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Abstract  

This paper tests the expectations hypothesis (EH) for the UK term structure of interest 

rates, employing regression analysis, volatility metrics and recently developed 

Lagrange Multiplier tests. The Lagrange Multiplier test of Bekaert and Hodrick 

(2001), whose asymptotic and small sample inferences are based on i.i.d. residuals of 

the VAR, is extended to allow for heteroskedasticity by using the wild bootstrap. 

Using simulations we assess the performance of both the Lagrange Multiplier and 

volatility tests. Our results show that although the EH does not hold for UK interest 

rates at the short end of the maturity spectrum, there is robust support for this theory 

at interim maturities.  
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Section 1. Introduction 

Interrelationship between interest rates of various maturities is a fundamental topic in 

economics and finance. One of the most tested theories of this relationship is the 

expectations hypothesis (EH) theory. According to the EH of the term structure, in 

equilibrium, investing in a succession of short-term bonds gives exactly the same 

expected return as investing in long-term bonds, when adjustment is made for the 

term premium.1 Although various tests of this implication have yielded different 

results over various periods of time, less evidence against the EH has been found for 

the UK and other developed countries compared to US (see e.g. Hardoulelis 1994, 

Cuthbertson 1996, Cuthbertson, Hayes and Nitzsche 2000, and Engsted 2002). 

Campbell and Shiller (1991), Campbell (1995), Rudebusch (1995) and Roberds and 

Whiteman (1999) note the EH works better at the short and long ends of the maturity 

spectrum and less well in the intermediate maturity range for a given short rate, thus 

creating a “U” shaped pattern. However, Thornton (2004) illustrates that analysis 

should not be based on the slope coefficient of the test equation only, since even 

under the alternative hypothesis where the EH does not hold, one can have slopes that 

are numerically close to the theoretical ones. 

Mankiw and Miron (1986) argues that the poor performance of the EH for the 

US over some periods is related to monetary policy pursued by the Fed, performing 

better in periods of monetary targeting than in periods of interest rate targeting (and 

even better before the foundation of the Fed).2 Rudebusch (1995), Roberds, Runkle, 

and Whiteman (1996), and Balduzzi, Bertola and Foresi (1997) provide models that 

accommodate Fed behaviour and confirm Mankiw and Miron’s finding.  

The EH has not been subject to extensive testing for the UK, Taylor (1992), 

Cuthbertson (1996), MacDonald and Speight (1988), Cuthbertson, Hayes and Nitzsche 

(1996), and Cuthbertson and Nitzsche (2003) provide results for the UK using 

Treasury bill and bond rates, the Certificate Deposit rates, the London interbank offer 

rates, but all concentrate on only a portion of the maturity spectrum. While first two 

                                                 
1 Another implication of the EH is that the forward interest rate must equal the expected spot rate. This 
implication is the subject of studies by Fama (1984), Fama and Bliss (1987), Backus, Foresi, 
Mozumdar and Wu (2001) and Christiansen (2003), among others, and will not be discussed in the 
present paper. 
2 Engsted (1996) reports similar results for Denmark. 
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studies provide rather mixed results, the next two clearly provide results favourable to 

the EH. Cuthbertson and Nitzsche (2003) do not reject the theory when the short rate 

is 1 month TB and the long rate is 10 years or shorter yield. 

This paper extends the UK term structure literature by using a recently 

developed method by Bekaert and Hodrick (2001) to test the EH. The paper applies 

their testing methodology using multiple interest rate maturity pairs, as opposed to a 

single maturity pair they originally consider. Both asymptotic and small sample 

inferences rely on i.i.d. bootstrap of the VAR residuals in Bekaert and Hodrick 

(2001). However Goncalves and Kilian (2004) show that such resampling scheme is 

inaccurate in the presence of the conditional heteroskedasticity, which characterizes 

many financial time series. We therefore apply a wild bootstrap scheme to the Bekaert 

and Hodrick methodology. We also explore the claim of Sarno, Thornton and Valente 

(2005) that an informal analysis of the EH, as suggested in Campbell and Shiller 

(1987, 1991), is misleading in the UK when volatility clustering is allowed. Based on 

the US analysis that find monetary policy to be important, we examine this in the UK 

context by splitting our sample into the periods before and after the adoption of 

inflation targeting. 

The paper is organised as follows. Section 2 examines the implications of the 

EH theory of the term structure of interest rates and outlines the methodologies 

adopted in our study. Section 3 discusses data and provides our empirical results. 

Section 4 concludes. 

 

Section 2. Expectations hypothesis theory of the term structure 

2.1. Single Equation framework 

According to the EH, a long term interest rate equals the sum of a constant term 

premium and an average of current and future short term interest rates over the life of 

the long term interest rate. That is, in a linearized version of the EH (see Shiller 1979) 

∑
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where Rn,t and Rm,t are long and short rates at time t respectively, EtRm,t+mi , 

i=0,1,2,…k-1, is the expectation of  the short rates at t+mi formed at time t and mn,π  

is a term premium which can vary across maturities but not through time. Here k=n/m 

is defined to be an integer, m is the maturity of a shorter rate and n is the maturity of a 

longer rate. Since the EH places no restriction on mn,π , this term can be ignored by 

working with demeaned series.3 

Equation (1) is rarely tested directly, probably due to the empirical results that 

conclude the series are integrated, in which case conventional statistical theory is not 

appropriate. Rather, another implication of (1) is usually tested, which is based on the 

ability of the spread between long and short rates to predict future short rate changes 

after imposing rationality on the expectations. Rationality requires  

Rm,t+mi = EtRm,t+mi + vt+mi,        (2) 

where vt+mi has zero mean and is orthogonal to the information available at time t. 

Subtracting Rm,t from both sides of equation (1) and imposing rational expectations as 

in (2) yields probably the most commonly tested equation of the EH, which, after 

some rearrangement, can be written as 

   tmntmnmn
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where ∆mRm,t+m= Rm,t+m- Rm,t,   S(n,m),t = Rn,t - Rm,t and e(n,m),t is a moving average 

process of order (n-m-1). 

Equation (3) says that the current spread predicts a cumulative change in 

shorter term (m-period) interest rate over n periods, and under the null hypothesis of 

the EH, α should be unity. 4  

                                                 
3 This assumption will simplify the derivation of restrictions on VAR parameters in what follows. See 
Melino (2001). 
4 Another implication of (1), that is less empirically supported, is that the yield spread predicts the m-
period change in the longer- term yield, which is tested (see, for instance, Campbell and Shiller 1991) 

in ttmntnmtmn vS
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However, there are several econometric difficulties with the conventional 

regression approach applied to this equation. Firstly, we lose (k-1)m observations at 

the end of the sample period. This can be quite serious in our case, as the data 

available for analysis are relatively small. For example, while our data spans January 

1979 to May 2005, regression (3) involving 3 month and 5 year bonds can be 

estimated using data until only August, 1999, a substantial reduction in the sample 

size. Secondly, the error term e(n,m),t, is a moving average of order n-m-1, so standard 

errors have to be corrected, for example using the method described in Newey and 

West (1987). But these adjustments do not work well when n-m is not small relative 

to the sample size (see for example, Campbell and Shiller, 1991). Thirdly, as 

discussed in Campbell, Lo and MacKinlay (1997) the regressor is serially correlated 

and correlated with lags of the dependent variable, and this can cause finite sample 

problems as well. 

2.2. VAR framework 

The problems associated with the single equation methods can be avoided using a 

VAR framework.  Following Campbell and Shiller (1991) we assume both short and 

long rates are nonstationary, specifically that they are I(1), and the short rate change 

and the spread between short and long rates are I(0) processes.  Then there exists a 

stationary vector stochastic process for yt=[∆Rm,t; S(n,m),t]'. Assuming the process for yt 

is represented by a demeaned VAR of order p, the resulting system can be written as a 

first order VAR in companion form: 

   zt=Azt-1 +ut;         (4) 

where the companion matrix A is of dimension 2p×2p: 
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zt has 2p elements, zt=[yt' yt-1' ... yt-p+1']', and ut is again a 2p vector equal to [u1t u2t 0 

0 0...0]', with u1t and u2t are uncorrelated over time. Thus the vector zt is assumed to 

summarise the whole history of yt.  

Now define vectors e1 and e2, each of dimension 2p, with unity in the first and 

second positions, respectively, and zeros everywhere else such that  

   e2'zt=S(n,m),t ; and e1'zt=∆Rm,t. ; 

Using these definitions and the EH implication embodied in (3), Campbell and Shiller 

(1991) obtain the theoretical spread5: 

   tzAIAIAIIAe1' 11*
),,( )]())((/[ −− −−−−= mn

tmn nmS ,   (5) 

Which implies the restrictions on the A matrix given by 

 11 )]())((/[ −− −−−−= AIAIAIIAe1'e2' mnnm .    (6) 

2.2.1 Bekaert and Hodrick test 

These restrictions in (6) were predominantly tested by Wald tests, prior to Bekaert and 

Hodrick (2001), who suggest a Lagrange Multiplier test which employs restricted 

VAR parameters.  Using Monte Carlo simulations they find the LM test has much 

better small sample properties than Wald and likelihood ratio based Distance Metric 

tests in terms of size and power. Since this methodology is relatively new, and is an 

important part of this study, it is summarised here.  

Bekaert and Hodrick (2001) derive the Lagrange Multiplier test statistics 

based on Hansen’s (1982) Generalized Method of Moments (GMM) estimator, which 

uses the orthogonality condition implied by (2). 

If θ is the matrix of the parameters to be estimated, the vector of orthogonality 

condition can be written 

 [ ] 0θ),g(xt =E , 

                                                 
5 The Derivation is provided in Appendix A.   



 8

where )''z,'(yx 1ttt −≡  .  

Estimation uses the corresponding sample moment conditions for a sample of size T, 

namely 

 ∑
=

≡
T

tT 1

1) θ),g(x(θg tt ; 

It proceeds by selecting θ to minimize the GMM criterion function  

 ))') (θWg(θgθ tt≡(JT , 

Where, assuming the VAR of (4) is correctly specified with ut uncorrelated, 

weighting matrix, W, is a consistent estimate of the inverse of 

 [ ]θ)',θ)g(x,g(xΩ ttE≡ .       (7) 

Let the null hypothesis in (6) be expressed as: 

 0)a(θo =:oH         (8) 

and define a Lagrangian for the constrained GMM maximization problem as 

 γ(θa(θgΩ(θgγθ, tt
1

Tt )')ˆ)'
2
1)( −−= −L ;     (9) 

where γ is a vector of Lagrange multipliers and TΩ̂  is a consistent estimate of 

Ω obtained from (7) using the sample mean in place of the expectation. Since direct 

maximization of (9) is difficult, Bekaert and Hodrick (2001) suggest extending an 

approach put forward by Newey and McFadden (1994) who demonstrate how to 

derive a constrained consistent estimator starting from an initial unconstrained 

consistent one. Using a Taylor’s Series expansion to the non-linear first order 

conditions for (9) yields 

 )θθ(G)(θg)θ(g 0T0TT −+≈ TTT ;           (10) 

 )θθ(A)(θa)θ(a 0T0TT −+≈ TTT            (11) 
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where GT and AT are gradients, with respect to θ, of the sample orthogonality 

conditions and the vector of constraints, respectively, and under the null hypothesis,         

aT(θ0) = 0. Substituting these into the first-order conditions, 

 )(θa)AB(AAB)(θgΩGBMBθθ 0T
1'

T
1

TT
'
T

1
T0T

1
T

'
T

1/2
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1/2
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−−−−−− −−≈ ˆ (12) 
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1

T
'
TT GΩGB −≡ ˆ  and 1/2

TT
1'

T
1
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T

1/2
TT BA)AB(AABIM −−−−−≡ . 

Let θ~  represent an initial consistent unconstrained estimate. Then constrained 

estimates, θ and γ , are obtained by iterating on equations (12) and (13), substituting 

θ~  for 0θ  to derive a second constrained estimate, and so forth until the constraint is 

satisfied, i.e.  aT (θ) = 0.6 

This yields the constrained estimates, together with the Lagrange Multipliers, which 

under the EH null hypothesis and assuming i.i.d. disturbances has asymptotic 

distribution 

 [ ]1
T

1
TT )A'B(A0,Nγ −−→T .               (14) 

The values of the Lagrange multipliers are not zero when imposition of the constraints 

significantly affects the value of the objective function. From (14), the LM test is 

 p)(χT 22→− γ)AB(A'γ '
T

1
TT ;               (15) 

where p is the number of lags in the VAR.  

