083 4.075 5.261

(1.605) (2.415) (1.929) (2.124) (1.159)
ln(I/GDP ) 0.044 -0.864 1.461 0.653 1.674

(0.447) (0.955) (0.321) (0.243) (0.243)
ln(n + g + δ) 0.399 0.657 -2.874 -1.447 -2.126

(0.483) (0.665) (0.767) (0.857) (0.373)

R
2

-0.026 0.030 0.556 0.344 0.454
Sample Class 1 Class 2 Class 3 Class 4 All Sample
# of Obs. 24 22 43 16 105
Constant 11.306 14.803 5.341 4.003 8.001

(1.086) (3.230) (0.703) (2.207) (0.854)
ln(I/GDP ) 0.525 2.081 -1.472 -1.535 -0.563

(0.325) (0.829) (0.260) (0.919) (0.302)
ln(n + g + δ) 0.090 0.131 0.270 0.640 0.243

(0.300) (0.941) (0.253) (0.254) (0.249)
ln(school) 2.360 1.363 0.736 0.066 1.025

(0.457) (0.556) (0.318) (0.179) (0.099)

R
2

0.724 0.233 0.643 0.298 0.732

Table 8: The OLS estimates of equations (10) and (11) for each subsample
Note: Standard errors are in parantheses.
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Dependent Variable: log difference of GDP/capita 1960-95

Unconditional Convergence
Sample Class 1 Class 2 Class 3 Class 4 All Sample
# of Obs. 24 22 43 16 105
Constant 4.926 4.731 0.092 1.809 -0.394

(0.849) (1.258) (0.688) (1.664) (0.502)
ln(y60) -0.473 -0.499 0.056 -0.306 0.136

(0.100) (0.171) (0.098) (0.254) (0.068)

R
2

0.281 0.264 -0.012 0.029 0.028
Implied λ 0.018 0.020 -0.002 0.010 -0.004

(0.005) (0.010) (0.003) (0.010) (0.002)

Conditional Convergence
Sample Class 1 Class 2 Class 3 Class 4 All Sample
# of Obs. 24 22 43 16 105
Constant 4.960 8.001 -2.436 0.952 2.095

(1.163) (2.011) (1.086) (1.591) (1.591)
ln(I/GDP ) 0.990 1.588 0.652 0.719 1.364

(0.274) (1.106) (0.176) (0.161) (0.157)
ln(n + g + δ) -0.002 1.088 -2.095 -0.881 -0.331

(0.266) (0.565) (0.389) (0.584) (0.225)
ln(y60) -0.304 -0.282 -0.139 -0.293 -0.021

(0.096) (0.228) (0.078) (0.168) (0.060)

R
2

0.541 0.339 0.430 0.601 0.462
Implied λ 0.010 0.009 0.004 0.010 0.001

(0.004) (0.009) (0.003) (0.007) (0.002)
Sample Class 1 Class 2 Class 3 Class 4 All Sample
# of Obs. 24 22 43 16 105
Constant 6.703 13.471 -2.435 0.153 3.738

(1.400) (2.559) (1.348) (1.313) (0.730)
ln(I/GDP ) 0.766 2.360 0.651 0.802 0.910

(0.281) (0.974) (0.265) (0.134) (0.187)
ln(school) 0.962 1.249 0.000 -0.308 0.371

(0.487) (0.437) (0.150) (0.112) (0.094)
ln(n + g + δ) 0.152 2.369 -2.094 -0.266 -0.135

(0.261) (0.655) (0.463) (0.520) (0.216)
ln(y60) -0.483 -0.323 -0.139 -0.035 -0.223

(0.128) (0.193) (0.093) (0.165) (0.076)

R
2

0.687 0.527 0.418 0.741 0.530
Implied λ 0.019 0.011 0.004 0.001 0.007

(0.007) (0.008) (0.003) (0.005) (0.003)

Table 9: The OLS estimates of equations (12) and (13) for each subsample
Note: Standard errors are in parantheses.
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