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1. Introduction 

During the recent years the importance of effective risk management has 

become extremely important. This is the outcome of several significant factors. First, 

the enormous growth of trading activity that has been taking place in the stock 

markets, especially those of the emerging economies. Second, the financial disasters 

that took place in the 1990s that have led to bankruptcy well-known financial 

institutions. These events have put great emphasis for the development and adoption 

of accurate measures of market risk by financial institutions. Financial regulators and 

supervisory committee of banks have favoured quantitative risk techniques which can 

be used for the evaluation of the potential loss that financial institutions can suffer. 

Furthermore, given that the nature of these risks change over time effective risk 

management measures must be responsive to news such as other forecasts as well as 

to be easy understood even in complicated cases.    

We have observed a substantial increase in financial uncertainty as a result of 

the increased volatility that was observed in the stock returns of the mature markets 

but mainly of those of the emerging markets. This was the outcome of the increased 

flow of portfolio capital from the mature markets to the emerging markets of the 

South East Asia and the economies of transition of Central and Eastern European 

countries. Singh and Weisse (1998) report that during the period 1989-1995 the 

inflow of funds in emerging markets amounted to 107.6 billion US dollars as opposed 

to a mere 15.1 billion US dollars in the previous period 1983-1988. There are several 

reasons for these enormous inflow of portfolio funds to the emerging markets but 

certainly the most important was the fact that during the 1990s the mature markets has 

reached their limitations with respect to profit opportunities and made portfolio 
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managers and institutional investors to look for new opportunities in these new 

markets. 

Furthermore, the financial crisis of 1997-1998 as well as the bankruptcy of 

several financial institutions such as the BCCI and Barrings international banks have 

led to the increased price volatility and financial uncertainty. Such financial 

uncertainty have increased the likelihood of financial institutions to suffer substantial 

losses as a result of their exposure to unpredictable market changes. These events 

have made investors to become more cautious in their investment decisions while it 

has also led for the increased need for a more careful study of price volatility in stock 

markets. Indeed, recently we observe an intensive research from academics, financial 

institutions and regulators of the banking and financial sectors to better understanding 

the operation of capital markets and to develop sophisticated models to analyze 

market risk. 

Value-at-Risk has become the standard tool used by financial analysts to 

measure market risk. VaR is defined as a certain amount lost on a portfolio of 

financial assets with a given probability over a fixed number of days. The confidence 

level represents ‘extreme market conditions’ with a probability that is usually taken to 

be 99% or 95%. This implies that in only 1% (5%) of the cases will lose more than 

the reported VaR of a specific portfolio. VaR has become a very popular tool among 

financial analysts which is widely used because of its simplicity. Essentially the VaR 

provides a single number that represents market risk and therefore it is easily 

understood.1 

During the last decade several approaches in estimating the profit and losses 

distribution of portfolio returns have been developed and a substantial literature of 

                                                 
1 See also Bank for International Settlements (1988, 1999a,b,c, 2001). 
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empirical applications have emerged. However, most of these models have focused on 

the computation of the VaR on the left tail of the distribution which corresponds to 

the negative returns. This implies that it is assumed that portfolio managers or traders 

have long trading positions, which means that they bought an asset at a given price 

and they are concerned with the case that the price of this asset falls resulting in 

losses.  

The present paper deals with modeling VaR for portfolios that includes both 

long and short positions. Therefore, we consider the modeling and calculation of VaR 

for portfolio managers who have taken either a long position (bought an asset) or a 

short position (sold an asset). As it is well known, in the former case the risk of a loss 

occurs when the price of the traded asset falls, while in the later case the trader will 

incur a loss when the asset price increases.2 Therefore, in the first case we model the 

left tail of the distribution of returns and in the second case we model the right tail of 

the distribution. 

Given the stylized fact that the distribution of asset returns is nonsymmetric, 

recently, Giot and Laurent (2003) have shown that models which rely on a symmetric 

density distribution for the error term underperform with respect to skewed density 

models when the left and right tails of the distribution of returns must be modeled. 

This implies that VaR for portfolio managers or traders who hold both long and short 

positions cannot be accurately modeled by the application of the standard normal and 

Student distributions. Giot and Laurent (2003) also show that similar problems arise 

when we try to model the distribution with the asymmetric GARCH models which 

assumes that there is an asymmetry exists between the conditional variance and the 

lagged squared error term, (see also El Babsiri and Zakoian, 1999). 

