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Abstract

This paper examines the use of GARCH-type models for the calculation of minimum capital risk requirements (MCRRs). We use daily data from the US (Dow Jones, NASDAQ) and European (ASE, Greece; DAX, Germany; FTSE-100, UK) financial markets. Various econometric methods are employed, including the simple GARCH model, as well as exponential GARCH, threshold GARCH, asymmetric component GARCH and the component GARCH model. Using the bootstrapping approach, we calculate the MCRR for long and short positions over a 5-day, 10-day and 15-day horizon periods. The results show that higher capital requirements are necessary for a short position since a loss is more likely than for a long position. These findings are strongly recommended to risk managers and practitioners dealing with international financial markets.
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I. INTRODUCTION

   
Financial markets across the world have seen increased volatility in recent periods. There has been considerable volatility in the past few years in financial markets world-wide, as the focus has sharpened on the confluence of risks arising from a number of developments (transition of monetary policies, macroeconomic adjustment, high prices of oil and other commodities, persistent global imbalances). Hence, market participants should be aware of the need to manage risks associated with volatility. Due to unexpected events, uncertainties in prices (and returns) and the non-constant variance in the financial markets, financial managers and researchers started to model and explain the behaviour of stock market returns and volatility using econometric models. In financial markets, uncertainty goes under the name of volatility- how much asset prices are moving around. 

   Financial econometrics has developed a range of models to account for empirical regularities in financial data. One of the most prominent tools for capturing such changing variance was the Autorgressive Conditional Heteroskedasticity (ARCH) and Generalized ARCH (GARCH) models developed by Engle (1982), and extended by Bollerslev (1986) and Nelson (1991). GARCH models have many applications in finance as they show a good performance when dealing with financial data. GARCH is a time series modelling technique that uses past variances and past variance forecasts to model and forecast variances. What makes these models so practical in finance is the fact that they are able to explain a number of important features common to much financial data. Two important characteristics within financial time series, the fat tails and volatility clustering, can be captured by the GARCH family models.

   Furthermore, volatility (as measured by the standard deviation or variance of returns) is often used as a crude measure of the total risk of financial assets. One of the most popular approaches to risk measurement is by calculating the value-at-risk (VaR). VaR is mainly concerned with market risk. It represents an estimation of the probability of likely losses which could arise from changes in market prices. VaR is defined as the money-loss of a portfolio that is expected to occur over a pre-determined horizon and with a pre-determined degree of confidence.

   The VaR estimate is also known as the position risk requirement or minimum capital risk requirement (MCRR). The MCRR is defined as the minimum amount of capital required to absorb all but a pre-specified proportion of expected future losses (Brooks and Persand, 2003).

   There are various methods
 available for calculating VaR, including the historical simulation, the Monte Carlo simulation, the extreme value theory and Bootstrapping. The Monte Carlo method is a very powerful and flexible method for generating VaR estimates (mainly because any stochastic process for the underlying assets can be easily specified). However, the calculated VaR may be inaccurate if the stochastic process for the underlying asset is inappropriate, see Brooks and Persand (2002). The bootstrapping approach is commonly used in calculating MCRRs, see Hsieh (1993) and Brooks, Clare and Persand (2000). Under this method, the future simulated prices are generated using random draws with replacement from the actual  returns themselves, rather than artificially generating the disturbances from an assumed distribution.

   Brooks et al. (2000) explain that the use of GARCH-type models for the calculation of MCRRs may lead to the production of inaccurate and inefficient capital requirements, mainly because GARCH models typically overstate the degree of persistence in return volatility. They find that the MCRRs for financial futures contracts traded on the LIFFE are larger when they are calculated with disregard for the excessive volatility persistence implied in GARCH models. Brooks and Persand (2002) discuss the impact of model choice on VaR performance, while more recently Brooks and Persand (2003) compare the VaR estimates derived from a number of models and examine the effects of any asymmetries that may be present in the data (five Southeast Asian stock market indices) on the evaluation and accuracy of VaR estimates. They find that allowing for asymmetries can lead to improved VaR estimates, while a simple asymmetric risk measure is the most reliable method for calculating VaR.  