Bekaert, Hodrick and Marshall (1997) show that the estimated unconstrained 

VAR parameters, although consistent, are biased in small samples, we therefore 

follow Bekaert and Hodrick (2001) to bias-correct them. The estimated unconstrained 

VAR parameters and an i.i.d. bootstrap of the vector of residuals are used to generate 

100,000 artificial data sets of the actual sample size (304 observations). The “Monte 

Carlo” or artificial VAR parameters are re-estimated using each of these bootstrap 

data sets. The bias-corrected unconstrained parameter estimates are obtained by 
                                                 
6 In our application the tolerance level for convergence is 10-8. 
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adding the bias, estimated as the difference between the original parameters of the 

VAR and the means of the Monte Carlo distributions, to the original unconstrained 

estimates.  

To obtain bias-corrected parameter estimates that satisfy the null hypothesis, 

we use these bias corrected unconstrained VAR parameters and the corresponding 

residuals to simulate a very long series (70,000 observations plus 1,000 starting values 

that are discarded), which is then subjected to the iterative estimation scheme of (12) 

and (13) to yield bias-corrected constrained parameters, which are used to derive the 

LM test statistics and corresponding asymptotic inference through (15). 

2.2.2 Volatility measures 

Although the cross equation restrictions (6) on the VAR coefficients can be tested by 

formal statistical tests, Campbell and Shiller (1987, 1991), among others, warn that 

these may lead to rejection of the rationality implications of the EH too often in 

practice, even though the deviations from the null hypothesis of the rational 

expectations hypothesis of term structure are economically minor or are generated by 

economically uninteresting factors, such as minor data imperfections or the use of 

linearizations. Furthermore rejection does not provide much insight into how the 

model could be improved and if it is of any use in explaining the data (Summers 1991, 

Engsted 2002). Hence, they suggest an additional informal way of evaluating the 

model’s performance by computing the theoretical spread through (5) and comparing 

whether its standard deviation, σ(St*), is equal to that of the actual spread, σ(St). The 

other criteria they suggested is the correlation between these two spreads, Corr(St*, St), 

which should be close to one if the EH holds.  

Sarno, Thornton and Valente (2005), on the other hand, argue that these 

metrics are not useful in evaluating the performance of the EH since the results often 

disagree with those of the LM test.  

Although these metrics are intended to be free from statistical concepts we use 

the null DGP, the constrained VAR parameters and i.i.d. bootstrapped residuals, to 

assess this claim. As in Sarno et al. (2005) 25000 spreads obtained from the null DGP 

form the actual spreads in this context and corresponding theoretical spreads are 

calculated from (5). An empirical p value is the proportion of 25000 spreads’ standard 
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deviation ratios/correlation coefficients that are less than or equal to the sample 

standard deviation ratio/correlation coefficient. 

2.3 Finite sample inference  

It has been well documented that large sample inference can be misleading for small 

samples; see Campbell and Shiller (1991) and references therein, for evidence in the 

context of rational expectations models. OLS analysis relies on asymptotic standard 

errors of Newey and West (1987) whose performance deteriorates as the order of MA 

error increases. Furthermore, the limiting distribution of the LM test statistic is 

asymptotically pivotal and it is conjectured that the bootstrap provides a first order 

asymptotic refinement as well as improved finite sample inference.  

The VAR parameters that are estimated subject to the constraint (8) of the EH, 

and an i.i.d bootstrap of the corresponding residuals are used as the data generating 

process (DGP) in the Monte Carlo analysis. 7 We create 5000 artificial data sets of the 

actual sample size for each maturity pair. The LM test statistic is calculated for each 

data set and its distribution is used to obtain an empirical p value, which is the 

proportion of artificial test statistics that are larger than or equal to the sample statistic 

in 5000 simulations. 

Furthermore, the above constrained DGP of ∆Rm,t and S(n,m),t is used to create 

the distributions of slope coefficients and t-statistics associated with the null that the 

slope is one, which are used to estimate two different empirical p values: one is based 

on the slope coefficient itself, the other on the t-statistic. Adding the actual short term 

interest rate of the earliest period to the first observation of ∆Rm,t gives us the first 

observation of a series of short term interest rates that follow the EH. When this 

observation is added to the second observation of ∆Rm,t we obtain the second 

observation of the series, and this process is repeated until we get 304 observations. 

The short term interest rate series obtained in this way and the spread S(n,m),t from the 

restricted DGP is used to estimate a slope coefficient of (3), its HAC standard error 

and a t-statistic of the null hypothesis that the slope is one. The empirical p value is 

the minimum of the proportions of 25000 simulations that have slopes/t-statistics 

greater and smaller than the sample slope/t-statistic. 
                                                 
7 The residuals are from the restricted model:  θη 1−−= ttt qy .   
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2.4 Extension to allow conditional heteroskedasticity 

Bekaert and Hodrick’s (2001) methodology, and others discussed so far assume there 

is no higher order moment dependence in the VAR disturbances under both null and 

alternative hypotheses, which is only one of four possible distributional assumptions 

we make for the disturbances in this study. We therefore call it Case I and the 

methodologies are extended to accommodate three other interesting cases:  

Case II) disturbances are i.i.d. under the null and heteroskedastic under the alternative; 

Case III) disturbances are heteroskedastic under the null and i.i.d under the alternative;  

Case IV) disturbances are heteroskedastic under both null and alternative hypotheses. 

The asymptotic distribution of the LM test statistic in (15) is no longer valid 

for Cases III and IV and the bias adjustment procedure of the constrained VAR 

parameters discussed in 2.2.1 is not justified for Cases II and IV. 

To bias correct unconstrained VAR parameters for Cases II and IV and make 

inferences for Cases III and IV, we adopt a recursive design wild bootstrap proposed 

by Goncalves and Kilian (2004), which is shown to be better in small samples than 

any other resampling scheme they consider and is comparable with the i.i.d. bootstrap 

when the errors are indeed i.i.d. A Bootstap sample, in this case, is generated  as 
*
t1t

*
t ηθzy += − , t

*
t ηη tω= , t=1,…,T, where θ  and tη are VAR parameters and a 

vector of residuals at time t respectively, and following Davidson and Flachaire 

(2001) tω  is assumed to have a Rademacher distribution, which takes negative and 

positive ones with equal probabilities. For Cases II and IV we do not small sample 

bias correct the constrained VAR parameters, and conjecture this will not cause an 

extremely incorrect inference, since the VAR parameter estimates are consistent, what 

is needed for the iterative scheme of 2.2.1, and the LM test statistics are compared 

against empirical distributions that are themselves based on the biased estimates for 

the finite sample inference. Volatility tests of 2.2.2 and the finite sample inference 

arguments discussed in 2.3 are also extended to accommodate these cases, replacing 

i.id. bootstrap by wild one whenever conditional heteroskedasticity is allowed.  
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Section 3. Data and Empirical results 

The dataset we use to test the EH is the UK yield curve data for maturities of 1, 3, 9 

and 12 months and 2, 3, 4, and 5 years, sampled at the end of each month, for the 

period Jan 1979 to May 2004. One and three- month Treasury bills’ rates are obtained 

from DataStream and the remaining series are the Bank of England’s estimated zero 

coupon yield curve data which are calculated by a spline-based technique as discussed 

in Anderson and Sleath (2001).8 The application of the latter dataset is relatively new 

and, to our knowledge, has only been used in Cuthbertson and Nitzsche (2003) to test 

the EH. While they test the EH for very long and very short interest rates, we consider 

all possible conventional maturity pairs between 1 month and 5 years.  

The data are plotted in Figure 1. There are sharp increases in the level of 

interest rates in the early 80’s and early 90’s, with a possible structural change in the 

interest rates around late 1992, presumably reflecting the start of the inflation 

targeting in the UK October 1992. 

Insert Figure 1 

Before proceeding with testing the EH, we ezamine whether the rates are non 

stationary. Since we might anticipate the disturbances in the unit root test regression 

to be of the MA form, not AR as assumed in the ADF test, we provide Phillips-Perron 

tests in addition to ADF tests. 

Insert Table 1 

From the unit root tests in Panel A, we conclude that the series are all 

difference stationary, i.e. I(1). In Panel B we reject the null hypothesis that monthly 

changes in shorter rates contain a unit root, which is reflected in the p values. Panel C 

shows there are some cases where we can not reject the null that the spread between 

long and short rates is nonstationary at the 5% level, but all reject at 10%. 

                                                 
8 Although the Bank of England’s dataset covers various maturities, it is largely incomplete for 
maturities less than 6 months, therefore, Treasury Bill rates are used at the shortest end of the maturity 
spectrum. Observations are missing for March, October and November 1990 for 9 months maturity, 
which are filled by averaging the boundary observations of these gaps.  
Web address of the data source is http://213.225.136.206/statistics/yieldcurve/index.htm. 
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Table 2 presents the single equation results based on the model (3), which tests 

whether the spread predicts the cumulative change in the short rate over the life of the 

long rate. The first row for each maturity pair (n,m) is a point estimate of α in (3). The 

next two rows are the Newey and West (1987) estimated asymptotic standard errors 

(of order n-m-1) and asymptotic p-value from a t-test associated with the null 

hypothesis that the slope is one, the theoretically implied value. The next four 

numbers in italics are empirical p values, which will be explained in the next section. 

Insert Table 2 

We can see from Table 2 that all point estimates are numerically different 

from one. Using either the slope coefficient or t-statistic, there appears to be no U 

shape, as reported in Campbell and Shiller (1991) among others. However, for a given 

short rate, the estimates approach one as the maturity of the longer rates increases. 

Nevertheless, Thornton (2004) argues that a slope coefficient of unity can occur even 

under the alternative hypothesis of no EH. The EH is not rejected when the maturity 

of the longer rate is high and that of the shorter rate is small, i.e. k=n/m is large, 

although the value of k required for the EH to hold apparently reduces as the maturity 

of the shorter rate increases.  

Table 3 provides results of the Lagrange Multiplier test. We start by estimating 

an unconstrained bivariate VAR whose lag length is chosen by the Akaike 

Information Criterion.9  

Insert Table 3 

For each maturity pair the LM test statistic, asymptotic and small sample p values and 

the lag length of the VAR is provided. It is interesting to see that Table 3 provides no 

support for the EH at the shortest end of the maturity spectrum in the whole and 2nd 

sub-sample, no matter what DGP is used. For 1 and 3 months of short rates, p values 

suggest a smirk shaped relationship between the validity of the EH and the maturity of 

the longer rate. This is in contrast to the findings of Campbell and Shiller (1991), and 

Rudebusch (1995), but somewhat in line with Sarno et al. (2005).  Overall, the EH 
                                                 
9 The maximum number of lag length considered is always pmax=int(12(T/100)0.25) as in Hayashi 
(2000). SIC chooses shorter lags than AIC, but since absence of no autocorrelation is required for the 
bootsrap, we opt for longer lags. The results based on the SIC lag were not substantially different from 
the results here. 
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receives support for only maturity pairs with intermediate values of k, but this reduces 

as the maturity of the shorter rate increases.  

Asymptotic inferences largely remain intact in the actual sample size, except 

for a few discrepancies. Two panels of Table 3 show that the inference of the LM test 

can be substantially different depending on the type of the bootstrap used to small 

sample bias correct the VAR parameters and to generate the null data used in 

simulation. For the whole sample the EH is rejected at the shortest end of the maturity 

spectrum. This is consistent with an idea that noise traders influence the market away 

from any long run equilibrium relationship to make a profit. This is also consistent 

with Longstaff (2000) and the Bank of England’s view that Treasury bills of short 

maturities are not an appropriate reflection of the market’s view of risk free yield, 

since banks and other financial institutions use these instruments to meet their 

liquidity requirements and back up other short term financial transactions. The EH is 

also rejected when k is large. This is again consistent with an idea of transaction costs 

and market friction (Anderson 1997), since k roughly indicates the number of times 

an investor has to “go to the market and buy short term instrument” (Eq 1) and EH is 

a no arbitrage condition in the absence of market frictions. 

There seems to be more evidence for the EH in the second sub-sample which 

covers the period after the adoption of inflation targeting policy. Here the EH is 

rejected not only at the shortest end but also at the longest end of the maturity 

spectrum. 

Empirical p values are reported in italics below the asymptotic ones in Table 

2, the first row is based on the slope coefficient, the other on its t statistic. The first 

column is based on the iid bootstrap and the second one is on the wild bootstrap. 