                                                 
2 Sharpe, Alexander and Bailey (1999) provide a comprehensive analysis of trading strategies.  
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To take into account these disadvantages, we apply the univariate Student 

Asymmetric Power ARCH (APARCH) model introduced by Ding et al. (1993) in 

order to model and calculate the VaR for portfolios defined on long position (long 

VaR) and short position (short VaR). The performance of this model is compared with 

those of the standard parametric Riskmetrics and normal and Student APARCH 

models.  

We apply our methodology to portfolios for long and short positions on daily 

stock indexes (General, Banking, Industrial) and daily stocks of companies which re 

traded in an emerging stock market the Athens Stock Exchange. VaR models have 

mainly applied to evaluating positions taken in the mature stock markets. However, 

the recent enormous trading activity that took place in the emerging markets and the 

negative effects of the Southeast Asia financial crisis in 1997 have increased the need 

for a closer look in modeling the volatility of returns of these markets and more 

importantly to model VaR for portfolios on long and short positions which are mainly 

constructed from stocks which are traded in emerging markets. Thus, we focus on the 

joint behaviour of VaR models for long and short trading positions.   

The main finding of our analysis is that the skewed Student APARCH 

improves considerably the forecasts of one-day-ahead VaR for long and short trading 

positions. Additionally, we evaluate the performance of each model with the 

calculation of Kupie’s (1995) Likelihood Ratio test on the empirical failure test.  

Moreover, for the case of the skewed Student APARCH model we compute the 

expected shortfall and the average multiple of tail event to risk measure. These two 

measures help us to further assess the information we obtained from the estimation of 

the empirical failure rates.        
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The remainder of the paper is organized as follows. Section 2 presents the 

VaR models used in this analysis. In section 3 we report our empirical results and 

finally section 4 provides our concluding remarks.           

 

2. VaR models 

In this section we follow Giot and Laurent (2003) and provide a brief 

description of the four models used in the analysis. The starting point is the definition 

of the conditional mean and variance of the disturbance term which is relevant for all 

alternative VaR specifications. Therefore, we consider a series of daily returns, ty , 

with Tt ...1= . In order to take into account the serial correlation that daily returns 

exhibit as it is well known we fit an )(nAR model on the ty series: 

 

ttyL εµ =−Φ ))((            (1) 

where n
n LLL φφ .....1)( 1 −−=Φ  is defined as an AR lag polynomial of order n . Thus, 

the conditional mean of ty , i.e. tµ , is equal to ∑
=

− −+
n

j
jtj y

1
)( µφµ .  The crucial issue 

in VaR modeling is the specification that the conditional variance takes. As we have 

already mentioned in the present paper we consider for models with corresponding 

conditional variance specification, namely, Riskemetrics, Normal APARCH, Student 

APARCH and skewed Student APARCH.3 The performance of each model is based 

on how well it can predict long VaR trading positions (i.e. to model large negative 

returns) while with respect to the right tail of the distribution of returns the predictive 

performance of of short VaR is evaluated by its ability to model large positive returns. 

 
                                                 
3 Jorion (2000) provides a complete analysis of the VaR methodology and alternative estimation 
methodologies 
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2.1. Riskmetrics 

J.P. Morgan’s Riskmetrics (1996) model combines an econometric model with 

the assumption of conditional normality for the returns series. Specifically, this model 

rely on the specification of the variance equation of the portfolio returns and the 

assumption that the standardized errors are i.i.d.. In this model the autoregressive 

parameter is pre-specified at given value λ whereas the coefficient of 2
1−tε  equals to 

λ−1 . For the case of daily data, 94.0=λ and we then obtain:  

ttt zσε =          (2) 

where the standardized error tz  is i.i.d )1,0(N  and the variance 2σ is defined as: 

 

2
1

2
1

2 )1( −− +−= ttt λσελσ         (3) 

Then the one-step-ahead VaR forecast computed in 1−t for the case of long 

positions is calculated by tat z σµ + , and for the short position is calculated by 

tat z σµ −+ 1 , with α chosen to be a standard level of significance.4 Since αα −−= 1zz  

the forecasted long and short VaR will be equal. 

