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Abstract

Almost a decade after Rogo¤ (1996) formulated his celebrated PPP Puzzle, the ques-

tion of how to explain the high volatility and the simultaneously persistent deviations

from equilibrium shown by real exchange rates remains open. As regards the persis-

tence of deviations, various papers using more powerful and sophisticated techniques

have obtained half-lives bigger than the 3-5 year "consensus" to which Rogo¤ refered

and, more importantly, have found that the upper bound of the con�dence intervals are

too high to rule out the failure of PPP.

This paper tries to shed more light on the problems of measuring deviations by using

fractional integration models to model more accurately a sample of 22 real exchange

rates -the same as in Taylor (2002)- and to avoid any risk of underbias in the estimation

of the half-lives. As a �rst result, we �nd that, although there are important di¤erences

across countries, the memory parameter takes values on the frontier of stationarity,

which means that the real exchange rate is a mean reverting process with a high degree

of persistence. In terms of half-lives, the classical approach gives a picture of persistence

not very di¤erent from that of Taylor (2002). However, a more persistent picture is that

given by Bayesian approaches, when without any exception, the half lives are higher.

�This research has received �nancial support from the Spanish Ministry of Education through grants

SEJ2005-00215ECON.
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But now, di¤erently from the results of López et al. (2003, 2004), we can claim -with

only 15% probability for the region with permanent shocks- that PPP hold, although

the density of half-lives computed with Bayesian techniques shows that the 3-5 year

consensus is very unlikely.

JEL classi�cation: C22, E31

Keywords: In�ation persistence, ARFIMA models.

1. INTRODUCTION

Almost a decade after Rogo¤ (1996) formulated his celebrated PPP Puzzle, the question

of how to explain the high volatility and the simultaneously persistent deviations from

equilibrium shown by real exchange rates remains open. For this author, the coincident

half-lives of 3-5 years found in empirical studies using long-horizon data sets1, were too

lasting to be reconciled with the short-run variability exhibited by real exchange rates,

necessarily provoked by nominal factors (hence the Puzzle). As regards the persistence

of the deviations these were widely illustrated in the well-known study of Taylor (2002)

who, working with a sample of 22 countries and a period of a century, even calculating for

detrended series of real exchange rates, found a median half-life of around 4 years. Most

importantly, this evidence of a �glacial� speed of reversion2 has been enlarged in recent

e¤orts to better measure the size of the deviations from PPP.

The most popular persistence measure in the PPP literature, the above mentioned half-

life (HL henceforth) of deviations, de�ned as the number of periods for deviations to be

corrected by one half, is now being deeply analyzed. Because it is very sensitive to the

estimated coe¢ cient of the autoregressive parameter, the methods of estimating it are

being revised. Furthermore, the calculus of HL only gives a point estimator of persistence,

o¤ering a poor picture of the path of the shock. So, Murray and Papell (2002) estimate HL

based on median unbiased estimations of the autoregressive parameter, providing con�dence
1The conclusions of Rogo¤ (1996) come from a set of long-run studies such as Frankel (1986), Abuaf and

Jorion (1990), and Lothian and Taylor (1996).
2Rogo¤ (1996).
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intervals and impulse response functions. Although the mean value is within the 3-5 year

range, their wide intervals are not informative and do not allow us to accept the PPP as a

hypothesis of behaviour. Furthermore, the low bounds are too high to be compatible with

models based on nominal rigidities. Of special interest in this point is the work of Lopez et

al. (2003, 2004), who extend the median unbiased techniques by using the more powerful

unit root test GLS of Elliot et al. (1996) and �nd half-lives of between 8 and 11 years and

lower bounds over 3 years for the same sample of countries as Taylor (2002). Moreover,

the upper bounds of the con�dence intervals in López et al. are so high that they cannot

rule out the failure of PPP in the long-run3. To sum up, a general conclusion that can

be obtained from recent work is that traditional measures of persistence are downwardly

biased and the size of puzzle could be even bigger than initially thought.