   
In this paper, we capture financial time series characteristics by employing GARCH(p,q) model, and its EGARCH, Threshold GARCH (TGARCH), Asymmetric component (AGARCH) and Component GARCH (CGARCH) extensions. These models have the advantage of permitting investigation of the potentially asymmetric nature of the response to past shocks. Furthermore, under the bootstrapping approach, we calculate the Minimum Capital Risk Requirements (MCRR) for long and short positions over a 5-day, 10-day and 15-day horizon periods. In a long position the risk comes from a drop in the price of an asset, while in the short position the trader loses money if the price increases, see Degiannakis and Angelidis (2000).

   The purpose of this paper is twofold: (i) to explain volatility and risk (VaR) modelling using data from international financial markets, and (ii) to evaluate the performance of the MCRR estimates in an out-of-sample period using the bootstrapping approach.

   The analysis focuses on two U.S. stock indices and three European stock indices. The main reason we consider data from mature markets is because they are continue to be of empirical interest from practitioners and investors (Floros, 2005). Although, most contributions in the literature deal with mature, large and liquid markets, no recent study explain returns and volatility in these markets using different time series models. The motivation for our paper is to add new evidence from international equity markets to the modelling of financial time series by explaining volatility and VaR (MCRR) estimates in these markets. It is not only important to understand the functioning of financial markets, but also the process by which financing decisions through risk modelling are reached.

   The paper is organised as follows: Section II provides data information. Section III presents the methodology, while Section IV presents the main empirical results. Finally, Section V concludes the paper and summarises our findings.

II.  DATA

   The data employed in this study comprise 1404 daily observations on the US stock indices (Dow Jones, NASDAQ), and European stock indices (ASE, Greece; DAX, Germany; FTSE-100, UK) covering the period 2 January 1998-21 May 2003. Closing prices for stock indices were obtained from Datastream International. Table 1 gives the descriptive statistics for daily stock market returns. Daily returns are computed as logarithmic price relatives: 
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 is the daily price at time t. The values for kurtosis are high (greater than three) in all cases. The Jarque-Bera test rejects normality at the 5% level for all distributions. So, the sample has all financial characteristics: volatility clustering and leptokurtosis. The daily returns for all indices (not presented here) show that volatility occurs in bursts. There appears to have been a prolonged period of relative tranquillity in the markets, that is evidenced by only relatively small positive and negative returns. Furthermore, in terms of stationarity, the results indicate that all series are I(1), and therefore, time-series models can be used to examine the behaviour of volatility over time. 

[Table 1 - about here]

III. METHODOLOGY 

- Modelling Volatility

   Linear and time series models are unable to explain a number of important features common to much financial data, including leptokurtosis, volatility clustering and leverage effects (mainly because they assume that the conditional variance is constant). To model the non-constant volatility parameter, we consider GARCH model. Following the literature
, GARCH model is parsimonious (the coefficients of the model are easily interpreted) and gives significant results, since it allows the conditional variance of a stock price or index to be dependent upon previous own lags. The GARCH (p,q) model is given  by
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   where p is the order of GARCH while q is the order of ARCH process. Error, 
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, is assumed to be normally distributed with zero mean and conditional variance, 
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. Rt are returns, so we expect their mean value (which will be given by () to be positive and small. We also expect the value of ( again to be small. All parameters in variance equation must be positive, and the sum of ( and ( is expected to be less than, but close to, unity, with ( >(. News about volatility from the previous period can be measured as the lag of the squared residual from the mean equation (ARCH term). Also, the estimate of ( shows the persistence of volatility to a shock or, alternatively, the impact of old news on volatility.

   Financial theory suggests that an increase in variance results in a higher expected return. To account for this, GARCH-M models are also considered, see Kim and Kon (1994). Standard GARCH-M model is given by
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if 
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 is positive and statistically significant, then increased risk leads to a rise in the mean return (
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can be interpreted as a risk premium). 