 

2.2. Normal APARCH 

The normal APARCH developed by Ding et al. (1993) is an extension of the 

GARCH model, (Bollerslev; 1986). The advantage of this class of models is its 

flexibility since it includes a large number of alternative GARCH specifications. The 

APARCH (1,1) model is given by the following expression: 

 

δδ σβεαεαωσ 11111
2 )|(| −−− +−+= ttnt       (4) 

                                                 
4 We note that when calculating the VaR the conditional mean and variance are computed with the 
replacement of the unknown parameters in equation (1) with their MLE estimates. 
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where 11 ,,, βααω n  and δ  are parameters to be estimated in addition to tµ  and tσ . 

The term )11( <<− nn αα , represents the leverage effect, while the coefficient 

)0( >δδ  is a Box-Cox transformation of tσ .5 He and Terasvista (1999a,b) provide a 

thorough analysis of the properties of the APARCH model. 

The one-step-ahead VaR forecast for the normal APARCH is computed with 

the same way as for the Riskmetrics model with the only difference that the 

conditional variance is given by equation (4).6 

 

2.3. Student APARCH 

 It has been well documented in the finance literature that that models which 

rely on the assumption that the distribution of returns follows the normal one fail to 

take into account the fat tails of the distribution of results leads to the underestimation 

of the VaR. This underestimation can be corrected by allowing alternative 

distributions of the errors such as the Gaussian, Student’s-t and Generalized Error 

Distribution. The adoption of the Student APARCH (ST APARCH) is a potential 

solution to the problem. The specification of errors is given by: 

 

ttt zσε =       (5) 

where tz  is i.i.d. ),1,0( υt and tσ  is defined as in equation (4). 

The one-step-ahead VaR for long and short positions is given by tt st σµ υα ,+  

and tt st σµ υα ,1−+ , with α chosen to be a standard level of significance.7 

                                                 
5 Black (1976), French et al. (1987) and Pagan and Schwert (1990) among others suggest that the 
leverage effect means that a positive (negative) value of nα  implies that the past negative (positive) 
shocks have a deeper impact on current conditional volatility than past positive shocks. 
6 As before tσ  is evaluated at its MLE. 
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2.4. Skewed Student APARCH 

Fernandez and Steel (1998) have developed the skewed Student APARCH 

model which is an extension of the Student APARCH model with the inclusion of the 

skewness parameter.  

 

3. Empirical results 

We apply the alternative Value at Risk model specifications on daily return 

data for the period January 4, 1988 to November 1, 2004. The data was taken from 

Datastream and our sample consists of 4190 observations. The data set refers to three 

stock market indexes of the Athens Stock Exchange (ASE), namely, GENERAL, 

BANKING and INDUSTRIAL and three stocks (blue chips) of Greek companies 

which are traded in the ASE, namely COCA COLA (2/1/98-4/11/2004-1707, 

MIHANIKI(14/1/97-4/11/2004-1947), and MOUZAKIS.  We follow this strategy in 

order to investigate the performance of the VaR measures of market risk for the case 

of stocks traded in an emerging market. In order to implement our analysis we 

construct historical portfolios for each case and we choose a specification of the 

functional form of the distribution of returns. We successively consider the 

Riskmetrics, normal APARCH, Student APARCH and skewed Student APARCH. 

The daily returns are computed as 100 times the difference of the log of the prices, i.e. 

)]ln()[ln(100 1−−= ttt ppy . 

Table 1 reports descriptive statistics for the returns series. We clearly observe 

that all six return series display similar statistical properties with respect to skewness 

                                                                                                                                            
7 As in the case of the normal of distribution, since αα −−= 1stst  the forecasted long and short VaR 
will be equal. 
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and kurtosis. Thus, the return series are skewed (either negatively or positively) 

whereas the large returns (either positive or negative) lead to a large degree of 

kurtosis. Furthermore, The Lung-Box 2Q  statistics for all returns series are 

statistically significant, providing evidence of strong second-moment dependencies 

(conditional heteroskedasticity) in the distribution of the stock price changes.  

Figures 1-6 provides descriptive graphs (level of price series, daily returns, 

density of the daily returns vs. normal and QQ-plots against the normal distribution) 

for each daily returns series. The density graphs and the QQ-plots the normal 

distribution show that all the distributions of returns exhibit fat tails. Furthermore, the 

QQ-plots imply that there is an asymmetry in the fat tails. An additional result of 

these graphical expositions show that the six return series exhibit volatility clustering, 

which means that there are periods of large absolute changes tend to cluster together 

followed by periods of relatively small absolute changes. 