In this framework, this paper tries to shed further light on the debate by considering an

alternative and more �exible statistical approach. The studies cited above are usually based

on the too restrictive I(0)-I(1) paradigm determining the reaction of the real exchange rate

to a shock. Stationary processes are characterized by autocorrelation functions that decay

to zero at an exponential rate, while series containing a unit root have a permanent e¤ect.

But some macroeconomic and �nancial series could react in a di¤erent way to shocks (due,

for example, to an intertemporal smoothing of consumption) showing no permanent but

very lasting mean reversion behaviour.

If this were the case, the standard unit root approach could yield false conclusions about

the permanent or non-permanent nature of the shocks, the fractional integration (FI) ap-

proach being a more appropriate framework for modelling real exchange rate. In fact, if

the real exchange rate follow an I(d) model, the usual �nite autoregressive representation

will probably not reject the unit roots hypothesis and wrongly conclude that the shocks are

permanent. On the other hand, even if we accepted that PPP holds, which would imply

the stationarity of the real exchange rate, the persistence would be underestimated because

3Other attempts such as Cahin and Mcdermott (2003), Rossi (2004), Caporale et al. (2004) and Murrary

and Papell (2005) have obtained similar results.
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the I(0) model only considers the short-run dynamics4.

For this reason, in Section 2 we �rstly introduce the basis of the concept of fractional

integration and show the results of estimating ARFIMA models with di¤erent methods for

the real exchange rates of the same 22 countries as Taylor (2002) during the last century 5.

Then in Section 3, to overcome underestimation, impulse response functions and half-lives

are estimated in a fractional context by applying classical and Bayesian approaches. In

this way, we take into account the uncertainty about the true model and provide density

functions of the interest parameter. These allow us to compute exactly the probability of

the memory parameter being in each of the regions, classi�ed by their degree of inertia, and

to know how likely the 3-5 year consensus is. Finally, Section 4 is devoted to discussing

results.

2. FRACTIONAL INTEGRATION IN RER SERIES

As we said earlier, we use the database elaborated by Taylor (2002) for a sample of 22

countries for a period running from 1850 to 1996, although some series start later, and en-

large it to 2000 using the CD-ROM of IMF, InternationalFinancialStatistics. The countries

included in the study are Argentina (ARG), Australia (AUS), Belgium (BEL), Brazil (BRA),

Canada (CAN), Chile (CHL), Denmark (DNK), Finland (FI), France (FR), Germany

(DEU), Greece (GRC), Italy (IT), Japan (JPN), Mexico (MEX), Netherlands (NLD), New

Zealand (NZL), Norway (NOR), Portugal (POR), Spain (ESP), Sweden (SWE), Switzer-

land (CHE) and Great Britain (GBR). As well as the di¤erent starting dates for some

countries, some data are also missing for speci�c periods such as the World Wars and hy-

perin�ation episodes. The di¤erent sample sizes are not a big problem because we are going

to work with individual series6, and the second problem has been solved by interpolation

4About the pitfalls of using the integer aproach for measuring persistence, see Gadea and Mayoral (2006).
5Examples of FI in favour of PPP are those of Diebold et al. (1991), Cheung and Lai (1993, 2001), Chou

and Shih (1997), Dueker and Serletis (2000), Chaung and Lai (2000), Holmes (2000), Achy (2003), Heravi

and Patterson (2003), Barkoulas et al. (1998) and Caporale and Gil-Alana (2004).
6However, we should consider this point in order to interpret the results suitably, especially in some

countries like Greece, whose sample size is relatively small.
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using the Tramo-Seats program7. The data are annual and include the nominal exchange

rate E de�ned as domestic currency units per U.S. dollar and price indices P measured as

consumer price de�ators and, occasionally, when these are not available, as GDP de�ators.

Thus, the real exchange rate Qit of country i at time t is calculated as follows:

Qit =
Pit

PusatEit

Taking logs we obtain the following expression:

qit = pit � pusat � eit

where lower case letters denote variables in logs and an increase of qit represents an appre-

ciation of exchange rates in real terms. The series of the real exchange rate for all countries

are displayed in Figures 1, 2 and 3.