Our attempt to reconcile the inferences from the single equation and the VAR 

analysis is met with mixed results. There is often a conflict between asymptotic and 

small sample inferences. However, the small sample inferences based on the i.i.d. 

bootstrap DGP is more consistent with the asymptotic ones, slightly more consistent 

when the inference is based on its slope coefficient based results. Since there is no 

clear agreement between the inferences made in this framework, and that obtained 

from the LM test and there are no large discrepancies between the slope coefficient 
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based result and that on the t- statistics we interpret findings of this section that 

Thornton (2004)’s claim that one can expect a unity slope coefficient even under the 

alternative hypothesis of no EH generalizes to the case where that slope coefficient is 

statistically not significantly different from unity. 

Table 4 provides the ratio of standard deviations of, and the correlation 

between, the theoretical spread, obtained from (5), and the actual spread. Graphs of 

these spreads are plotted in Figure 2. It is evident that the EH contains important 

elements of truth according to these metrics. Correlations between two spreads are 

always very high, ranging between 0.825 and 0.9995 for maturity pairs of 1&3 and 

12&60 months.  Confirming a stylized feature of these analyses actual spread is 

always more volatile than the theoretical one and their volatilities tend to get closer 

for large k.  

Insert Table 4 

Next we consider the empirical merit of the volatility metrics in our context. Sarno et 

al.’s (2005) claim, that they are not helpful, is serious and worth investigating 

thoroughly because this informal or economic measurement of the EH fit was 

developed in response to a wide spread dissatisfaction among economists to the 

formal or statistical tests.  

If we assess the EH using the standard deviation ratio of actual and theoretical 

spreads in this way, the theory is a complete failure. There is only one instance at the 

longest end of the maturity spectrum in the whole sample and two cases at the shortest 

and longest end in the first sub-sample at which the EH is not rejected when the wild 

bootstrap is used to generate the null data, and not at all when the i.i.d. bootstrap is 

used.  

But these DGP’s seem to generate very high standard deviation ratios. Table 

B3 in the Appendix indicates that the standard deviation ratios between “actual” and 

“theoretical” spreads from the null distribution is, often very high, centered at a point 

in excess of two in 9, 2 and 18 cases out of 19 in the in the whole, 1st and 2nd sub-

samples respectively. In fact the minimum of the ratios obtained from 25000 

simulations under the null is in excess of unity in 15, 11 and 15 cases out of 19 in our 

three samples. This is clearly counterintuitive since both the null DGP and the 
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“theoretical spread” obtained from this DGP are set to satisfy (5), therefore one 

should expect this ratio to be close to unity.  

If we use the same procedure for the correlation between actual and theoretical 

spreads the EH is almost never rejected. The i.i.d. bootstrap DGP is again more 

restrictive in a sense that the EH is rejected only for this DGP except a single case in 

the second subsample. Rejections seem to occur for only cases where k is small. 

Overall, these results indicate the inappropriateness of evaluating the merit of 

the volatility analysis using DGP’s described above. 

 

4. Conclusions 

Since the EH theory is of fundamental importance in understanding the transmission 

mechanism of monetary policy and serves as a theoretical basis for policy 

involvement in financial markets, the theory has been studied and tested by not only 

academics but also policy makers. In this paper we aimed to test the theory in the UK 

across several conventional maturity pairs using a recently developed methodology 

and compare the result with that of the previous methods.  

Although different methods yield different conclusions about the validity of 

the EH in some cases, there are some maturity pairs for which all methods seem to 

agree. None of the methods employed, single equation test, LM test, and volatility 

analysis favour the theory at the short end of the maturity spectrum, while they are all 

surprisingly positive about the EH at interim maturities.  

Bekaert and Hodrick (2001) considered the 1 and 12 months maturity pair in 

the UK term structure in a more general VAR and did not reject the EH. Our result 

extends this analysis and show the validity of the EH is dependent on the maturity pair 

considered, a type of bootstrap employed to small sample bias correct the VAR 

parameters, and to generate artificial data, and finally, time period over which the EH 

is tested. 

Furthermore a Monte Carlo study that is based on a restricted VAR data 

generating process illustrates finite sample properties of the test statistics. There is 

ample evidence of a remarkable robustness of the LM test statistic whose inferences 
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are quite alike in large and finite samples as opposed to some relatively large 

discrepancies in the OLS framework. 

We also conclude that the way the volatility metric is evaluated in Sarno et al. 

(2005) is not reflecting its true merit. 

Thornton’s (2004) argument that even when the data are generated so that the EH 

can not hold one can expect to have a slope coefficient of unity from the regression 

specification seems to generalize to the case that the slope can even be statistically 

indifferent from unity. 
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Figure 1: UK Treasury bills rates and Zero coupon yields 
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Table 1: Unit Root tests 

 

 
Panel A: Rates 

 
m / n  

1 3 9 12 24 36 48 60 
ADF stat. -1.2512 -1.4236 -1.3545 -1.3929 -1.4924 -1.5377 -1.5388 -1.5081 
P value 0.6528 0.5709 0.6046 0.5860 0.5363 0.5133 0.5127 0.5284 
PP stat. -1.3516 -1.4666 -1.3733 -1.4566 -1.5904 -1.5377 -1.5388 -1.5849 
P value 0.6060 0.5494 0.5955 0.5544 0.4863 0.5133 0.5127 0.4891 

 
Panel B: Change in shorter rate 

 
m  

1 3 9 12 24 
ADF stat. -17.1110 -17.4381 -16.6275 -16. 7309 -16.0837 
P value 0.0000 0.0000 0.0000 0.0000 0.0000 
PP stat. -17.1270  -17.4400 -16.6299 -16.7316 -16.0779 
P value 0.0000 0.0000 0.0000 0.0000 0.0000 

 
Panel C: Spread between long and short rates 

 
  n 
  3 9 12 24 36 48 60 
1 ADF stat. -7.4663 -5.6693 -4.8736 -3.7204 -3.2728 -3.0612 -2.9422 
 P value 0.0000 0.0000 0.0001 0.0043 0.0170 0.0306 0.0418 
 PP stat. -13.8040 -5.7128 -4.8348 -3.8016 -3.4179 -3.2491 -3.1434 
 P value 0.0000 0.0000 0.0001 0.0032 0.0111 0.0182 0.0245 
3 ADF stat.  -5.6336 -4.7698 -6.6146 -3.1547 -2.9382 -2.8210 
 P value  0.0000 0.0001 0.0060 0.0238 0.0422 0.0565 
 PP stat.  -5.6078 -4.6279 -3.5845 -3.2529 -3.2491 -2.9847 
 P value  0.0000 0.0001 0.0066 0.0180 0.0182 0.0375 
12 ADF stat.    -2.9834 -2.7395 -2.6544 -2.5988 
 P value    0.0376 0.0686 0.0834 0.0943 
 PP stat.    -3.0163 -2.7722 -2.7433 -2.6778 
 P value    0.0345 0.0635 0.0680 0.0791 
24 ADF stat.      -2.3935  
 P value      0.0427  
 PP stat.      -2.8104  

m 

 P value      0.0580  
Note: Augmented Dickey Fuller and Philips and Perron test statistics are provided in each cell with 
their corresponding p- values. Intercepts are included in both unit root tests. For ADF SIC is used to 
choose the lag lengths, which were all zero except a lag of 1 for the spread between 1 and 3 months. 
Max lag considered is 15 for all series. Critical values are 3.4517, 2.8708, and 2.5718 for 1%, 5% and 
10% significance levels respectively.  

 

 

 

 



 23

Table 2: Single equation test results 

 
 Jan 1979- May 2004 Jan 1979- Sep 1992 Oct 1992- May 2004 

 1  3  12  24  1  3  12  24  1  3  12  24  
                         

3 0.51        0.61        0.55        

 0.14        0.21        0.10        

 0.00        0.03        0.00 0.00       

 0.00 0.01       0.01 0.12       0.00 0.00       

 0.00 0.00       0.05 0.10       0.00 0.00       

                         

9 0.63  0.54      0.76  0.57      0.83  0.77      

 0.16  0.14      0.23  0.18      0.10  0.11      

 0.01  0.00      0.15  0.01      0.05  0.02      

 0.01 0.15 0.00 0.14     0.14 0.30 0.02 0.20     0.17 0.39 0.05 0.17     

 0.03 0.05 0.00 0.02     0.17 0.26 0.03 0.10     0.18 0.26 0.10 0.12     

                         

12 0.65  0.60      0.80  0.65      0.80  0.77      

 0.17  0.17      0.24  0.21      0.10  0.12      

 0.02  0.01      0.20  0.05      0.02  0.03      

 0.02 0.22 0.01 0.19     0.20 0.38 0.07 0.36     0.11 0.34 0.11 0.28     

 0.05 0.10 0.03 0.10     0.21 0.31 0.10 0.25     0.12 0.18 0.13 0.17     

                         

24 0.69  0.65  0.40    0.81  0.74  0.43    0.63  0.63  0.42    

 0.16  0.16  0.26    0.18  0.17  0.41    0.11  0.13  0.27    

 0.02  0.01  0.01    0.15  0.07  0.08    0.00  0.00  0.02    

 0.07 0.43 0.05 0.39 0.04 0.28   0.28 0.36 0.20 0.40 0.14 0.46   0.11 0.38 0.13 0.37 0.14 0.30   

 0.07 0.17 0.06 0.19 0.05 0.15   0.24 0.49 0.15 0.41 0.15 0.46   0.09 0.14 0.11 0.15 0.13 0.23   

                         

36 0.79  0.77  0.51    0.75  0.70  0.51    0.59  0.59  0.49    



 24

 0.13  0.12  0.21    0.17  0.13  0.37    0.07  0.09  0.17    

 0.06  0.03  0.01    0.07  0.01  0.09    0.00  0.00  0.00    

 0.18 0.41 0.17 0.40 0.12 0.44   0.26 0.28 0.20 0.29 0.21 0.38   0.18 0.47 0.18 0.45 0.22 0.48   

 0.12 0.31 0.09 0.30 0.07 0.21   0.20 0.46 0.11 0.44 0.21 0.46   0.05 0.08 0.08 0.11 0.12 0.26   

                         

48 0.89  0.88  0.68  0.51  0.85  0.79  0.16  0.49  0.62  0.62  0.56  0.50  

 0.14  0.13  0.20  0.24  0.18  0.17  0.25  0.48  0.03  0.03  0.09  0.29  

 0.22  0.17  0.06  0.02  0.21  0.11  0.00  0.14  0.00  0.00  0.00  0.04  

 0.30 0.34 0.29 0.29 0.24 0.39 0.23 0.48 0.36 0.17 0.27 0.18 0.12 0.42 0.32 0.37 0.29 0.45 0.28 0.49 0.30 0.34 0.29 0.32 

 0.26 0.47 0.23 0.44 0.17 0.42 0.11 0.25 0.33 0.24 0.24 0.27 0.07 0.33 0.29 0.43 0.01 0.02 0.02 0.03 0.09 0.25 0.26 0.21 

                         

60 0.95  0.96  0.81    0.72  0.78  0.09    0.63  0.63  0.58    

 0.16  0.15  0.22    0.18  0.20  0.30    0.04  0.04  0.05    

 0.38  0.38  0.20    0.06  0.14  0.00    0.00  0.00  0.00    

 0.38 0.30 0.38 0.22 0.35 0.27   0.20 0.27 0.28 0.13 0.12 0.32   0.36 0.43 0.33 0.46 0.34 0.24   

 0.37 0.35 0.37 0.26 0.30 0.35   0.19 0.43 0.28 0.18 0.12 0.47   0.09 0.11 0.08 0.10 0.06 0.18   

Note: First three numbers in each cell are the estimate of the slope coefficient of (3), Newey and West standard error of order n-m-1 and an asymptotic p value from a t test 
associated with the null hypothesis that the slope coefficient is one. The next four numbers in italics are empirical p values, the first row based on the slope coefficient, the 
other on its t statistic. The first column is based on the iid bootstrap and the second one is on the wild bootstrap. An Empirical critical value is the minimum of the proportions 
of simulated slope coefficients/t statistics that are less and greater than the sample slope/t-statistic in 25000 replications conducted by a DGP that satisfies the EH. 
Constrained VAR parameters and bootstrapped residuals serve as the DGP. For a detailed result see Table B2 in Appendix B. 