Given these salient features of the daily returns for three indexes of ASE as 

well as three stocks of Greek companies listed in ASE we now move to perform the 

VaR analysis based on the four chosen models. Table 2 reports the results for the 

(approximate maximum likelihood) estimation of the skewed Student APARCH 

model on all six daily return series.8 The calculated Ljung-Box 2Q -statistic is not 

significant (except for the Coca Cola stock) and this implies that the skewed Student 

APARCH model is successful in taking into account the conditional 

heteroskedasticity exhibited by the data. Furthermore, it is shown that the 

autoregressive coefficient in the volatility specification 1β  takes values between 0.72 

to 0.93 suggesting that there are substantial memory effects. The coefficient nα  is 

                                                 
8 All computations were performed with G@RCH 3.0. procedure on Ox package (see also Laurent and 
Peters, 2002). 
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positive and statistically significant for all series, indicating the existence of a 

leverage effect for negative returns in the conditional variance specification. The next 

important result concerns the value of )log(ξ , which is positive in all six case and this 

result implies we were correct in incorporating the asymmetry element in the Student 

distribution in order to model the distribution of returns in an appropriate way. The 

final significant result reported in Table 1 refers to the value of δ which takes values 

from 0.815 and 1.537 statistically significant from 2.9 

The above results indicate that the skewed Student APARCH model takes into 

consideration the feature of a negative leverage effect (conditional asymmetry)  for 

the conditional variance as well as with the fact that the existence of an asymmetric 

distribution for the error term (unconditional asymmetry). 

We next move to examine whether the skewed Student APARCH model 

provides better VaR estimates and forecasting performance than the other three 

models, Riskemetrics, normal APARCH and Student APARCH. To this end we move 

on to provide in-sample VaR computations and this is accomplished by computing the 

one-step-ahead VaR for all models. We test all models with a VaR level of 

significance, )(α , that takes values from 0.25% to 5% and we then evaluate their 

performance by calculating the failure rate for the returns series ty . The failure rate is 

defined as the number of times returns exceed the forecasted VaR. Following Giot 

and Laurent (2003) we define a failure rate lf  for the long trading positions, which is 

equal to the percentage of negative returns smaller than one-step-ahead VaR for long 

positions. In a similar manner, we define sf  as the failure rate for short positions as 

                                                 
9 The fact that for all six series the value of δ is not statistically significant different from 1 suggest 
that instead of modeling the conditional variance is better to model the conditional standard deviation. 
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the percentage of positive returns larger than the one-step-ahead VaR for short 

position.10             

We test the null hypothesis α=fH :0  against the alternative α≠fH :1 , 

where f  is the failure rate (estimated by 
^
f , the empirical failure rate). Giot and 

Laurent (2003) suggest that the computation of the empirical failure rate defines a 

sequence of yes/no, under this testable hypothesis. Then assuming that and if T  

yes/no observations are available the 95% confidence interval of 
^
f  is given by 

,/)1(96.1[
^^^

Tfff −−  ]/)1(96.1
^^^

Tfff −+ . This is a Likelihood Ratio developed 

by Kupiec (1995) and the corresponding p -values for the four VaR models and for 

given significance levels are reported in Table 3.  

These results clearly lead to the conclusion that the models which assume the 

normal distribution for the returns, i.e. RiskMetrics and normal APARCH, exhibit a 

poor performance in modelling large positive and negative returns. Moreover, we see 

that the use of the symmetric Student APARCH certainly leads to better results than 

the models based on the normality assumption but we definitely obtain the best results 

when the skewed Student APARCH model is applied. This model improves 

substantially on all other specifications for both negative and positive returns.  

The picture that emerges from Table 4 further reinforces the superiority of the 

skewed Student APARCH model over the alternative specifications. Indeed, this 

specification successfully models almost all VaR levels for either long or short trading 

positions since in only one case (Coca Cola) we get a value which is away from the 

100 target. 

                                                 
10 When the VaR model is correctly specified then the failure rate should be equal to the pre-specified 
VaR level. 
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We further assess the performance of the competing models by computing the 

out-of-sample VaR forecasts. The results for the six return series are given in Table 5. 