   Since the GARCH model was developed, a number of extensions have been proposed. Nelson (1991) proposed the EGARCH model. EGARCH is an extension of GARCH model with additional terms added to account for possible asymmetries. The main difference with the GARCH model proposed by Bollerslev (1986) is that the leverage effect is exponential and also that the variances are positive. EGARCH models were designed to capture the leverage effect noted in Black (1976) and French et al. (1987). In finance, the leverage effect predicts that an asset’s price will become more volatile when its price decreases. This effect suggests that volatility tends to rise in response to ‘bad news’ and fall in response to ‘good news’. The reason for this behaviour of returns is financial and operating leverage (Nelson, 1991). A simple variance specification of EGARCH is given by:
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The logarithmic form of the conditional variance implies that the leverage effect is exponential, and that forecasts of the variance are non-negative. The presence of leverage effects can be tested by the hypothesis that 
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   Furthermore, the TARCH model was introduced by Zakoian (1994) and Glosten, Jaganathan and Runkle (1993). It is based on the assumption that unexpected changes in the returns of the index have different effects on the conditional variance of the stock market index returns. TGARCH process is a mix of ARCH and GARCH models. The specification for the conditional variance is given by
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where 
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   In this model, good news (
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   An alternative specification for the conditional volatility process is CGARCH. The conditional variance in the CGARCH(1,1) model is given by (5.1):
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The component model shows mean reversion to 
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 is the time varying long run volatility. Equation (5.2) describes the transitory component, 
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   An extension of CGARCH model is AGARCH. The AGARCH model combines the component model with the asymmetric TARCH model. This specification introduces asymmetric effects in the transitory equation. The model is given by:
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where 
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 are the exogenous variables and d is the dummy variable indicating negative shocks. 
[image: image32.wmf]0

1

>

b

 implies transitory leverage effects in the conditional variance.

- Bootstrapping: A method for estimating MCRRs
   Following the works by Hsieh (1993) and Brooks, Clare and Persand (2000), we use bootstrapping
 approach in calculating MCRRs. We also evaluate the performance of the MCRR estimates in an out-of-sample period
. We calculate the MCRR for different periods (horizons), i.e. 5-day, 10-day and 15-day holding periods following 10,000 bootstrap replications. The method provides two figures that represent the minimum capital risk requirement for long (MCRRL) and short (MCRRS) positions as a percentage of the initial value of the position for 95% coverage over the above horizons. 

   Assuming that 
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 is the minimum price for a long position over the horizon that the position is held, 
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 is a constant and Q is the maximum drawdown (loss) over a given holding period, then the following can be written for a long position 
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 for a short position. Hsieh (1993) assumes that prices are lognormally distributed 
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 , then the 5% lower tail critical value for a standard normal is -1.645, so the fifth percentile is given by 
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. Therefore, the maximum loss or drawdown on a long position over the simulated days is given by 
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IV. EMPIRICAL RESULTS

   First, we filter conditional mean structure in the data by estimating ARMA models. The dependent variable is returns,
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. AR and MA orders are determined by reference to the Akaike information criterion (AIC). For ASE, we select an AR(1) model, while for DAX we model returns with ARMA(2,2). For Dow Jones, we select an ARMA(1,1), while AR(3) and ARMA(2,2) are selected for FTSE-100 and NASDAQ, respectively. In most cases, the results from mean equations (not presented here) show significant parameters, indicating that lagged values of returns and lagged errors depend on the current returns of stock indices. 

   Furthermore, we estimate a number of different GARCH models to explain conditional variance. An iterative procedure is used based upon the method of Marquardt algorithm. Heteroskedasticity Consistent Covariance option is used to compute quasi-maximum likelihood (QML) covariances and standard errors using the methods described by Bollerslev and Wooldridge (1992). This is normally used if the residuals are not conditionally normally distributed.

   Table 2 reports (in-sample) parameter estimates of all conditional volatility (GARCH-family) models defined in the previous section. For all indices, the sum of ARCH and GARCH coefficients is very close to one, indicating that volatility shocks are quite persistent. The coefficient of the lagged squared returns is positive for all indices and statistically significant for almost all countries and specifications, with exception of ARMA(2,2)-TGARCH(1,1) for DAX, ARMA(1,1)-TGARCH(1,1) for Dow Jones, MA(3)-TGARCH(1,1) for FTSE-100 and ARMA(2,2)-TGARCH(1,1) for NASDAQ. So, we conclude that strong GARCH effects are apparent for all markets examined. Also, the coefficient of lagged conditional variance is significantly positive and less than one for almost all return series examined, indicating that the impact of ‘old’ news on volatility is significant. The magnitude of the coefficient, (, is especially high for FTSE-100 index, indicating a long memory in the variance.

   In addition, the coefficients of the conditional variance in the mean equation of GARCH-M models, denoted as 
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, are positive and significant for DAX only. Therefore, the expected risk is positive in the case of Germany only. This suggests that higher market-wide risk, proxied by the conditional variance, will lead to higher returns.  

   Furthermore, both EGARCH and TGARCH models show a positive and significant 
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 parameter for three indices, indicating that the leverage effect exists and bad news increases volatility. The leverage effect term is not significant in the case of ASE and NASDAQ. The estimate of 
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 is smaller than the estimate of 
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 in all cases, which implies that negative shocks haven’t a larger effect on conditional volatility than positive shocks of the same magnitude. 