 

 



 25

Table 3: Lagrange Multiplier test10 

 Panel A Homoskedastic  
 Jan 1979- May 2004 Jan 1979- Sep 1992 Oct 1992- May 2004 
 1 3 9 12 24 1 3 9 12 24 1 3 9 12 24 

3 26.42     7.75     25.16     
 0.01     0.10     0.01     
 0.00     0.09     0.00     
 6     2     5     

9 9.13 13.03    5.70 4.16    1.12 8.47    
 0.17 0.04    0.46 0.12    0.57 0.21    
 0.16 0.04    0.49 0.12    0.61 0.22    
 3 3    3 1    1 3    
12 8.28 5.76    4.08 2.04    2.36 5.43    
 0.22 0.06    0.67 0.36    0.88 0.49    
 0.22 0.05    0.70 0.35    0.90 0.53    
 3 1    3 1    3 3    
24 8.41 2.43  11.22  1.22 0.99  6.92  4.81 7.00  8.95  
 0.08 0.30  0.02  0.54 0.61  0.14  0.57 0.32  0.06  
 0.07 0.29  0.02  0.55 0.62  0.15  0.61 0.35  0.06  
 2 1  2  1 1  2  3 3  2  
36 10.54 9.53 9.44 2.43  1.52 0.88 5.79 1.51  7.77 9.81 8.61 8.75  
 0.03 0.05 0.05 0.30  0.47 0.64 0.22 0.47  0.26 0.13 0.07 0.07  
 0.03 0.05 0.05 0.29  0.48 0.65 0.22 0.47  0.28 0.14 0.07 0.07  
 2 2 2 1  1 1 2 1  3 3 2 2  
48 11.38 10.10  2.15 5.33 1.83 1.01  1.38 2.61 9.03 11.19  8.07 12.75 
 0.02 0.04  0.34 0.07 0.40 0.60  0.50 0.27 0.17 0.08  0.09 0.00 
 0.02 0.04  0.34 0.07 0.41 0.61  0.51 0.28 0.19 0.08  0.09 0.00 
 2 2  1 1 1 1  1 1 3 3  2 1 
60 11.80 10.09  1.91  6.55 1.18  1.32  9.30 11.70  7.81  
 0.02 0.04  0.38  0.16 0.55  0.52  0.16 0.07  0.10  
 0.02 0.04  0.39  0.15 0.56  0.53  0.17 0.07  0.10  
 2 2  1  2 1  1  3 3  2  
                
 Panel B Heteroskedastic  
 Jan 1979- May 2004 Jan 1979- Sep 1992 Oct 1992- May 2004 
 1 3 9 12 24 1 3 9 12 24 1 3 9 12 24 

3 26.52     8.16     24.73     
 0.01     0.09     0.01     
 0.00     0.05     0.00     
 6     2     5     

9 8.46 10.14    5.70 2.11    0.18 7.55    
 0.21 0.12    0.46 0.35    0.91 0.27    
 0.21 0.10    0.49 0.37    0.92 0.28    
 3 3    3 1    1 3    
12 7.46 2.32    4.53 0.90    1.61 4.72    

 0.28 0.31    0.60 0.64    0.95 0.58    
 0.30 0.33    0.64 0.66    0.97 0.62    

                                                 

10 The result in this table is obtained from a GAUSS code evolved from a code that is kindly provided 

by Daniel Thornton. 
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 3 1    3 1    3 3    
24 5.09 0.41  7.31  3.23 2.22  2.83  4.54 6.34  10.02  
 0.28 0.81  0.12  0.20 0.33  0.59  0.60 0.39  0.04  
 0.29 0.83  0.11  0.20 0.35  0.60  0.65 0.41  0.03  
 2 1  2  1 1  2  3 3  2  
36 7.90 6.65 6.27 0.88  4.82 4.18 3.05 0.14  7.28 8.96 10.85 12.06  
 0.10 0.16 0.18 0.64  0.09 0.12 0.55 0.93  0.30 0.18 0.03 0.02  
 0.08 0.15 0.19 0.65  0.08 0.13 0.57 0.94  0.31 0.17 0.02 0.01  
 2 2 2 1  1 1 2 1  3 3 2 2  
48 9.67 8.91  1.44 4.53 6.10 5.99  0.51 1.40 8.41 10.22  15.59 50.61 
 0.05 0.06  0.49 0.10 0.05 0.05  0.77 0.50 0.21 0.12  0.00 0.00 
 0.04 0.06  0.50 0.10 0.04 0.05  0.78 0.52 0.21 0.11  0.00 0.06 
 2 2  1 1 1 1  1 1 3 3  2 1 
60 10.75 10.40  2.01  8.52 7.58  1.11  8.63 10.66  21.49  

 0.03 0.03  0.37  0.07 0.02  0.57  0.20 0.10  0.00  
 0.02 0.03  0.37  0.07 0.02  0.59  0.20 0.09  0.00  
 2 2  1  2 1  1  3 3  2  

Note: First number in each cell is the LM test statistic. Next row is an asymptotic p value, obtained 
from a Chi-square distribution with twice the lag length as degrees of freedom. The third row is an 
empirical p value, that is the proportion of 5000 LM test statistics obtained from the restricted DGP that 
are greater than the sample test statistic. Cells are highlighted when the EH is rejected at 5% using the 
empirical p value. The last row indicates VAR lag length. Homoskedastic and Heterskedastic indicate 
type of bootstrap used to bias correct the unconstrained VAR parameters and to generate 5000 artificial 
dataset under the null. (iid bootstrap for the former and wild bootstrap for the latter).  
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Table 4: Volatility analysis 

 Jan 1979- May 2004 Jan 1979- Sep 1992 Oct 1992- May 2004 
 1 3 9 12 24 1 3 9 12 24 1 3 9 12 24

3 0.481     0.601     0.661     

 0.000     0.004     0.000     

 0.000     0.066     0.003     

 0.825     0.959     0.829     

 0.003     0.265     0.000     

 0.237     0.590     0.001     

9 0.633 0.528    0.707 0.613    0.838 0.738    

 0.000 0.000    0.000 0.000    0.000 0.000    

 0.000 0.001    0.000 0.013    0.000 0.000    

 0.956 0.985    0.956 0.999    1.000 0.996    

 0.031 0.936    1.000 0.700    0.926 0.713    

 0.426 0.945    0.999 0.831    0.791 0.846    

12 0.620 0.685    0.686 0.697    0.801 0.750    

 0.000 0.000    0.000 0.000    0.000 0.000    

 0.000 0.003    0.000 0.016    0.000 0.000    

 0.970 1.000    0.970 0.999    0.998 0.996    

 0.440 0.808    1.000 0.658    0.963 0.765    

 0.728 0.948    1.000 0.828    0.982 0.868    

24 0.656 0.772  0.374  0.888 0.810  0.301  0.758 0.737  0.706  

 0.000 0.000  0.000  0.000 0.000  0.000  0.000 0.000  0.000  

 0.000 0.003  0.003  0.021 0.022  0.002  0.000 0.000  0.007  

 0.994 1.000  0.949  0.999 1.000  0.889  0.996 0.988  0.979  

 0.953 0.688  0.001  0.522 0.718  0.001  0.908 0.484  0.259  

 0.910 0.933  0.454  0.790 0.863  0.270  0.938 0.694  0.294  

36 0.660 0.670 0.483 0.663  0.916 0.862 0.435 0.587  0.736 0.728 0.766 0.765  

 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000  

 0.000 0.001 0.001 0.020  0.031 0.033 0.001 0.033  0.000 0.000 0.004 0.006  

 0.995 0.995 0.982 0.999  0.999 1.000 0.967 1.000  0.993 0.985 0.991 0.989  

 0.986 0.998 0.043 0.277  0.566 0.758 0.001 0.886  0.838 0.440 0.712 0.663  

 0.924 0.938 0.752 0.766  0.812 0.879 0.668 0.946  0.888 0.666 0.626 0.555  

48 0.670 0.691  0.711 0.686 0.927 0.887  0.616 0.506 0.728 0.724  0.827 1.055 
 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 

 0.001 0.001  0.014 0.134 0.036 0.038  0.022 0.084 0.000 0.000  0.005 0.002 

 0.995 0.996  0.999 0.995 0.999 1.000  1.000 0.993 0.993 0.986  0.995 0.999 
 0.998 1.000  0.239 0.048 0.585 0.773  0.832 0.293 0.860 0.498  0.939 0.999 

 0.940 0.954  0.784 0.410 0.817 0.877  0.920 0.532 0.890 0.691  0.781 0.829 

60 0.679 0.704  0.749  0.720 0.896  0.646  0.728 0.724  0.877  

 0.000 0.000  0.000  0.000 0.000  0.000  0.000 0.000  0.000  

 0.001 0.002  0.011  0.003 0.037  0.019  0.001 0.000  0.005  

 0.996 0.997  1.000  0.993 1.000  1.000  0.993 0.987  0.997  

 1.000 1.000  0.246  0.010 0.788  0.824  0.913 0.595  0.993  

 0.951 0.966  0.806  0.938 0.875  0.913  0.910 0.728  0.913  

Note: The first number in each cell is σ(St*)/σ(St), a ratio of standard deviations of theoretical and 
actual spreads. Two numbers below it are our empirical p values, first one is based on the i.i.d bootstrap 
and the second one is based on the wild bootstrap. The next number in bold is Cor(St;St*), correlation 
between actual and theoretical spreads with its empirical p values as above. An Empirical p value is the 
minimum of the proportions of simulated standard deviation ratios/correlation coefficients that are less 
and greater than the sample ratio/correlation in 25000 replications of these statistics obtained from a 
DGP that satisfies the EH. Constrained VAR parameters and bootstrapped residuals serve as a DGP. 
VAR lag length is the same as in Table 3. For a more detailed result, see Table B3 in Appendix B. 
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Figure 2: Theoretical and Actual spreads 
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Appendix A: Derivation of the EH restriction in Equation (7) 

Companion form of the VAR: 

utt uAzz += −1  

Then we can write 

t
j

jtttjt zAzEzzE == ++ )()/(  assuming 0)/( =+ tit zuE , i>=1. 

By definition,  t
m
t zhR '=∆  and taking expectations  
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note k=n/m; 
1112 )()(... −−−−− −−−=++++ AIAAIAAAI mnmn since  

12 )(... −−=+++ AIAAI  and 

)()(... 12 mnmmnmm AIAAIAAAI −−−=+++ −−  since 
12 )(... −−=+++ mmm AIAAI . 

 

So we will have Equation (7) in the paper as 

t
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iff θn,m=0 and this is assumed to be the case when we demean the dataset first. 
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Appendix B: Descriptive statistic and detailed results on the test statistics 