Again we see that the skewed Student APARCH model delivers the best performance 

for out-of-sample VaR predictions. 

Finally, we complete our econometric analysis we a further analysis of the 

skewed Student APARCH model and the other three models with the estimation of 

the expected shortfall and the average multiple of tail event to risk measure. These 

results are summarized in Table 6. Both these measures show that again the skewed 

Student APARCH model provides much better information to the risk managers. 

 

4. Conclusions 

This paper have focused on the comparison of four alternative models for the 

estimation of one-step-ahead VaR for long and short trading positions. We have 

applied a battery of univariate tests on four parametric VaR models namely, 

RiskMetrics, normal APARCH, Student APARCH and skewed Student APARCH. 

Our overall results lead to the overwhelming conclusion that the skewed Student 

APARCH model outperforms all other specification modelling VaR for either long or 

short positions.       
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Table 1. Descriptive statistics 
 

 Stock indexes 
 

Stocks 
 

 General Bank Industry CocaCola Mihaniki Mouzakis 
       
Annual s.d. 22.49 20.92 26.29 23.89 37.71 40.28 
Skewness 0.14 0.39 28.63 0.06 -0.84 -2.22 
Excess Kurtosis 5.32 5.86 14.12 3.83 14.79 40.72 
Minimum -10.57 -12.54 -16.51 -15.59 -42.42 -65.85 
Maximum 13.75 16.58 129.78 15.03 28.45 30.11 

)10(2Q  803.16 826.88 2986.00 304.84 80.45 8.99 
 
 

 
Notes: Descriptive statistics for the daily returns of the corresponding financial asset 
(stock index or individual stock) expressed in %. All values are computed using 
PcGive. )10(2Q  is the Ljung-Box Q -statistic of order 10 on the squared series. 
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Table 2. Skewed Student APARCH 
 

 Stock indexes 
 

Stocks 

 General Bank Industry 
 

CocaCola Mihaniki Mouzakis 

ω  0.086(0.016) 0.148(0.031) 0.070(0.014) 0.028(0.018) 0.362(0.133) 0.268(0.118) 
1α  0.243(0.024) 0.249(0.025) 0.213(0.023) 0.088(0.023) 0.249(0.039) 0.184(0.035) 

nα  0.055(0.033) 0.022(0.034) 0.076(0.048) 0.172(0.103) 0.026(0.062) -0.036(0.035) 

1β  0.770(0.022) 0.752(0.025) 0.799(0.022) 0.926(0.021) 0.725(0.047) 0.815(0.037) 
δ  1.498(0.183) 1.537(0.196) 0.815(0.105) 1.263(0.291) 1.057(0.192) 1.350(0.225) 

)log(ξ  0.035(0.022) 0.050(0.022) 0.036(0.029) 0.023(0.030) 0.139(0.031) 0.018(0.025) 

ν  5.322(0.423) 5.026(0.385) 4.225(0.276) 4.400(0.506) 4.329(0.506) 0.884(0.553) 
V  0.966 0.956 0.952 0.991 0.909 0.958 

)10(2Q  5.641(0.687) 23.679(0.003) 31.948(0.022) 57.548(0.000) 0.499(0.078) 0.953(0.998) 

 
 

 
Notes: Estimation results for the validity specification of the Skewed Student 
APARCH model. Standard errors are reported in parenthesis. 

11 )|(| βαα δ +−= zzEV n  while )10(2Q is the Ljung-Box Q -statistic of order 10 on 
the squared series. 
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Table 3(a). VaR results for GENERAL, BANKING and INDUSTRIAL (in-sample) 
 
 
α   5% 2.5% 1% 0.5% 0.25% 
  

VaR for long positions (GENERAL) 
 

RiskMetrics  0.862 0.096 0 0 0 
N APARCH  0 0.381 0.097 0 0 
ST APARCH  0.047 0.199 0.439 0.258 0.871 
SKST APARCH  0.210 0.501 0.890 0.509 0.871 
 
 
 VaR for long positions (BANKING) 

 
RiskMetrics  0.969 0.041 0 0 0 
N APARCH  0 0.439 0.530 0.096 0 
ST APARCH  0.066 0.165 0 0.105 0.253 
SKST APARCH  0.862 0.787 0.152 0.509 0.425 
 
 
                                      VaR for long positions (INDUSTRIAL) 