A preliminary analysis is carried out applying the MZt-GLS unit root tests proposed by

Ng and Perron (2001) which are modi�ed forms of Phillips-Perron test [Phillips and Perron

(1988)] based on the GLS detrended data as well as, the KPSS of Kwiatkowski et al. (1992)

that uses the stationarity of real exchange rate as null hypothesis. Both have been applied

to two di¤erent speci�cations that include intercept or intercept and trend. Although there

is no consensus, for the majority of countries -as Taylor (2002) found by applying standard

Dickey-Fuller tests- we can reject the presence of a unit root in the series and can not reject

the null of stationarity and, in some cases, both hypothesis are rejected simultaneously.

Although the deterministic trend is signi�cant in some countries, its inclusion does not

signi�cantly change the conclusions. In spite of contradictory empirical results, from a

theoretical point of view, there is a wide acceptance of the PPP as a long-run rule and, as

has been mentioned earlier, recent studies focus on measuring and explaining deviations.

so, we devote our attention to elaborating a novel method to measure them starting from

the idea of fractional integration.

7Gómez and Maravall (1996).
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TABLE 2.1

Unit roots and stationarity tests

MZt-GLS KPSS

intercept intercept and trend intercept intercept and trend

ARG �4:09 � � �4:14 � � 0:11 0:11

AUS �2:43 � � �2:70 0:81 � � 0:15�

BEL �3:37 � � �4:77 � � 0:74 � � 0:06

BRA �2:53 � � �2:59 0:16 0:09

CAN �1:77 �2:04 0:78 � � 0:21�

CHL �1:02 �3:02� 1:06 � � 0:19

DNK �2:00 �3:36� 0:68 � � 0:21�

FIN �5:70 � � �5:94 � � 0:18 0:06

FRA �2:33� �4:21 � � 0:89 � � 0:29 � �

DEU �2:67 � � �3:61 � � 0:39 0:05

GRC �0:59 �0:81 0:25 0:15�

ITA �3:99 � � �4:00 � � 0:07 0:06

JPN 0:17 �3:12� 1:14 � � 0:18�

MEX �2:50� �3:52 � � 0:81� 0:07

NLD �2:58 � � �3:34 � � 0:43 0:17�

NZL �3:35 � � �3:86 � � 0:53� 0:02

NOR �2:37� �3:87 � � 0:46� 0:14

PRT �1:85 �2:89 0:40 0:23 � �

ESP �2:87 � � �3:27 0:31 0:22 � �

SWE �3:21 � � �4:59 � � 0:59� 0:06

CHE �0:68 �3:70 � � 0:94 � � 0:14

GBR �2:58 � � �2:76 0:38 0:17�

Notes: **, * Signi�cant at the 1% and 5% level respectively. The lag length has been chosen

according to the SBIC criterion in the MZt-GLS and Bartlett�s window has been used as

a kernel estimator in the PP and KPSS. (bandwidth chosen according to Newey and West (1994)).6



Preliminary results show that PPP holds, but the high persistence found in previous

studies suggests more subtle parity-reverting dynamics in real exchange rate. Under the

integer approach, if a process is I(1), all shocks have a permanent e¤ect while they disap-

pear exponentially when the process is I(0). Less extreme alternatives are the fractionally

integrated models, where shocks can be very persistent but not permanent The so-called

fractionally integrated (FI) models extend the dichotomy I (1) versus I (0) and, at the same

time, are able to account for richer persistence types. In the FI approach, the most popular

parametric model is the ARFIMA, independently introduced by Granger and Joyeux (1980)

and Hosking (1981). The main advantage of this formulation with respect to the ARIMA

is the introduction of a new parameter, d; that models the �memory�of the process, that

is, the medium and long-run impact of shocks on the process. More speci�cally, yt is an

ARFIMA(p; d; q) if it can be written as,

� (L) (1� L)d yt = �(L) "t; "t � i:i:d:
�
0; �2"

�
;

where the so-called memory parameter, d; determines the integration order of the series and

is allowed to take values in the real, as opposed to the integer, set of numbers. The terms

� (L) = 1� �1L� :::� �pLp and �(L) = 1� �1L� :::� �qLq represent the autoregressive

and moving average polynomials, respectively, with all their roots lying outside the unit

circle. While d captures the medium and long-run behavior of the process, � (L) and �(L)

model the short-run dynamics.