   The results of the estimation of CGARCH(1,1) and AGARCH(1,1) models show significant parameters for the permanent equation for all indices. The estimates of the persistence in the long run component are significant and close to unity, indicating that the long run component converges very slowly to the steady state. However, the coefficients of permanent equations are significant for DAX index only. Short run volatility for DAX is governed by –0.3672, which is marginally significant. Figure 1 shows the graphical plots of GARCH(1,1) series for all indices.

[Table 2 - about here]

[Figure 1 - about here]

   Finally, we consider the bootstrapping approach to estimate MCRRs for short and long positions. In each case, 10,000 possible future paths of the series are simulated, by using the minimum and maximum values of the series over the holding periods, to construct the MCRR for both positions. The results over the 5-day, 10-day and 15-day horizons (out-of-sample periods) are presented in Table 3. Almost all indices show greater MCRR in short positions rather than long positions. As an example, for Nasdaq index, approximately 5.2% , 7.9% and 10% of the value of a short position held as liquid capital will be sufficient to cover losses on 95% of days if the position is held for 5, 10 and 15 days, respectively. The required capital for a long position is around 4.6%, 6.7% and 8.3%, respectively. This could be attributed to an upward and positive drift in the returns over the sample period, indicating that the index returns are not symmetric about zero as positive returns are slightly more likely than negative returns. Hence, higher capital requirements are necessary for a short position since a loss is more likely than for a long position. The exception is FTSE-100 index, where the MCRR for short position is less than the MCRR for a long position. Also, the MCRRs for FTSE-100 are less than those from the other indices (MCRRs for FTSE-100 range from 3.7% to 7.1%). 

[Table 3 - about here]

V. CONCLUSIONS

   Modelling financial series is a very interesting statistical challenge. Since the seminal work of Engle (1982), literally a lot of papers have been published relating to Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models. Research examining financial data has raised the question of whether variants of the GARCH models are able to adequately capture returns behaviour and explain financial risk. 

   Since the stock market crashes of 1987 and 1997, stock price volatility has been the focus of both academic research and financial managers. Specifically, the behaviour of stock market volatility over time, the tendency for stock market volatility to exhibit clustering and the practical importance of accurate volatility and risk estimates, continue to be of empirical and theoretical interests.  

   The results reported in this paper address these issues by providing estimates from symmetric and asymmetric GARCH models for daily ASE, DAX, Dow Jones, FTSE-100 and NASDAQ price returns. We also present the Value-at-Risk method and calculate the Minimum Capital Risk Requirements for long and short positions over three horizon periods. Value-at-Risk is a prediction concerning possible loss of a portfolio (or series) in a given time horizon.

   In summary of our results, we find strong evidence that daily returns can be characterised by the GARCH models. The sum of the GARCH coefficients is close to one in almost all cases. That implies persistence of the conditional variance. A large sum of the coefficients in the conditional variance equations implies that a large positive or a large negative return will lead future forecasts of the variance to be high. We also find that the leverage effect exists and bad news increases volatility. Finally, the estimates of the persistence in the long run component are significant and close to unity, indicating that the long run component converges very slowly to the steady state.

   Understanding volatility is central to financial modelling and risk management. Volatility, as measured by the standard deviation or variance of returns, is often used as a crude measure of the total risk of financial assets. For Germany (DAX index) only, our results show that higher market-wide risk, proxied by the conditional variance in GARCH-M, will lead to higher returns. The most volatile series is ASE index from Greece, because of the uncertainty in prices (and economy) over the examined period. In this case, volatility is a reflection of some lack of efficiency in the ASE market in performing the important role of price discovery.

   Furthermore, using the bootstrapping approach, we calculate the Minimum Capital Risk Requirements (MCRR) for long and short positions over a 5-day, 10-day and 15-day horizon periods. The results show that higher capital requirements are necessary for a short position since a loss is more likely than for a long position.