Table B1: Descriptive Statistic 

Series Mean Standard Max Min Autocorrellation 

  Deviation   Lag 1 Lag 2 Lag 3 Lag 4 

R1,t 8.8190 3.5891 16.5000 3.3281 0.9835 0.9661 0.9473 0.9288 
R3,t 8.7293 3.5202 16.2656 3.3281 0.9811 0.9626 0.9426 0.9233 
R9,t 8.5380 3.2142 15.1928 3.2551 0.9828 0.9659 0.9477 0.9307 
R12,t 8.5318 3.1320 14.9556 3.2405 0.9824 0.9647 0.9468 0.9302 
R24,t 8.5967 2.9602 15.1167 3.3294 0.9812 0.9618 0.9427 0.9255 
R36,t 8.6635 2.8943 15.2649 3.5031 0.9805 0.9604 0.9407 0.9231 
R48,t 8.7200 2.8699 15.4860 3.6455 0.9806 0.9605 0.9413 0.9245 
R60,t 8.7694 2.8660 15.5410 3.7663 0.9811 0.9617 0.9439 0.9283 
∆R1,t -0.0246 0.5760 3.3440 -1.4062 0.0138 0.0690 -0.0142 -0.0241 
∆R3,t -0.0258 0.6060 2.8440 -2.0469 -0.0040 0.0506 -0.0239 0.0031 
∆R9,t -0.0236 0.5208 2.0621 -2.0700 0.0187 0.0623 -0.0483 -0.0011 
∆R12,t -0.0241 0.5073 2.0090 -2.0063 0.0455 0.0244 -0.0498 -0.0163 
∆R24,t -0.0255 0.4806 1.7782 -1.7416 0.0922 0.0203 -0.0534 -0.0591 
∆R36,t -0.0262 0.4698 1.8371 -1.6797 0.1157 0.0257 -0.0645 -0.0510 
∆R48,t -0.0266 0.4599 1.8769 -1.6655 0.1230 0.0189 -0.0799 -0.0378 
∆R60,t -0.0268 0.4468 1.8300 -1.6054 0.1237 0.0036 -0.0954 -0.0318 
S(1,3),t -0.0897 0.2557 0.5625 -1.8907 0.3732 0.3514 0.3561 0.2819 
S(1,9),t -0.2810 0.6406 1.2781 -2.2982 0.8066 0.6867 0.6070 0.5664 
S(1,12),t -0.2872 0.7786 1.6802 -2.5842 0.8513 0.7492 0.6706 0.6246 
S(1,24),t -0.2222 1.1348 2.6879 -3.2831 0.9116 0.8419 0.7756 0.7242 
S(1,36),t -0.1555 1.3370 3.1727 -3.8701 0.9314 0.8722 0.8116 0.7620 
S(1,48),t -0.0989 1.4631 3.4398 -4.1802 0.9399 0.8853 0.8282 0.7811 
S(1,60),t -0.0496 1.5486 3.6742 -4.3553 0.9445 0.8926 0.8383 0.7934 
S(3,9),t -0.1913 0.5635 1.3410 -2.1706 0.8046 0.6856 0.6060 0.5303 
S(3,12),t -0.1976 0.6971 1.6199 -2.2890 0.8570 0.7575 0.6818 0.6084 
S(3,24),t -0.1326 1.0588 2.3611 -3.0331 0.9158 0.8478 0.7870 0.7225 
S(3,36),t -0.0658 1.2671 2.8770 -3.6201 0.9356 0.8772 0.8219 0.7625 
S(3,48),t -0.0093 1.3990 3.3387 -3.9302 0.9441 0.8900 0.8375 0.7825 
S(3,60),t 0.0400 1.4898 3.6117 -4.1053 0.9484 0.8971 0.8466 0.7955 
S(9,36),t 0.1255 0.8178 2.3750 -2.3698 0.9469 0.9024 0.8526 0.8035 
S(12,24),t 0.0650 0.4272 1.2517 -1.2318 0.9453 0.8979 0.8478 0.7942 
S(12,36),t 0.1317 0.6691 2.0308 -1.9370 0.9536 0.9090 0.8631 0.8168 
S(12,48),t 0.1883 0.8198 2.5013 -2.3225 0.9562 0.9127 0.8694 0.8280 
S(12,60),t 0.2376 0.9235 2.7861 -2.5527 0.9578 0.9159 0.8746 0.8365 
S(24,48),t 0.1233 0.4132 1.2588 -1.0907 0.9456 0.8969 0.8581 0.8250 

Note: The table reports the descriptive statistics of the series: yields in their levels, Ri,t, changes in 
shorter term rates, ∆Rm,t, and spreads between the short and long rates, S(n,m),t, where I is the maturity of 
the series we consider, m and n are the maturities of the shorter and longer rates respectively, which are 
all measured annualized monthly rates. 
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Table B2: Detailed Result on Single Equation Analysis 
Case1: Jan 1979- May 2004 

  Panel A. Results obtained from I.i.d. bootstrap DGP 

 α Emp 
.p 

emp. 
sd. mean 0.025 0.05 0.95 0.975 t Emp. 

p 
emp. 

sd. mean 0.025 0.05 0.95 0.975 

R1,t&R3,t 0.51 0.00 0.11 1.01 0.79 0.83 1.20 1.23 -3.44 0.00 1.10 0.17 -1.96 -1.61 1.97 2.33 

R1,t&R9,t 0.63 0.01 0.16 1.01 0.69 0.74 1.28 1.34 -2.35 0.03 1.26 0.10 -2.39 -1.97 2.16 2.56 

R1,t&R12,t 0.65 0.02 0.18 1.02 0.67 0.73 1.32 1.38 -2.03 0.05 1.30 0.15 -2.42 -1.97 2.28 2.75 

R1,t&R24,t 0.69 0.07 0.23 1.03 0.58 0.65 1.40 1.47 -2.00 0.06 1.47 0.19 -2.73 -2.18 2.57 3.16 

R1,t&R36,t 0.79 0.19 0.28 1.03 0.48 0.57 1.49 1.58 -1.59 0.12 1.68 0.21 -3.12 -2.49 2.98 3.64 

R1,t&R48,t 0.89 0.30 0.32 1.05 0.42 0.52 1.56 1.67 -0.78 0.26 1.90 0.29 -3.48 -2.72 3.39 4.18 

R1,t&R60,t 0.95 0.37 0.35 1.05 0.35 0.48 1.61 1.73 -0.31 0.36 2.11 0.34 -3.83 -2.96 3.74 4.68 

R3,t&R9,t 0.54 0.00 0.15 1.01 0.72 0.76 1.26 1.31 -3.34 0.00 1.25 0.09 -2.41 -1.98 2.13 2.56 

R3,t&R12,t 0.60 0.01 0.16 1.01 0.70 0.74 1.27 1.32 -2.39 0.03 1.29 0.05 -2.47 -2.06 2.16 2.56 

R3,t&R24,t 0.65 0.05 0.22 1.01 0.58 0.65 1.38 1.45 -2.19 0.06 1.48 0.07 -2.86 -2.30 2.48 3.02 

R3,t&R36,t 0.77 0.17 0.28 1.03 0.47 0.57 1.50 1.59 -1.91 0.09 1.68 0.21 -3.09 -2.46 2.94 3.65 

R3,t&R48,t 0.88 0.29 0.32 1.04 0.40 0.51 1.57 1.67 -0.95 0.23 1.89 0.27 -3.43 -2.67 3.29 4.11 

R3,t&R60,t 0.96 0.39 0.35 1.05 0.35 0.47 1.63 1.74 -0.30 0.37 2.09 0.32 -3.80 -2.95 3.65 4.64 

R9,t&R36,t 0.58 0.12 0.39 1.03 0.26 0.40 1.67 1.81 -2.22 0.07 1.66 0.12 -3.21 -2.54 2.86 3.48 

R12,t&R24,t 0.40 0.04 0.37 1.02 0.30 0.42 1.64 1.77 -2.33 0.05 1.44 0.07 -2.80 -2.29 2.46 2.97 

R12,t&R36,t 0.51 0.12 0.43 1.01 0.16 0.30 1.71 1.86 -2.33 0.07 1.64 0.05 -3.21 -2.59 2.70 3.34 

R12,t&R48,t 0.68 0.25 0.49 1.00 0.02 0.19 1.81 1.97 -1.55 0.17 1.83 0.00 -3.67 -2.93 2.97 3.68 

R12,t&R60,t 0.81 0.35 0.54 1.01 -0.06 0.13 1.88 2.05 -0.83 0.31 2.05 0.03 -4.21 -3.28 3.32 4.18 

R24,t&R48,t 0.51 0.22 0.64 0.98 -0.30 -0.08 2.03 2.24 -2.02 0.10 1.63 -0.06 -3.39 -2.72 2.56 3.17 

 Panel B. Results obtained from wild bootstrap DGP 

 α Emp 
.p 

emp. 
sd. mean 0.025 0.05 0.95 0.975 t Emp. 

p 
emp. 

sd. mean 0.025 0.05 0.95 0.975 

R1,t&R3,t 0.51 0.01 0.23 0.99 0.58 0.63 1.36 1.41 -3.44 0.00 1.28 -0.02 -2.43 -2.05 2.12 2.51 

R1,t&R9,t 0.63 0.15 0.31 0.96 0.36 0.45 1.47 1.57 -2.35 0.05 1.27 -0.22 -2.84 -2.39 1.77 2.13 

R1,t&R12,t 0.65 0.23 0.39 0.94 0.21 0.32 1.59 1.72 -2.03 0.10 1.34 -0.28 -3.12 -2.59 1.78 2.15 

R1,t&R24,t 0.69 0.44 0.59 0.79 -0.31 -0.14 1.80 1.98 -2.00 0.18 1.54 -0.63 -3.93 -3.27 1.73 2.15 

R1,t&R36,t 0.79 0.42 0.74 0.66 -0.75 -0.54 1.91 2.16 -1.59 0.31 1.75 -0.86 -4.63 -3.86 1.76 2.29 

R1,t&R48,t 0.89 0.34 0.89 0.53 -1.15 -0.90 2.03 2.34 -0.78 0.47 1.96 -1.07 -5.40 -4.50 1.82 2.43 

R1,t&R60,t 0.95 0.30 1.05 0.42 -1.55 -1.26 2.20 2.58 -0.31 0.34 2.23 -1.28 -6.17 -5.14 1.96 2.63 

R3,t&R9,t 0.54 0.13 0.36 0.93 0.28 0.37 1.58 1.70 -3.34 0.02 1.36 -0.33 -3.06 -2.59 1.88 2.30 

R3,t&R12,t 0.60 0.19 0.32 0.88 0.23 0.34 1.39 1.47 -2.39 0.10 1.43 -0.52 -3.55 -2.97 1.67 2.13 

R3,t&R24,t 0.65 0.39 0.43 0.76 -0.09 0.04 1.44 1.55 -2.19 0.19 1.62 -0.85 -4.34 -3.65 1.64 2.11 

R3,t&R36,t 0.77 0.40 0.65 0.59 -0.68 -0.50 1.65 1.85 -1.91 0.29 1.86 -1.11 -5.27 -4.37 1.62 2.16 

R3,t&R48,t 0.88 0.29 0.73 0.45 -0.94 -0.74 1.66 1.87 -0.95 0.44 2.08 -1.44 -6.25 -5.20 1.49 2.03 

R3,t&R60,t 0.96 0.22 0.83 0.30 -1.23 -1.02 1.68 1.92 -0.30 0.26 2.37 -1.82 -7.38 -6.07 1.42 1.98 

R9,t&R36,t 0.58 0.50 0.61 0.54 -0.75 -0.53 1.47 1.61 -2.22 0.24 1.71 -1.19 -5.04 -4.19 1.33 1.79 

R12,t&R24,t 0.40 0.29 0.51 0.65 -0.48 -0.27 1.39 1.49 -2.33 0.15 1.43 -0.89 -3.89 -3.35 1.36 1.80 

R12,t&R36,t 0.51 0.43 0.56 0.57 -0.64 -0.43 1.42 1.56 -2.33 0.21 1.66 -1.14 -4.82 -4.03 1.31 1.80 

R12,t&R48,t 0.68 0.39 0.63 0.47 -0.82 -0.61 1.46 1.62 -1.55 0.43 1.94 -1.46 -5.86 -4.89 1.25 1.77 

R12,t&R60,t 0.81 0.27 0.69 0.35 -1.03 -0.81 1.47 1.65 -0.83 0.35 2.25 -1.83 -7.22 -5.92 1.17 1.73 

R24,t&R48,t 0.51 0.49 0.77 0.50 -1.04 -0.81 1.73 1.94 -2.02 0.25 1.75 -1.03 -4.91 -4.04 1.61 2.23 

Note: Table provides an estimate of slope coefficient and a t statistic that the slope is one in Equation 
(3). It also gives empirical p values based on these two and standard deviations, means, 2.5%, 5%, 
95%, and 97.5% quantiles from their empirical distributions of 25000 slope coefficients and t-statistics 
estimated under the null for each maturity pair. The restricted VAR parameters and bootstrapped (i.i.d. 
for Panel A and wild for Panel B) residuals serve as a DGP.  
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Panel B: Jan 1979- Sep 1992 

 B.1. Results obtained from I.i.d. bootstrap DGP 

 α Emp 
.p 

emp. 
sd. mean 0.025 0.05 0.95 0.975 t Emp. 

p 
emp. 

sd. mean 0.025 0.05 0.95 0.975 

R1,t&R3,t 0.61 0.01 0.17 0.99 0.66 0.72 1.26 1.32 -1.85 0.05 1.09 -0.03 -2.16 -1.82 1.76 2.13 

R1,t&R9,t 0.76 0.15 0.26 1.03 0.52 0.60 1.45 1.53 -1.02 0.18 1.32 0.16 -2.47 -2.00 2.32 2.79 

R1,t&R12,t 0.80 0.19 0.29 1.05 0.49 0.58 1.52 1.61 -0.86 0.20 1.40 0.25 -2.48 -2.01 2.56 3.10 

R1,t&R24,t 0.81 0.28 0.35 1.01 0.32 0.44 1.57 1.69 -1.05 0.24 1.70 0.05 -3.37 -2.69 2.75 3.42 

R1,t&R36,t 0.75 0.26 0.42 1.01 0.19 0.32 1.70 1.85 -1.48 0.21 2.19 0.05 -4.43 -3.41 3.56 4.49 

R1,t&R48,t 0.85 0.36 0.48 1.02 0.09 0.25 1.80 1.98 -0.82 0.34 2.81 0.12 -5.41 -4.20 4.62 5.97 