The bigger the value of d; the more persistent the process. Stationarity and invertibility

require jdj < 1=2, which can always be achieved by taking a suitable number of (integer)

di¤erences. Short memory is implied by a value of d = 0, where the process is characterized

by absolutely summable correlations decaying at an exponential rate. By contrast, long

memory occurs whenever d belongs to the (0,0.5) interval. Hosking (1981) showed that the

correlation function in this case is proportional to k2d�1 as k ! 1; that is, it decays at a

hyperbolic rather than at an exponential rate. These processes are also characterized by

an unbounded spectral density at frequency zero. These facts re�ect the slower decay of

shocks with respect to the I(0) case. A particularly interesting region for the real exchange
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rate is the interval d 2 [0:5; 1): In this range, shocks are transitory but the impulse response

to shocks vanishes so slowly that the variance is not bounded and, therefore, the process

is non-stationary in spite of being mean-reverting (as shocks eventually disappear). Shocks

have a permanent e¤ect whenever d � 1:Operationally, a binomial expansion of the operator

(1� L)d is used in order to fractionally di¤erentiate a time series:

(1� L)d =
1X
i=0

�i (d)L
i (1)

where,

�i = � (i� d) =� (�d) � (i+ 1) (2)

and � (:) denotes the gamma function. When d = 1; (1) is just the usual �rst-di¤erencing

�lter. For non-integer d; the operator (1� L)d is an in�nite-order lag-operator polynomial

with coe¢ cients that decay very slowly. Since the expansion is in�nite, a truncation is

needed in order to fractionally di¤erentiate a series in practice (see Dolado et al. (2002) for

details on the consequences of the truncation).

There are several estimation techniques for FI models. We have considered two semi-

parametric methods in the frequency domain, that proposed by Geweke and Porter-Hudak

(1983) (GPH) and the Gaussian of Robinson (1995) (GSP); and another two parametric

methods in the time domain, the exact maximum likelihood method of Sowell (1992) (EML)

and the non-liner least squares of Beran (1994) (NLS). All these methods have speci�c prob-

lems and biases depending, on the �rst case, of the number of frequencies selected and, in

the second, on the speci�c parametric model. So, although the use of several methods is

a guarantee of robustness, we have also computed the d estimation under a Bayesian ap-

proach in order to take the model uncertainty into account following, primarily, the work

of Koop et al. (1997). The Bayesian approach has the advantage that one may give the

same prior probability to di¤erent ARFIMA models and, also, to various regions for mem-

ory parameter. In fact, we have computed nine models for each country considering the

possible combinations of ARFIMA models with p; q � 28. A uniform density for d in the

8A preliminary analysis showed that lags longer than 2 are not signi�cant, a plausible result working with
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interval [0; 1:5] has been assumed9. So, the method put 1/3 of the prior mass of probability

on values of d that imply stationary shocks, non-stationary but mean-reverting shocks and,

�nally, permanent shocks, corresponding to the intervals [0, 0.5), [0.1,1) and [1, 1.5] respec-

tively. Notice that the extreme cases of d = 0and d = 1 are embedded in this method as a

particular case that will achieve a positive posterior probability. An additional advantage

of this approach is that we obtain the density functions of the parameters of interest, in

particular the long-memory parameter and the half-lives.

annual data.
925,000 replications for each ARFIMA speci�cation were computed using the Fortram code provided by

Koop et al. (1997).
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TABLE 2.2