 
RiskMetrics  0 0 0 0 0 
N APARCH  0 0.215 0.049 0 0 
ST APARCH  0.022 0.011 0.052 0.508 0.640 
SKST APARCH  0.054 0.108 0.474 0.868 0.847 

 
 
                                      VaR for short positions (GENERAL) 
 
RiskMetrics  0.034 0 0 0 0 
N APARCH  0.268 0.078 0 0 0 
ST APARCH  0.219 0.116 0.889 0.990 0.299 
SKST APARCH  0.857 0.365 0.438 0.835 0.871 
 
                                       

VaR for short positions (BANKING) 
 
RiskMetrics  0.116 0 0 0 0 
N APARCH  0.806 0.063 0 0 0 
ST APARCH  0.034 0.419 0.222 0.513 0.451 
SKST APARCH  0.417 0.638 0.745 0.990 0.883 
 
 
                                      VaR for short positions (INDUSTRIAL) 
 
RiskMetrics  0 0 0.037 0.040 0 
N APARCH  0.340 0.114 0 0 0 
ST APARCH  0.219 0.198 0.649 0.819 0.641 
SKST APARCH  0.645 0.748  0.086 0.868 0.265 
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Table 3(b). VaR Results for COCA-COLA, MIHANIKI and MOUZAKIS (in-sample) 
 
 

α  
  5% 

 
2.5% 

 
1% 

 
0.5% 

 
0.25% 

 
   
  VaR for long positions (COCA-COLA) 

 
RiskMetrics  0.241 0.089 0.002 0 0 
N APARCH  0.482 0.504 0.641 0.010 0 
ST APARCH  0.201 0.465 0.796 0.189 0.898 
SKST APARCH  0.089 0.832 0.990 0.189 0.898 
 
        VaR for long positions (MIHANIKI) 
 
RiskMetrics  0.193 0.443 0.009 0 0 
N APARCH  0 0.148 0.918 0.317 0.006 
ST APARCH  0.012 0.037 0.068 0.356 0.686 
SKST APARCH  0.814 0.812 0.568 0.688 0.618 
 
    VaR for long positions (MOUZAKIS) 

 
RiskMetrics  0.776 0.443 0.156 0.065 0 
N APARCH  0.233 0.325 0.569 0.317 0.363 
ST APARCH  0.979 0.148 0.007 0.197 0.363 
SKST APARCH  0.553 0.812 0.568 0.813 0.686 

 
                                      VaR for short positions (COCA-COLA) 
 
RiskMetrics  0.761 0.016 0.001 0 0 
N APARCH  0.414 0.207 0.004 0 0 
ST APARCH  0.338 0.334 0.610 0.350 0.220 
SKST APARCH  0.765 0.605 0.304 0.359 0.220 
 
                                      VaR for short positions (MIHANIKH) 
 
RiskMetrics  0.230 0.033 0.026 0 0 
N APARCH  0.328 0.364 0.042 0.008 0.002 
ST APARCH  0.013 0.011 0.156 0.567 0.363 
SKST APARCH  0.624 0.495 0.291 0.011 0.140 
 
                                      VaR for short positions (MOUZAKIS) 
 
RiskMetrics  0.814 0.842 0.005 0.002 0 
N APARCH  0.511 0.531 0.104 0.035 0 
ST APARCH  0.230 0.957 0.738 0.813 0.950 
SKST APARCH  0.856 0.196 0.007 0.197 0.362 
 

Notes: P -values for the null hypothesis α=lf  (i.e. failure rate for the long trading position is equal 

to α , top of the table) and α=sf  (i.e. failure rate for the short trading position is equal to α , 
bottom of the table). α is equal successively to 5%, 2.5%, 1%, 0.5% and 0.25%. The models are 
successively the Riskmetrics, normal APARCH, Student APARCH and skewed Student APARCH. 
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Table 4. VaR results for all stock indexes and individual stocks (in-sample) 
 

 
  VaR for long positions 
        
  Stock Indexes Stocks 
        
  GEN BANK IND COCA MIH MOUZ 
RiskMetrics  40 40 0 40 40 80 
N APARCH  40 60 40 60 60 80 
ST APARCH  100 80 80 100 80 100 
SKST APARCH  100 100 100 80 100 100 
        

 
 