R1,t&R60,t 0.72 0.19 0.50 1.13 0.12 0.30 1.93 2.13 -1.53 0.19 3.58 0.90 -5.86 -4.27 6.79 8.82 

R3,t&R9,t 0.57 0.02 0.21 1.01 0.59 0.66 1.35 1.42 -2.39 0.03 1.30 0.03 -2.53 -2.08 2.15 2.57 

R3,t&R12,t 0.65 0.07 0.25 1.01 0.53 0.61 1.41 1.49 -1.63 0.10 1.37 0.07 -2.63 -2.13 2.29 2.81 

R3,t&R24,t 0.74 0.19 0.35 1.03 0.34 0.46 1.60 1.70 -1.51 0.15 1.73 0.17 -3.23 -2.59 2.98 3.68 

R3,t&R36,t 0.70 0.20 0.43 1.05 0.21 0.35 1.75 1.89 -2.20 0.10 2.18 0.26 -4.07 -3.11 3.80 4.80 

R3,t&R48,t 0.79 0.27 0.49 1.07 0.10 0.27 1.87 2.05 -1.24 0.23 2.85 0.42 -5.12 -3.88 5.03 6.45 

R3,t&R60,t 0.78 0.27 0.53 1.08 0.01 0.22 1.94 2.14 -1.07 0.28 3.60 0.59 -6.60 -4.82 6.45 8.29 

R9,t&R36,t 0.50 0.18 0.64 1.08 -0.20 0.01 2.12 2.34 -1.82 0.14 2.18 0.27 -4.09 -3.17 3.76 4.74 

R12,t&R24,t 0.43 0.15 0.63 1.08 -0.16 0.06 2.10 2.31 -1.39 0.15 1.65 0.18 -3.13 -2.46 2.87 3.53 

R12,t&R36,t 0.51 0.21 0.68 1.05 -0.29 -0.08 2.17 2.41 -1.34 0.20 2.06 0.15 -3.92 -3.09 3.49 4.31 

R12,t&R48,t 0.16 0.12 0.76 1.04 -0.48 -0.23 2.30 2.55 -3.39 0.07 2.59 0.12 -5.24 -4.03 4.21 5.38 

R12,t&R60,t 0.09 0.11 0.82 1.05 -0.59 -0.29 2.40 2.67 -3.07 0.12 3.33 0.19 -6.57 -4.97 5.51 7.22 

R24,t&R48,t 0.49 0.33 1.00 0.94 -1.07 -0.70 2.58 2.91 -1.06 0.30 2.09 -0.16 -4.41 -3.54 3.15 3.97 

 B.2. Results obtained from wild. bootstrap DGP 

 α Emp 
.p 

emp. 
sd. mean 0.025 0.05 0.95 0.975 t Emp. 

p 
emp. 

sd. mean 0.025 0.05 0.95 0.975 

R1,t&R3,t 0.61 0.12 0.31 0.98 0.43 0.50 1.48 1.55 -1.85 0.10 1.35 -0.09 -2.79 -2.32 2.05 2.42 

R1,t&R9,t 0.76 0.30 0.36 0.96 0.27 0.38 1.57 1.69 -1.02 0.25 1.27 -0.26 -2.97 -2.46 1.68 2.01 

R1,t&R12,t 0.80 0.38 0.45 0.95 0.11 0.24 1.71 1.88 -0.86 0.31 1.35 -0.31 -3.27 -2.68 1.68 2.04 

R1,t&R24,t 0.81 0.37 0.63 0.62 -0.51 -0.36 1.73 1.93 -1.05 0.48 1.96 -1.23 -5.81 -4.81 1.50 1.94 

R1,t&R36,t 0.75 0.28 0.75 0.34 -0.92 -0.77 1.68 1.93 -1.48 0.46 2.66 -2.15 -8.63 -7.04 1.25 1.73 

R1,t&R48,t 0.85 0.17 0.80 0.08 -1.19 -1.04 1.56 1.87 -0.82 0.24 3.34 -3.11 -11.29 -9.24 1.01 1.61 

R1,t&R60,t 0.72 0.27 1.41 -0.06 -2.74 -2.29 2.40 2.94 -1.53 0.42 3.19 -2.44 -9.83 -8.13 1.97 2.83 

R3,t&R9,t 0.57 0.20 0.36 0.88 0.20 0.30 1.48 1.59 -2.39 0.10 1.42 -0.52 -3.56 -2.95 1.68 2.10 

R3,t&R12,t 0.65 0.36 0.43 0.81 -0.03 0.10 1.51 1.63 -1.63 0.24 1.55 -0.69 -4.10 -3.44 1.64 2.05 

R3,t&R24,t 0.74 0.40 0.58 0.59 -0.51 -0.35 1.56 1.74 -1.51 0.40 2.02 -1.33 -6.09 -4.98 1.49 2.04 

R3,t&R36,t 0.70 0.29 0.71 0.31 -0.94 -0.79 1.52 1.74 -2.20 0.44 2.80 -2.33 -9.13 -7.58 1.28 1.86 

R3,t&R48,t 0.79 0.18 0.78 0.03 -1.24 -1.10 1.45 1.72 -1.24 0.28 3.67 -3.50 -12.67 -10.32 1.02 1.73 

R3,t&R60,t 0.78 0.12 0.88 -0.29 -1.70 -1.50 1.32 1.66 -1.07 0.18 4.82 -5.06 -16.88 -13.84 0.74 1.49 

R9,t&R36,t 0.50 0.32 0.93 0.03 -1.80 -1.52 1.55 1.81 -1.82 0.48 2.35 -2.08 -7.71 -6.32 1.03 1.57 

R12,t&R24,t 0.43 0.46 0.78 0.28 -1.42 -1.12 1.44 1.60 -1.39 0.46 1.67 -1.39 -5.20 -4.37 1.04 1.52 

R12,t&R36,t 0.51 0.38 0.82 0.23 -1.38 -1.15 1.56 1.78 -1.34 0.46 2.31 -1.86 -7.39 -6.11 1.20 1.76 

R12,t&R48,t 0.16 0.41 0.89 -0.01 -1.64 -1.41 1.50 1.81 -3.39 0.34 3.10 -2.83 -10.54 -8.50 0.99 1.66 

R12,t&R60,t 0.09 0.32 0.99 -0.29 -2.01 -1.76 1.46 1.87 -3.07 0.47 4.16 -4.14 -14.63 -11.97 0.83 1.63 

R24,t&R48,t 0.49 0.37 1.06 0.13 -1.88 -1.58 1.91 2.24 -1.06 0.43 2.28 -1.68 -7.01 -5.71 1.45 2.12 

Note: See the note to Panel A 
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Panel C: Oct 1992- May 2004 

 C.1. Results obtained from i.i.d. bootstrap DGP 

 α Emp 
.p 

emp. 
sd. mean 0.025 0.05 0.95 0.975 t Emp. 

p 
emp. 

sd. mean 0.025 0.05 0.95 0.975 

R1,t&R3,t 0.55 0.00 0.09 0.98 0.79 0.82 1.12 1.14 -4.62 0.00 1.16 -0.23 -2.49 -2.13 1.67 2.03 

R1,t&R9,t 0.83 0.17 0.13 0.95 0.68 0.73 1.15 1.19 -1.67 0.18 1.43 -0.45 -3.43 -2.85 1.79 2.25 

R1,t&R12,t 0.80 0.11 0.14 0.97 0.67 0.73 1.18 1.22 -2.00 0.12 1.51 -0.29 -3.46 -2.84 2.07 2.60 

R1,t&R24,t 0.63 0.11 0.23 0.91 0.44 0.52 1.27 1.34 -3.48 0.09 2.07 -0.76 -5.34 -4.30 2.27 2.96 

R1,t&R36,t 0.59 0.18 0.30 0.86 0.26 0.37 1.36 1.46 -5.97 0.05 2.82 -1.23 -7.62 -6.08 2.73 3.75 

R1,t&R48,t 0.62 0.29 0.36 0.82 0.13 0.25 1.42 1.55 -12.96 0.01 3.85 -1.75 -10.85 -8.43 3.60 5.06 

R1,t&R60,t 0.63 0.36 0.40 0.79 0.03 0.16 1.48 1.63 -8.74 0.09 5.18 -2.48 -14.89 -11.53 4.56 6.40 

R3,t&R9,t 0.77 0.05 0.12 0.98 0.73 0.77 1.16 1.19 -2.01 0.09 1.37 -0.21 -2.98 -2.48 1.98 2.43 

R3,t&R12,t 0.77 0.10 0.15 0.97 0.65 0.71 1.20 1.24 -1.92 0.13 1.50 -0.27 -3.36 -2.78 2.09 2.60 

R3,t&R24,t 0.63 0.13 0.25 0.92 0.40 0.49 1.32 1.39 -2.91 0.11 2.02 -0.60 -4.97 -4.03 2.43 3.15 

R3,t&R36,t 0.59 0.18 0.32 0.88 0.22 0.34 1.40 1.50 -4.78 0.08 2.75 -0.96 -7.14 -5.63 3.02 4.06 

R3,t&R48,t 0.62 0.27 0.38 0.84 0.10 0.23 1.46 1.60 -10.95 0.02 3.80 -1.44 -10.14 -7.78 3.84 5.41 

R3,t&R60,t 0.63 0.34 0.42 0.82 0.01 0.15 1.53 1.66 -8.84 0.08 5.14 -2.02 -13.95 -10.71 5.01 7.04 

R9,t&R36,t 0.51 0.22 0.47 0.87 -0.08 0.08 1.63 1.78 -3.63 0.10 2.47 -0.65 -6.03 -4.76 3.04 4.03 

R12,t&R24,t 0.42 0.15 0.46 0.89 -0.07 0.11 1.62 1.76 -2.15 0.14 1.74 -0.38 -4.04 -3.28 2.37 2.96 

R12,t&R36,t 0.49 0.22 0.52 0.87 -0.18 0.01 1.70 1.87 -3.04 0.12 2.33 -0.55 -5.56 -4.44 2.96 3.86 

R12,t&R48,t 0.56 0.30 0.56 0.84 -0.29 -0.10 1.75 1.93 -4.71 0.09 3.19 -0.84 -7.83 -6.16 3.83 5.10 

R12,t&R60,t 0.58 0.34 0.60 0.82 -0.39 -0.17 1.81 2.02 -8.07 0.06 4.38 -1.24 -11.08 -8.57 5.05 6.89 

R24,t&R48,t 0.50 0.29 0.73 0.86 -0.68 -0.37 2.02 2.29 -1.76 0.25 2.52 -0.46 -5.86 -4.56 3.35 4.36 

 C.2. Results obtained from wild. bootstrap DGP 

 α Emp 
.p 

emp. 
sd. mean 0.025 0.05 0.95 0.975 t Emp. 

p 
emp. 

sd. mean 0.025 0.05 0.95 0.975 

R1,t&R3,t 0.55 0.00 0.11 0.94 0.69 0.74 1.09 1.11 -4.62 0.00 1.19 -0.60 -3.01 -2.59 1.31 1.69 

R1,t&R9,t 0.83 0.39 0.20 0.87 0.45 0.53 1.17 1.21 -1.67 0.26 1.45 -0.83 -3.90 -3.29 1.37 1.81 

R1,t&R12,t 0.80 0.34 0.23 0.90 0.42 0.50 1.27 1.33 -2.00 0.17 1.58 -0.67 -4.18 -3.39 1.68 2.16 

R1,t&R24,t 0.63 0.38 0.42 0.77 -0.01 0.11 1.50 1.63 -3.48 0.14 2.28 -1.22 -6.51 -5.28 2.05 2.70 

R1,t&R36,t 0.59 0.48 0.58 0.67 -0.33 -0.19 1.71 1.92 -5.97 0.08 3.12 -1.70 -8.76 -7.09 2.74 3.74 

R1,t&R48,t 0.62 0.45 0.69 0.62 -0.56 -0.40 1.87 2.13 -12.96 0.02 4.17 -2.19 -11.82 -9.42 3.91 5.28 

R1,t&R60,t 0.63 0.43 0.79 0.59 -0.74 -0.54 2.01 2.31 -8.74 0.11 5.68 -2.71 -15.60 -12.25 5.55 7.61 

R3,t&R9,t 0.77 0.17 0.18 0.94 0.57 0.63 1.21 1.25 -2.01 0.12 1.38 -0.45 -3.30 -2.78 1.75 2.18 