Estimation of FI(d) models�

GPH GSP EML NLS

ARG 0:40
(0:040)

0:27
(0:000)

0:64
(0:000)

0:61
(0:000)

AUS 0:74
(0:284)

0:65
(0:015)

0:50
(0:009)

0:45
(0:035)

BEL 0:46
(0:091)

0:41
(0:060)

0:31
(0:001)

0:34
(0:000)

BRA 0:10
(0:000)

0:61
(0:000)

0:94
(0:041)

0:91
(0:000)

CAN 0:92
(0:759)

0:37
(0:010)

0:48
(0:137)

0:46
(0:032)

CHL 0:44
(0:104)

0:49
(0:004)

0:46
(0:042)

1:00
(0:000)

DNK 0:52
(0:082)

0:46
(0:000)

0:65
(0:002)

0:68
(0:000)

FIN �0:21
(0:434)

0:05
(0:739)

�0:30
(0:361)

�0:26
(0:398)

FRA 0:18
(0:002)

0:37
(0:000)

0:77
(0:415)

0:68
(0:000)

DEU 0:61
(0:151)

0:67
(0:031)

0:107
(0:000)

0:46
(0:001)

GRC 0:91
(0:857)

0:82
(0:410)

0:94
(0:622)

0:65
(0:000)

ITA 0:33
(0:005)

0:25
(0:000)

0:43
(0:000)

0:39
(0:001)

JPN 0:74
(0:367)

0:59
(0:051)

0:47
(0:117)

1:04
()

MEX 0:76
(0:410)

0:57
(0:006)

0:50
(0:000)

0:53
(0:000)

NLD 0:72
(0:269)

0:66
(0:020)

0:34
(0:086)

0:41
(0:169)

NZL 0:49
(0:332)

0:31
(0:165)

�0:08
(0:721)

�0:06
(0:762)

NOR 0:59
(0:114)

0:54
(0:001)

0:53
(0:100)

0:42
(0:226)

PRT 0:83
(0:560)

0:69
(0:050)

0:73
(0:100)

0:56
(0:001)

ESP 0:78
(0:415)

0:71
(0:051)

0:56
(0:000)

0:53
(0:000)

SWE 0:38
(0:160)

0:45
(0:003)

0:41
(0:000)

0:46
(0:000)

CHE 0:54
(0:113)

0:51
(0:002)

0:52
(0:000)

0:81
(0:000)

GRB 0:76
(0:346)

0:83
(0:246)

0:67
(0:001)

0:59
(0:000)

� Std. dev.in brackets.
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The results of the classical estimation are displayed in Table 2.2. Several conclusions can

be drawn from this table. First, the �nding of the long-memory parameter less than one,

distant from the unit root, is robust across countries and estimation methods. Secondly,

most countries exhibit values of the d parameter in the region of non-stationary but mean

reverting response to the shocks. So, this con�rms previous �ndings about the nature of

shocks in the real exchange rate, which are transitory but very persistent. Finally, some

countries show signi�cant di¤erences in the estimation of the d parameter using di¤erent

methods. This high uncertainty about the true value of d justi�es the use of the Bayesian

approach.
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TABLE 2.3

bayesian estimation of FI(d)�

best mean weighted

ARG 0:62
(0:31)

0:47
(0:23)

0:64
(0:32)

AUS 0:51
(0:20)

0:64
(0:23)

0:57
(0:22)

BEL 0:34
(0:14)

0:44
(0:20)

0:34
(0:20)

BRA 0:51
()0:28

0:72
(0:24)

0:72
(0:23)

CAN 0:51
(0:25)

0:70
(0:26)

0:67
(0:23)

CHL 0:74
(0:10)

0:65
(0:24)

0:69
(0:19)

DNK 0:51
(0:21)

0:66
(0:22)

0:60
(0:22)

FIN 0:28
(0:17)

0:40
(0:23)

0:32
(0:22)

FRA 0:40
(0:21)

0:61
(0:23)

0:52
(0:27)