  VaR for short positions 
   
  Stock Indexes Stocks 
        
  GEN BANK IND COCA MIH MOUZ 
        
RiskMetrics  20 20 0 20 40 40 
N APARCH  40 40 40 40 40 60 
ST APARCH  100 100 100 100 60 100 
SKST APARCH  100 100 100 100 100 80 
        

 
 
Notes: Number of times (out of 100) that the null hypothesis α=lf  (i.e. failure rate for the long 

trading position is equal to α , top of the table) is not rejected and α=sf  (i.e. failure rate for the 
short trading position is equal to α , bottom of the table) is not rejected for the combined five possible 
values of α  (the level of significance is 5%). The models are successively the Riskmetrics, normal 
APARCH, Student APARCH and skewed Student APARCH. 



 20

 
Table 5. VaR results (Skewed Student APARCH, out-of-sample)  
 
 
       
α   5% 2.5% 1% 0.5% 0.25% 
       
   

VaR for long positions 
       
GENERAL  0.523 0.256 0.237 0.784 0.337 
BANKING  0.080 0.256 0.643 0.515 0.487 
INDUSTRIAL  0.166 0.788 0.356 0.311 0.932 
COCACOLA  0.377 0.863 0.986 0.733 0.543 
MIHANIKI  0.504 0.279 0.121 0.738 0.544 
MOUZAKIS  0.377 0.279 0.629 0.769 0.543 
 

                    VaR for short positions 
 
GENERAL  0.523 0.256 0.237 0.784 0.337 
BANKING  0.601 0.928 0.697 0.904 0.487 
INDUSTRIAL  0.431 0.535 0.283 0.325 0.487 
COCACOLA  0.805 0.279 0.121 0.274 0.810 
MIHANIKI  0.504 0.640 0.323 0.274 0.810 
MOUZAKIS  0.340 0.863 0.325 0.276 0.940 
 
 
Notes: P -values for the null hypothesis α=lf  (i.e. failure rate for the long trading position is equal 

to α , top of the table) and α=sf  (i.e. failure rate for the short trading position is equal to α , 
bottom of the table). α is equal successively to 5%, 2.5%, 1%, 0.5% and 0.25%. The failure rates are 
computed for the skewed Student APARCH model (out-of-sample estimation). 
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Table 6. Expected shortfall for GENERAL, BANKING and INDUSTRIAL (in 
sample) 
 
 

       
α   5% 2.5% 1% 0.5% 0.25% 
       
       
  Expected short-fall for long positions (GENERAL) 

RiskMetrics  -3.327 -4.036 -4.725 -5.182 -5.308 
N APARCH  -3.671 -4.211 -4.948 -5.492 -5.792 
ST APARCH  -3.501 -4.207 -5.441 -6.385 -6.857 
SKST APARCH  -3.510 -4.143 -5.339 -6.544 -6.857 
       
  Expected short-fall for long positions (BANKING) 

RiskMetrics  -3.915 -4.606 -5.369 -5.464 -5.650 
N APARCH  -4.384 -4.962 -5.789 -6.639 -6.685 
ST APARCH  -4.161 -4.981 -6.518 -6.894 -8.507 
SKST APARCH  -3.976 -4.889 -6.168 -6.712 -8.338 
       
  Expected short-fall for long positions (INDUSTRIAL) 

RiskMetrics  -7.942 -8.407 -10.357 -12.968 -12.968 
N APARCH  -3.898 -4.466 -5.194 -5.257 -6.256 
ST APARCH  -3.556 -4.611 -5.826 -6.907 -7.666 
SKST APARCH  -3.562 -4.390 -5.422 -6.668 -7.395 
       
  Expected short-fall for short positions (GENERAL) 

RiskMetrics  3.377 3.808 5.404 4,661 5.024 
N APARCH  3.602 4.045 4.593 5.160 5.732 
ST APARCH  3.377 4.035 5.108 5.649 6.552 
SKST APARCH  3.461 4.115 5.216 5.805 7.415 
       
  Expected short-fall for short positions (BANKING) 

RiskMetrics  4.316 4.887 5.404 5.832 6.199 
N APARCH  4.552 5.151 6.042 6.502 7.241 
ST APARCH  4.283 5.131 6.424 7.726 9.103 
SKST APARCH  4.379 5.238 6.457 7.937 9.963 
       
  Expected short-fall for short positions (INDUSTRIAL) 