R3,t&R12,t 0.77 0.29 0.24 0.91 0.40 0.49 1.29 1.36 -1.92 0.17 1.53 -0.53 -3.84 -3.15 1.79 2.30 

R3,t&R24,t 0.63 0.37 0.45 0.80 -0.07 0.05 1.55 1.68 -2.91 0.15 2.14 -0.95 -5.81 -4.72 2.16 2.82 

R3,t&R36,t 0.59 0.44 0.63 0.71 -0.44 -0.28 1.77 1.98 -4.78 0.10 2.94 -1.31 -7.99 -6.42 2.90 3.85 

R3,t&R48,t 0.62 0.49 0.74 0.64 -0.71 -0.50 1.90 2.15 -10.95 0.03 4.03 -1.79 -10.99 -8.58 3.89 5.26 

R3,t&R60,t 0.63 0.44 0.82 0.58 -0.88 -0.67 2.01 2.31 -8.84 0.10 5.55 -2.56 -15.62 -12.09 5.12 7.26 

R9,t&R36,t 0.51 0.48 0.56 0.53 -0.57 -0.40 1.44 1.60 -3.63 0.20 2.63 -1.96 -8.28 -6.77 1.48 2.17 

R12,t&R24,t 0.42 0.30 0.52 0.66 -0.47 -0.27 1.45 1.59 -2.15 0.23 1.80 -1.07 -5.12 -4.22 1.54 2.08 

R12,t&R36,t 0.49 0.49 0.59 0.49 -0.70 -0.51 1.41 1.59 -3.04 0.26 2.52 -1.95 -8.10 -6.55 1.32 1.94 

R12,t&R48,t 0.56 0.35 0.65 0.30 -0.98 -0.76 1.35 1.55 -4.71 0.25 3.58 -3.14 -11.96 -9.79 1.10 1.88 

R12,t&R60,t 0.58 0.25 0.67 0.13 -1.19 -0.95 1.24 1.47 -8.07 0.17 4.92 -4.58 -16.99 -13.76 0.88 1.79 

R24,t&R48,t 0.50 0.32 1.12 1.04 -1.16 -0.84 2.83 3.13 -1.76 0.21 2.85 0.13 -5.65 -4.33 4.71 5.91 

Note: See the note to Panel A. 
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Table B3: Detailed Result on Volatility Analysis 
Case1: Jan 1979- May 2004 

 
Panel A. Actual and Theoretical Spreads’ Standard Deviations Ratio 

 

 
i.i.d. bootstrap DGP result 

 
wild bootstrap DGP result 

 

 coef emp. 
p mean min 0.025 0.05 0.95 0.975 coef emp. 

p mean min 0.025 0.05 0.95 0.975 

R1,t&R3,t 0.481 0.000 1.042 0.526 0.832 0.868 1.220 1.258 0.481 0.000 1.113 0.463 0.733 0.783 1.433 1.477

R1,t&R9,t 0.633 0.000 2.351 1.408 1.859 1.935 2.767 2.847 0.633 0.000 2.202 0.618 1.233 1.367 3.085 3.237

R1,t&R12,t 0.620 0.000 2.772 1.609 2.150 2.249 3.299 3.405 0.620 0.000 2.561 0.642 1.291 1.451 3.785 4.017

R1,t&R24,t 0.656 0.000 2.133 1.600 1.885 1.921 2.355 2.405 0.656 0.000 1.933 0.416 1.023 1.121 3.075 3.415

R1,t&R36,t 0.660 0.000 2.197 1.704 1.962 1.995 2.408 2.451 0.660 0.000 1.981 0.396 0.997 1.101 3.290 3.667

R1,t&R48,t 0.670 0.000 2.228 1.749 2.000 2.036 2.432 2.477 0.670 0.001 2.006 0.418 0.993 1.094 3.380 3.804

R1,t&R60,t 0.679 0.000 2.248 1.780 2.025 2.061 2.446 2.488 0.679 0.001 2.018 0.458 0.991 1.096 3.422 3.858

R3,t&R9,t 0.528 0.000 1.832 1.008 1.443 1.506 2.157 2.221 0.528 0.001 1.702 0.428 0.826 0.938 2.560 2.726

R3,t&R12,t 0.685 0.000 1.428 1.101 1.258 1.284 1.579 1.610 0.685 0.003 1.462 0.455 0.856 0.936 2.104 2.265

R3,t&R24,t 0.772 0.000 1.685 1.387 1.532 1.555 1.820 1.849 0.772 0.003 1.738 0.512 0.958 1.056 2.606 2.831

R3,t&R36,t 0.670 0.000 2.110 1.650 1.888 1.922 2.307 2.347 0.670 0.001 1.895 0.417 0.949 1.050 3.138 3.493

R3,t&R48,t 0.691 0.000 2.164 1.743 1.949 1.981 2.355 2.397 0.691 0.001 1.940 0.448 0.953 1.060 3.261 3.668

R3,t&R60,t 0.704 0.000 2.196 1.788 1.988 2.019 2.383 2.423 0.704 0.002 1.966 0.461 0.963 1.072 3.326 3.754

R9,t&R36,t 0.483 0.000 1.735 1.242 1.515 1.548 1.932 1.975 0.483 0.001 1.544 0.288 0.739 0.823 2.628 2.958

R12,t&R24,t 0.374 0.000 1.156 0.589 0.933 0.969 1.352 1.392 0.374 0.003 1.019 0.181 0.492 0.551 1.670 1.856

R12,t&R36,t 0.663 0.000 1.295 0.960 1.145 1.168 1.427 1.454 0.663 0.020 1.352 0.320 0.685 0.762 2.160 2.384

R12,t&R48,t 0.711 0.000 1.456 1.139 1.312 1.334 1.582 1.610 0.711 0.014 1.519 0.400 0.770 0.852 2.436 2.698

R12,t&R60,t 0.749 0.000 1.553 1.264 1.414 1.436 1.673 1.699 0.749 0.011 1.618 0.473 0.829 0.916 2.584 2.857

R24,t&R48,t 0.686 0.000 0.972 0.651 0.813 0.838 1.114 1.145 0.686 0.134 1.015 0.262 0.516 0.574 1.598 1.760

 
Pnel B. Actual and Theoretical Spreads’ Correlation Coefficient 

 

 
i.i.d. bootstrap DGP result 

 
wild bootstrap DGP result 

 

R1,t&R3,t 0.825 0.003 0.952 0.645 0.880 0.899 0.985 0.988 0.825 0.237 0.870 0.366 0.697 0.732 0.961 0.969

R1,t&R9,t 0.956 0.031 0.975 0.910 0.954 0.958 0.989 0.991 0.956 0.426 0.955 0.562 0.886 0.902 0.990 0.993

R1,t&R12,t 0.970 0.440 0.970 0.923 0.949 0.953 0.985 0.987 0.970 0.728 0.948 0.391 0.872 0.891 0.988 0.991

R1,t&R24,t 0.994 0.953 0.990 0.971 0.984 0.985 0.994 0.995 0.994 0.910 0.951 0.394 0.791 0.840 0.996 0.998

R1,t&R36,t 0.995 0.986 0.990 0.975 0.984 0.985 0.994 0.994 0.995 0.924 0.943 0.300 0.755 0.810 0.996 0.998

R1,t&R48,t 0.995 0.998 0.990 0.977 0.984 0.985 0.993 0.994 0.995 0.940 0.940 0.260 0.733 0.796 0.996 0.997

R1,t&R60,t 0.996 1.000 0.989 0.977 0.985 0.985 0.993 0.994 0.996 0.951 0.939 0.249 0.725 0.791 0.996 0.997

R3,t&R9,t 0.985 0.936 0.970 0.902 0.946 0.951 0.986 0.988 0.985 0.945 0.930 -0.103 0.797 0.840 0.985 0.990

R3,t&R12,t 1.000 0.808 0.999 0.989 0.997 0.998 1.000 1.000 1.000 0.948 0.991 0.825 0.953 0.965 1.000 1.000

R3,t&R24,t 1.000 0.688 1.000 0.993 0.998 0.999 1.000 1.000 1.000 0.933 0.991 0.751 0.953 0.965 1.000 1.000

R3,t&R36,t 0.995 0.998 0.989 0.976 0.984 0.985 0.993 0.994 0.995 0.938 0.942 0.243 0.745 0.805 0.996 0.998

R3,t&R48,t 0.996 1.000 0.989 0.975 0.984 0.985 0.993 0.993 0.996 0.954 0.939 0.221 0.728 0.792 0.996 0.997

R3,t&R60,t 0.997 1.000 0.989 0.975 0.984 0.985 0.993 0.993 0.997 0.966 0.938 0.228 0.721 0.788 0.996 0.997

R9,t&R36,t 0.982 0.043 0.988 0.970 0.981 0.982 0.992 0.993 0.982 0.752 0.932 0.297 0.712 0.777 0.995 0.997

R12,t&R24,t 0.949 0.001 0.983 0.928 0.968 0.971 0.992 0.993 0.949 0.454 0.931 0.324 0.729 0.781 0.995 0.997

R12,t&R36,t 0.999 0.277 0.999 0.989 0.997 0.998 1.000 1.000 0.999 0.766 0.991 0.793 0.953 0.966 1.000 1.000

R12,t&R48,t 0.999 0.239 1.000 0.991 0.998 0.998 1.000 1.000 0.999 0.784 0.991 0.780 0.953 0.966 1.000 1.000

R12,t&R60,t 1.000 0.246 1.000 0.993 0.998 0.999 1.000 1.000 1.000 0.806 0.992 0.795 0.955 0.967 1.000 1.000

R24,t&R48,t 0.995 0.048 0.999 0.972 0.993 0.995 1.000 1.000 0.995 0.410 0.992 0.782 0.959 0.969 1.000 1.000

See Note to Case 2. 
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Case2: Jan 1979- Sep 1992 

 

 
Panel A. Actual and Theoretical Spreads’ Standard Deviations Ratio 

 

 
i.i.d. bootstrap DGP result 

 
wild bootstrap DGP result 

 

 coef emp.p mean min 0.03 0.05 0.95 0.98 coef emp.p mean min 0.03 0.05 0.95 0.98

R1,t&R3,t 0.601 0.004 1.031 0.413 0.723 0.771 1.302 1.353 0.601 0.066 1.058 0.205 0.510 0.573 1.531 1.601

R1,t&R9,t 0.707 0.000 3.427 1.484 2.370 2.521 4.369 4.548 0.707 0.000 3.486 0.662 1.849 2.085 4.981 5.297

R1,t&R12,t 0.686 0.000 3.956 1.533 2.654 2.843 5.141 5.390 0.686 0.000 3.936 0.753 1.922 2.182 5.915 6.362

R1,t&R24,t 0.888 0.000 1.565 1.237 1.408 1.431 1.713 1.748 0.888 0.021 1.741 0.454 0.906 0.996 2.733 3.014

R1,t&R36,t 0.916 0.000 1.590 1.300 1.450 1.470 1.722 1.754 0.916 0.031 1.787 0.444 0.886 0.982 2.896 3.233

R1,t&R48,t 0.927 0.000 1.602 1.335 1.471 1.491 1.725 1.755 0.927 0.036 1.810 0.437 0.881 0.975 2.979 3.348

R1,t&R60,t 0.720 0.000 1.563 1.312 1.437 1.457 1.678 1.702 0.720 0.003 1.810 0.461 0.887 0.971 3.240 3.742

R3,t&R9,t 0.613 0.000 1.097 0.749 0.922 0.948 1.257 1.291 0.613 0.013 1.203 0.356 0.665 0.731 1.788 1.917

R3,t&R12,t 0.697 0.000 1.233 0.888 1.067 1.090 1.388 1.422 0.697 0.016 1.366 0.362 0.741 0.814 2.061 2.230

R3,t&R24,t 0.810 0.000 1.436 1.155 1.295 1.316 1.570 1.599 0.810 0.022 1.615 0.416 0.823 0.907 2.572 2.836

R3,t&R36,t 0.862 0.000 1.503 1.217 1.375 1.395 1.624 1.652 0.862 0.033 1.703 0.415 0.829 0.921 2.803 3.116

R3,t&R48,t 0.887 0.000 1.537 1.266 1.417 1.435 1.650 1.676 0.887 0.038 1.746 0.415 0.837 0.927 2.910 3.254

R3,t&R60,t 0.896 0.000 1.557 1.316 1.443 1.461 1.663 1.687 0.896 0.037 1.772 0.415 0.846 0.937 2.960 3.329

R9,t&R36,t 0.435 0.000 1.191 0.875 1.033 1.058 1.340 1.375 0.435 0.001 1.396 0.327 0.634 0.702 2.613 3.032