DEU 0:52
(0:28)

0:80
(0:24)

0:72
(0:28)

GRC 1:32
(0:17)

1:05
(0:27)

1:22
(0:29)

ITA 0:42
(0:20)

0:53
(0:81)

0:44
(0:29)

JPN 0:68
(0:20)

0:76
(0:23)

0:71
(0:22)

MEX 0:56
(0:13)

0:59
(0:25)

0:54
(0:22)

NLD 0:63
(0:20)

0:71
(0:22)

0:64
(0:22)

NZL 0:58
(0:21)

0:74
(0:20)

0:67
(0:29)

NOR 0:65
(0:17)

0:67
(0:27)

0:54
(0:23)

PRT 0:58
(0:21)

0:68
(0:21)

0:63
(0:20)

ESP 0:40
(0:30)

0:54
(0:27)

0:43
(0:27)

SWE 0:32
(0:22)

0:55
(0:23)

0:45
(0:23)

CHE 0:48
(0:24)

0:69
(0:23)

0:61
(0:24)

GRB 0:49
(0:20)

0:67
(0:24)

0:61
(0:22)

�Stand. deviat. in brackets.
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Table 2.3 reports the main results of the Bayesian approach. The mean and standard

deviations of the d parameter are provided for three types of models, the best, mean and

weighted. The best and weighted are selected in accordance with the posterior probability

of each ARFIMA speci�cation, and the mean is obtained as the average value of all models.

The �ndings con�rm the main conclusions obtained with the classical approach because,

for every country, with the exception of Greece, the values of d are less than one and

the majority are in the interval of [0.4, 0.6], the frontier of stationarity. But the results

also highlight the noticeable variability associated with the estimations of the long-memory

parameter, which can be compensated with the analysis of posterior probabilities. For this

reason in Figures 4, 5 and 6 we also report the posterior density functions of the d parameter

for each country. At the bottom of Figure 6 we display a summary of the values of the d

parameter obtained across countries. From the density function of d, we can easily derive

the probability that the memory parameter of the real exchange rate appears in each of

the regions of interest The results, reported in Figure 7, show that the average probability

that d < 1 is between 0.82 and 0.86 depending on whether we use a simple average of

ARFIMA p(d < 1) models or a weighted average p � (d < 1). The probability of stationary

behavior p(d < 0:5) is also computed and displayed in the same �gure, obtaining values of

0.33 and 0.36. To sum up, using a broad sample of countries over a century we show that

the probability that the real exchange rate is a mean-reverting process with nonpermanent

shocks is very high, more than a 80%. Although, the probability that the real exchange

rate is a stationary process is around 30%. Consequently, 55% of real exchange rates are

situated in a region of mean reverting but very persistent shocks.

3. PERSISTENCE PROPERTIES OF RER

In this section we provide the half-lives, as a measure of the persistence of parity rever-

sion, deriving them from the FI models. This permits a suitable estimation of the inertia

of the real exchange rate. The superiority of this approach is clear because ARFIMA for-

mulations are more �exible and are able to characterize non-stationarity without imposing
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the restriction of permanent shocks as ARIMA speci�cations do 10. We use the impulse

response functions (IRF) that have the advantage of showing the full path of the shock over

time11. However, this measure is a vector, not a scalar and, therefore, could be di¢ cult

to interpreter. For this reason, and in order to compare our results with previous �ndings,

we calculate the half-life as a scalar measure from the IRF . Starting from the following

expression:

� (1) (1� L)d yt = �(L) "t:

the IRF measures �the e¤ect of a change in the innovation "t by a unit quantity on the

current and subsequent values of yt� [see Andrews and Chen (1994)] and is given by the

coe¢ cients of the polynomial,

A (L) = (1� L)�d� (L)�1�(L) = (1� L)�dC (L) = (1� L)�d
�
1 + c1L+ c2L

2 + :::
�
;

where the parameters ch come from the Wold representation of the process (1� L)d yt: It

follows that if yt is I (0) ; then the IRF (h) is simply given by the corresponding Wold coef-