RiskMetrics  3.663 4.977 7.436 9.993 12.862 
N APARCH  3.623 3.973 4.627 5.143 5.418 
ST APARCH  4.015 5.005 8.133 11.585 20.991 
SKST APARCH  4.112 5.217 9.287 12.332 25.212 
 
 
Notes: Expected shortfall (in-sample evaluation) for the long and short VaR (at level α ) given by the  
normal APARCH, Student APARCH, Riskmetrics and skewed Student APARCH. α is equal 
successively to 5%, 2.5%, 1%, 0.5% and 0.25%.  
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Table 7. Average multiple of tail event to risk measure for GENERAL, BANKING 
and INDUSTRIAL (in sample) 
 
α   5% 2.5% 1% 0.5% 0.25% 
       

  AMTERM for long positions (GENERAL) 

RiskMetrics  1.412 1.373 1.356 1.299 1.283 
N APARCH  1.403 1.368 1.346 1.330 1.304 
ST APARCH  1.437 1.376 1.340 1.400 1.306 
SKST APARCH  1.444 1.387 1.344 1.398 1.352 
       
       
  AMTERM for long positions (BANKING) 

RiskMetrics  1.422 1.366 1.314 1.306 1.339 
N APARCH  1.400 1.346 1.368 1.400 1.408 
ST APARCH  1.417 1.349 1.494 1.470 1.583 
SKST APARCH  1.414 1.359 1.413 1.423 1.585 
       
       
  AMTERM for long positions (INDUSTRIAL) 

RiskMetrics  1.262 1.168 1.231 1.327 1.237 
N APARCH  1.485 1.457 1.439 1.367 1.458 
ST APARCH  1.504 1.494 1.511 1.436 1.450 
SKST APARCH  1.529 1.490 1.462 1.445 1.425 
       
       
  AMTERM for short positions (GENERAL) 

RiskMetrics  1.432 1.377 1.302 1.271 1.287 
N APARCH  1.418 1.349 1.310 1.379 1.425 
ST APARCH  1.429 1.349 1.371 1.394 1.313 
SKST APARCH  1.431 1.340 1.376 1.377 1.357 
       
       
  AMTERM for short positions (BANKING) 

RiskMetrics  1.467 1.390 1.335 1.311 1.316 
N APARCH  1.410 1.365 1.360 1.321 1.339 
ST APARCH  1.425 1.373 1.376 1.408 1.396 
SKST APARCH  1.430 1.409 1.334 1.346 1.379 
       
       

  AMTERM for short positions (INDUSTRIAL) 

RiskMetrics  1.748 1.696 1.983 2.324 2.671 
N APARCH  1.435 1.373 1.376 1.408 1.396 
ST APARCH  1.440 1.405 1.338 1.351 1.341 
SKST APARCH  1.856 1.980 1.289 3.277 6.044 
 
 
Notes: Average multiple of tail event to risk measure (AMTERM, in-sample evaluation)  for the long 
and short VaR (at level α ) given by the  normal APARCH, Student APARCH, Riskmetrics and 
skewed Student APARCH. α is equal successively to 5%, 2.5%, 1%, 0.5% and 0.25%.  
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Figure 1: GENERAL/ASE stock index in level, daily returns, daily returns density 

(versus normal) and QQ-plot against the normal distribution. The time 
period is 04/01/1988 -01/11/2004. 
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Figure 2: BANKING/ASE stock index in level, daily returns, daily returns density 

(versus normal) and QQ-plot against the normal distribution. The time 
period is 04/01/1988 -01/11/2004. 
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Figure 3: INDUSTRIAL/ASE stock index in level, daily returns, daily returns density 

(versus normal) and QQ-plot against the normal distribution. The time 
period is 04/01/1988 -01/11/2004. 
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Figure 4: COCA-COLA in level, daily returns, daily returns density (versus normal) 

and QQ-plot against the normal distribution. The time period is 02/01/1998 -
04/11/2004. 
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Figure 5: MOUZAKIS in level, daily returns, daily returns density (versus normal) 

and QQ-plot against the normal distribution. The time period is 14/01/1997-
04/11/2004 
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Figure 6: MHXANIKH in level, daily returns, daily returns density (versus normal) 

and QQ-plot against the normal  distribution. The time period is 14/01/1997 
-04/11/2004 