R12,t&R24,t 0.301 0.000 0.799 0.439 0.618 0.645 0.976 1.017 0.301 0.002 0.925 0.207 0.420 0.468 1.679 1.933

R12,t&R36,t 0.587 0.000 1.095 0.763 0.937 0.962 1.241 1.276 0.587 0.033 1.270 0.291 0.565 0.628 2.230 2.539

R12,t&R48,t 0.616 0.000 1.231 0.931 1.081 1.105 1.367 1.399 0.616 0.022 1.428 0.320 0.626 0.697 2.554 2.920

R12,t&R60,t 0.646 0.000 1.312 1.039 1.172 1.194 1.439 1.469 0.646 0.019 1.520 0.339 0.673 0.746 2.713 3.119

R24,t&R48,t 0.506 0.000 0.825 0.452 0.652 0.677 0.992 1.031 0.506 0.084 0.963 0.132 0.397 0.455 1.708 1.930

 
Panel B. Actual and Theoretical Spreads’ Correlation Coefficient 

 

 
i.i.d. bootstrap DGP result 

 
wild bootstrap DGP result 

 

R1,t&R3,t 0.959 0.265 0.967 0.536 0.878 0.904 0.997 0.998 0.959 0.590 0.929 0.373 0.761 0.801 0.993 0.996

R1,t&R9,t 0.956 1.000 0.785 0.604 0.711 0.723 0.843 0.853 0.956 0.999 0.819 0.478 0.695 0.718 0.902 0.915

R1,t&R12,t 0.970 1.000 0.776 0.595 0.703 0.716 0.834 0.844 0.970 1.000 0.817 0.411 0.688 0.712 0.903 0.916

R1,t&R24,t 0.999 0.522 0.998 0.979 0.993 0.994 1.000 1.000 0.999 0.790 0.986 0.537 0.926 0.946 1.000 1.000

R1,t&R36,t 0.999 0.566 0.998 0.982 0.994 0.995 1.000 1.000 0.999 0.812 0.984 0.495 0.915 0.939 1.000 1.000

R1,t&R48,t 0.999 0.585 0.998 0.984 0.994 0.995 1.000 1.000 0.999 0.817 0.983 0.470 0.909 0.936 1.000 1.000

R1,t&R60,t 0.993 0.010 0.998 0.979 0.995 0.996 1.000 1.000 0.993 0.938 0.926 0.188 0.673 0.750 0.995 0.997

R3,t&R9,t 0.999 0.700 0.997 0.949 0.986 0.989 1.000 1.000 0.999 0.831 0.987 0.540 0.934 0.951 1.000 1.000

R3,t&R12,t 0.999 0.658 0.997 0.963 0.989 0.991 1.000 1.000 0.999 0.828 0.986 0.413 0.929 0.948 1.000 1.000

R3,t&R24,t 1.000 0.718 0.998 0.979 0.993 0.994 1.000 1.000 1.000 0.863 0.985 0.380 0.919 0.942 1.000 1.000

R3,t&R36,t 1.000 0.758 0.998 0.984 0.994 0.995 1.000 1.000 1.000 0.879 0.983 0.404 0.908 0.935 1.000 1.000

R3,t&R48,t 1.000 0.773 0.998 0.986 0.995 0.996 1.000 1.000 1.000 0.877 0.983 0.433 0.903 0.932 1.000 1.000

R3,t&R60,t 1.000 0.788 0.999 0.987 0.995 0.996 1.000 1.000 1.000 0.875 0.982 0.445 0.901 0.932 1.000 1.000

R9,t&R36,t 0.967 0.001 0.996 0.936 0.986 0.989 1.000 1.000 0.967 0.668 0.913 0.102 0.620 0.707 0.993 0.996

R12,t&R24,t 0.889 0.001 0.988 0.746 0.953 0.963 0.999 0.999 0.889 0.270 0.909 0.081 0.623 0.705 0.993 0.996

R12,t&R36,t 1.000 0.886 0.997 0.956 0.987 0.990 1.000 1.000 1.000 0.946 0.980 0.511 0.889 0.921 1.000 1.000

R12,t&R48,t 1.000 0.832 0.998 0.961 0.990 0.992 1.000 1.000 1.000 0.920 0.979 0.474 0.883 0.919 1.000 1.000

R12,t&R60,t 1.000 0.824 0.998 0.968 0.992 0.993 1.000 1.000 1.000 0.913 0.980 0.476 0.884 0.921 1.000 1.000

R24,t&R48,t 0.993 0.293 0.994 0.902 0.972 0.978 1.000 1.000 0.993 0.532 0.981 0.563 0.895 0.925 1.000 1.000

Note: Table provides a sample standard deviation ratio and a correlation coefficient between actual and 
theoretical spreads for each maturity pair in bolds. Also provided is an empirical p value, which is a 
proportion of 25000 st.dev ratios/correlation coef-s, obtained from the null DGP, that are less than the 
sample statistic. Mean, minimum and 0.025%, 0.05%, 0.95% and 0.975% quantiles are given too. 



 38

Case3: Oct 1992- May 2004 

 

 
Panel A. Actual and Theoretical Spreads’ Standard Deviations Ratio 

 

 
i.i.d. bootstrap DGP result 

 
wild bootstrap DGP result 

 

 coef emp.p mean min 0.03 0.05 0.95 0.98 coef emp.p mean min 0.03 0.05 0.95 0.98

R1,t&R3,t 0.661 0.000 1.003 0.578 0.833 0.862 1.132 1.155 0.661 0.003 0.990 0.471 0.776 0.817 1.124 1.142

R1,t&R9,t 0.838 0.000 3.485 1.894 2.722 2.879 3.957 4.022 0.838 0.000 3.489 1.331 2.552 2.735 4.024 4.088

R1,t&R12,t 0.801 0.000 3.672 1.304 2.491 2.685 4.606 4.776 0.801 0.000 3.731 0.630 2.102 2.340 5.065 5.297

R1,t&R24,t 0.758 0.000 5.059 1.400 2.886 3.181 7.123 7.536 0.758 0.000 5.251 0.607 2.055 2.413 8.693 9.333

R1,t&R36,t 0.736 0.000 5.655 1.446 3.031 3.374 8.425 9.065 0.736 0.000 5.986 0.471 1.905 2.279 11.01 12.11

R1,t&R48,t 0.728 0.000 5.961 1.663 3.143 3.476 9.124 9.939 0.728 0.000 6.413 0.290 1.828 2.200 12.48 13.93

R1,t&R60,t 0.728 0.000 6.136 1.644 3.222 3.573 9.505 10.37 0.728 0.001 6.686 0.235 1.807 2.172 13.40 15.05

R3,t&R9,t 0.738 0.000 2.382 1.132 1.804 1.907 2.805 2.874 0.738 0.000 2.407 0.858 1.679 1.805 2.937 3.016

R3,t&R12,t 0.750 0.000 3.126 1.255 2.171 2.320 3.869 3.994 0.750 0.000 3.181 0.918 1.932 2.130 4.173 4.333

R3,t&R24,t 0.737 0.000 4.744 1.369 2.720 2.998 6.645 7.034 0.737 0.000 4.939 0.655 2.020 2.355 7.991 8.578

R3,t&R36,t 0.728 0.000 5.435 1.516 2.943 3.241 8.084 8.673 0.728 0.000 5.768 0.485 1.913 2.283 10.39 11.50

R3,t&R48,t 0.724 0.000 5.791 1.490 3.064 3.407 8.865 9.606 0.724 0.000 6.245 0.487 1.856 2.230 11.95 13.37

R3,t&R60,t 0.724 0.000 5.997 1.513 3.177 3.506 9.270 10.14 0.724 0.000 6.547 0.546 1.834 2.212 12.90 14.53

R9,t&R36,t 0.766 0.000 5.049 1.080 2.615 2.941 7.479 8.032 0.766 0.004 5.231 0.252 1.405 1.792 9.470 10.31

R12,t&R24,t 0.706 0.000 3.131 0.506 1.579 1.797 4.511 4.766 0.706 0.007 3.194 0.211 1.053 1.324 5.153 5.477

R12,t&R36,t 0.765 0.000 4.563 0.866 2.337 2.620 6.798 7.265 0.765 0.006 4.757 0.224 1.289 1.635 8.501 9.259

R12,t&R48,t 0.827 0.000 5.362 1.307 2.736 3.051 8.184 8.858 0.827 0.005 5.699 0.185 1.443 1.867 10.67 11.79

R12,t&R60,t 0.877 0.000 5.859 1.354 2.979 3.312 9.126 9.869 0.877 0.005 6.325 0.244 1.571 2.035 12.15 13.62

R24,t&R48,t 1.055 0.000 6.601 0.745 3.071 3.524 9.647 10.17 1.055 0.002 6.829 0.181 2.304 2.874 10.45 10.97

 
Panel B. Actual and Theoretical Spreads’ Correlation Coefficient 

 

 
i.i.d. bootstrap DGP result 

 
wild bootstrap DGP result 

 

R1,t&R3,t 0.829 0.000 0.979 0.804 0.942 0.952 0.995 0.996 0.829 0.001 0.971 0.698 0.914 0.930 0.993 0.994

R1,t&R9,t 1.000 0.926 0.998 0.971 0.993 0.994 1.000 1.000 1.000 0.791 0.999 0.950 0.991 0.994 1.000 1.000

R1,t&R12,t 0.998 0.963 0.989 0.842 0.962 0.971 0.998 0.999 0.998 0.982 0.977 0.597 0.909 0.930 0.997 0.998

R1,t&R24,t 0.996 0.908 0.985 0.792 0.954 0.963 0.997 0.997 0.996 0.938 0.963 -0.052 0.826 0.878 0.996 0.997

R1,t&R36,t 0.993 0.838 0.983 0.787 0.951 0.960 0.996 0.997 0.993 0.888 0.954 -0.310 0.766 0.840 0.995 0.997

R1,t&R48,t 0.993 0.860 0.982 0.780 0.949 0.959 0.995 0.996 0.993 0.890 0.949 -0.460 0.734 0.820 0.995 0.997

R1,t&R60,t 0.993 0.913 0.982 0.788 0.949 0.959 0.995 0.996 0.993 0.910 0.948 -0.526 0.720 0.813 0.995 0.997

R3,t&R9,t 0.996 0.713 0.991 0.887 0.970 0.977 0.999 0.999 0.996 0.846 0.985 0.774 0.946 0.958 0.998 0.999

R3,t&R12,t 0.996 0.765 0.989 0.857 0.964 0.971 0.998 0.999 0.996 0.868 0.981 0.592 0.925 0.942 0.998 0.998

R3,t&R24,t 0.988 0.484 0.985 0.817 0.953 0.962 0.997 0.997 0.988 0.694 0.966 -0.052 0.849 0.890 0.996 0.997

R3,t&R36,t 0.985 0.440 0.983 0.769 0.951 0.960 0.996 0.997 0.985 0.666 0.958 -0.337 0.793 0.858 0.996 0.997

R3,t&R48,t 0.986 0.498 0.982 0.781 0.950 0.959 0.995 0.996 0.986 0.691 0.954 -0.377 0.765 0.842 0.996 0.997

R3,t&R60,t 0.987 0.595 0.982 0.806 0.950 0.959 0.995 0.996 0.987 0.728 0.953 -0.450 0.754 0.835 0.996 0.997

R9,t&R36,t 0.991 0.712 0.984 0.855 0.956 0.963 0.996 0.997 0.991 0.626 0.973 -0.605 0.863 0.910 0.998 0.999

R12,t&R24,t 0.979 0.259 0.983 0.737 0.949 0.959 0.996 0.997 0.979 0.294 0.978 -0.876 0.895 0.930 0.998 0.999

R12,t&R36,t 0.989 0.663 0.983 0.838 0.954 0.961 0.996 0.997 0.989 0.555 0.975 -0.896 0.876 0.916 0.998 0.999

R12,t&R48,t 0.995 0.939 0.983 0.868 0.954 0.961 0.995 0.996 0.995 0.781 0.975 -0.843 0.877 0.919 0.998 0.999

R12,t&R60,t 0.997 0.993 0.982 0.872 0.954 0.961 0.995 0.996 0.997 0.913 0.976 -0.749 0.881 0.922 0.998 0.999

R24,t&R48,t 0.999 0.999 0.986 0.917 0.966 0.971 0.995 0.996 0.999 0.829 0.995 0.857 0.982 0.986 0.999 1.000

See Note to Case 2. 