�cient, ch: If yt is I (1) ; given that (1� L)�1 =
�
1 + L+ L2 + :::

�
; the IRF (h) associated

with yt can be computed as [see Campbell and Mankiw (1987)],

IRF (h) =
hX
i=0

ci: (3)

Since the IRF of an I (1) process, or any FI (d) process with 0:5 � d � 1:5 is computed

by adding up the Wold coe¢ cients ci of its stationary transformation, (1� L) yt; it is often

called the �cumulative impulse response function�. The e¤ect of a shock in the very long

run can be obtained by setting h =1. If a process is I (1) ; the IRF (1) is given by

IRF (1) =
1X
i=0

ci = C (1) <1: (4)

10A detailed revision of persistence measures in a fractional integration context can be found in Gadea

and Mayoral (2005). This paper also discusses the potential pitfalls stemming from applying some popular

persistence measures such as the sum of AR coe¢ cients or equivalently, the cumulative impulse response.
11For example,15% of the glacial rate that Rogo¤ (1996) describes is based on a scalar measure but doesnot

imply a constant rate over time. Really IRF o¤ers a more precise picture of the evolution of shocks.
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The above-mentioned expressions are embedded in the general formulation of the IRF (h)

of an ARFIMA(p; d; q) process. This is de�ned as the h-th coe¢ cient of

A (L) : The corresponding coe¢ cients can be computed according to the following formula

(see Koop et al. (1997) for details),

IRF (h) =
hX
i=0

�i (�d) J (h� i) ; (5)

where each �i (�d) comes from the binomial expansion of (1� L)�d and is de�ned in (2)

and J (:) is the standard ARMA(p; q) impulse response, given by

J (i) =

qX
j=0

�jfi+1�j ;

with �0 = 1; fh = 0 for h � 0; f1 = 1 and

fh = �
�
�1fh�1 + :::+ �pfh�p

�
; for h � 2:

Notice that if d = 1; �i (�1) = 1 for all i and, therefore, the traditional IRF for I(1)

processes is recovered, i.e., IRF (h) =
Ph
i=0 J (h� i) [see Campbell and Mankiw, (1987)].

The limit behavior of the IRF(h) when h!1 depends upon the value of d and veri�es

IRF (1) =

8>>><>>>:
0; if d < 1;

� (1)�1�(1) , if d = 1;

1 if d > 1:

(6)

Expression (6) means that the e¤ect of a shock is transitory for d < 1; as the long-term

impact of any shock is equal to zero. By contrast, shocks are permanent for any d � 1:

If the process contains a unit root (d = 1); the long-run e¤ect of the shock is bounded

away from zero and �nite and is given by the sum of the Wold coe¢ cients of its stationary

transformation (or alternatively, by � (1)�1�(1) if it admits an ARMA representation).

Finally, for any d > 1 the e¤ect of any shock is magni�ed and the �nal impact is not

bounded.

From the IRF, the half life (HL), de�ned as the number of periods that a shock needs to

vanish by 50 percent, can be easily calculated as,
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IRF (HL) = 0:5

The above measure has been calculated through the classical and Bayesian estimations

of ARFIMA models. Notice that, for the �rst case we need a parametric formulation of

the ARFIMA model and have used the MLE obtained by the Sowel method. By using the

Bayesian approach we achieve a more precise picture of the half-lives because the method

allows us compute the full posterior density. The results are reported in Table 3.1, the �rst

column for the classical approach and the others for the three models obtained through

Bayesian techniques. In order to clarify the �ndings we have simpli�ed the values of over

ten years which, based on previous results, can be considered a superior limit which is not

compatible with any nominal model and casts doubt about the long-run PPP 12. In addition,

Figures 8, 9 and 10 display the detailed evolution of the IRF for a horizon of twenty years.

Because point estimations of HL are not conclusive, we have computed their probabilities

based on the posterior density of IRF. More speci�cally, we have calculated the probability

that HL < k as the p(I(k)) < 0:5 for k=3, 5 and 10, values corresponding to the so-called

interval of Rogo¤ and the upper limit �xed by us. Several interesting conclusions can be

drawn from the inspection of Figure 11, which reports the main results. The probability

of half-lives being inferior to 3 years is only of 14% on average. With the exception of

Argentina, Belgium, Finland, New Zealand and Mexico, it is always less than 30%. This

means that models based on nominal rigidities are unlikely in our sample. The probability

of HL inferior to 5 years, the upper bound of Rogo¤ is around 30%, as a result of which 3-5

"consensus" of Rogo¤ only has a probability of 15%. Finally, the probability of HL being

inferior to 10 years, and consequently bigger than 10 years, is around 50%. In short, our

results point to very persistent deviations of the real exchange rate from its equilibrium

level, with a 50% probability of them being superior to 10 years.

12See for example Lothian and Taylor (1996), Taylor (2002), Taylor (2003). Other works, such as Murray

and Papell (2005), obtained, even higher values.
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TABLE 3.1

estimation of half live�

Classical Bayesian

best mean weighted

ARG 2:8 > 10 4:0 > 10

AUS 5:8 9:3 8:6 8:7

BEL 2:5 2:8 4:7 3:6

BRA > 10 > 10 9:9 > 10

CAN 8:5 > 10 > 10 > 10

CHL 2:7 7:4 6:1 6:9

DNK 7:9 9:9 9:4 9:4

FIN 1:7 2:2 3:2 2:2

FRA 2:3 4:8 5:9 5:1

DEU 8:7 > 10 > 10 > 10

GRC > 10 > 10 > 10 > 10

ITA 3:8 7:4 6:7 6:1

JPN 7:9 > 10 6:0 5:8

MEX 2:8 3:4 4:3 4:0

NLD 7:3 > 10 > 10 > 10

NZL 0:9 > 10 > 10 > 10

NOR 5:7 > 10 > 10 > 10

PRT > 10 > 10 > 10 > 10

ESP 8:9 2:5 5:8 4:2

SWE 3:6 4:8 6:7 6:2

CHE 6:9 > 10 > 10 > 10

GRB 7:9 6:9 7:9 8:0

�.
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4. CONCLUSIONS

Accepting that the PPP is a long-run rule for real exchange rate behaviour, some empirical

work has recently focused on measuring the size of deviations from equilibrium. Various

papers using more powerful and sophisticated techniques have obtained half-lives bigger

than the 3-5 year "consensus" of Rogo¤ and, more importantly, have found that the upper

bound of the con�dence intervals are too high to rule out the failure of PPP.

This paper tries to shed more light on the problems of measuring deviations by using

fractional integration models to capture more accurately the dynamics of real exchange

rates and to avoid any risk of underbias in the estimation of the half-lives. As a �rst result,

we �nd robust evidence of long-memory in real exchange rates and, although there are

important di¤erences across countries, the memory parameter takes values on the frontier

of stationarity, which means that the real exchange rate is a mean reverting process with a

high degree of persistence. In terms of half-lives, the classical approach gives a picture of

persistence not very di¤erent from that of Taylor (2002), whose database we use. However,

a more persistent picture is that given by Bayesian approaches. In this case, without any

exception, the half lives of 22 countries are higher than those of Taylor (2002). But now,

di¤erently from the results of López et al. (2003, 2004), we can claim -with only 15%

probability for the region with permanent shocks- that PPP hold, although the density

of half-lives computed with Bayesian techniques shows that the 3-5 year consensus is very

unlikely, with a probability around 15%, and the probability of half-lives being more than

�ve years is around 70%.
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Fig. 1. Evolution of Real Exchange Rates during a century26
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Fig. 3. Evolution of Real Exchange Rates during a century
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Fig. 8. Impulse response functions
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Fig. 9. Impulse response functions
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Fig. 10. Impulse response functions
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Fig. 11. Probabilities of half life
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