   These findings are strongly recommended to risk managers and modellers dealing with US and European financial markets. Future research should examine the performance of multivariate time series models when using daily and monthly returns of international mature and emerging markets. Consequently, it is of interest to consider multivariate models to describe the volatility and market risk of several time series jointly, to exploit possible linkages which exist.
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FIGURE 1. Graphical Plots of the GARCH(1,1) Variance Series
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Table 1. Descriptive Statistics & ADF Tests


ASE
DAX
DOW JONES
FTSE-100
NASDAQ

 Mean
 7.57E-05
-0.000172
 0.000102
-0.000160
 2.76E-05

 Median
-6.59E-05
 0.000295
 5.97E-05
 6.60E-05
 0.001433

 Maximum
 0.076202
 0.075527
 0.061554
 0.059038
 0.132546

 Minimum
-0.096920
-0.066522
-0.073961
-0.055888
-0.101684

 Std. Dev.
 0.019404
 0.019079
 0.013122
 0.013762
 0.022682

 Skewness
-0.022910
-0.046075
-0.102017
-0.064002
 0.087392

 Kurtosis
 5.697335
 4.267082
 5.378247
 4.251208
 4.955647

 Jarque-Bera
 425.4431
 94.35114
 333.0774
 92.47570
 225.3631

 Probability
 (0.00000)
 (0.00000)
 (0.000000)
 (0.000000)
 (0.00000)

 Observations
 1403
 1403
 1403
 1403
 1403

 ADF (Level)
-1.227034
-0.915746
-2.659352
-0.670504
-1.316446

 ADF (1st diff.)
-32.39167
-13.28555
-37.80273
-17.46487
-9.150075

Notes:

· Skewness is a measure of asymmetry of the distribution of the series around its mean.

· Kurtosis measures the peakedness or flatness of the distribution of the series.

· Jarque-Bera is a test statistic for testing whether the series is normally distributed.

· ADF regressions include intercept but not trend.

· We employ ADF test on the logarithms of stock indices.

· ADF critical values: (1%) –3.4379 , (5%) –2.8641, (10%) –2.5681. 

Table 2. Selected GARCH Models for Volatility (Variance Specifications)

INDEX/MODEL
ω
α
γ
(
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PART A. ASE INDEX

AR(1)-GARCH(1,1)
1.74E-05

(3.881079)*
0.146213

(4.899945)*


0.813191

(25.53111)*


AR(1)-EGARCH(1,1)
-0.723302

(-4.536544)*
0.278020

(5.181455)*
-0.064955

(-1.583523)
0.935463

(56.29400)*



AR(1)-TGARCH(1,1)
1.78E-05

(4.086294)*
0.099027

(3.221710)*
0.102425

(1.566351)
0.811522

(28.46304)*



AR(1)-CGARCH(1,1)
0.000439

(3.567782)*
0.952568

(53.68229)*
0.169323

(5.338573)*
-0.057144

(-1.261814)
-0.334115

(-0.566456)


AR(1)-AGARCH(1,1)
5.60E-05

(0.232944)
0.998378

(512.4734)*
0.011997

(1.921944)*
0.046616

(1.299848)
0.140983

(2.311237)*
0.712489

(10.01473)*

AR(1)-GARCH(1,1)-M





0.003385

(0.135529)

PART B. DAX INDEX

ARMA(2,2)- GARCH(1,1)
5.54E-05

(2.576267)*
0.098016

(5.584945)*


0.886822

(45.66074)*


ARMA(2,2)- EGARCH(1,1)
-0.373606

(-3.673373)*
0.170647

(4.498917)*
-0.083126

(-3.28242)*
0.970929

(98.41698)*



ARMA(2,2)- TGARCH(1,1)
6.31E-06

(2.862582)*
0.019210

(0.966920)
0.127601

(4.484217)*
0.897818

(49.74356)*



ARMA(2,2)- CGARCH(1,1)
0.000375

(2.991712)*
0.982704

(102.2380)*
0.115427

(6.368673)*
-0.121430

(-3.91518)*
0.431337

(1.897389)*


ARMA(2,2)- AGARCH(1,1)
0.000328

(3.914291)*
0.978112

(98.70182)*
0.115766

(6.100253)*
-0.168525

(-7.79020)*
0.087188

(1.991109)*
0.510561

(2.898965)*

ARMA(2,2)- GARCH(1,1)-M





0.079698

(1.914964)*

PART C. DOW JONES INDEX

ARMA(1,1)-GARCH(1,1)
5.47E-06

(2.508355)*
0.088125

(3.335179)*


0.880945

(27.28634)*


ARMA(1,1)-EGARCH(1,1)
-0.240403

(-4.451762)*
0.054157

(3.073653)*
-0.119177

(-6.08706)*
0.977553

(169.9360)*



ARMA(1,1)-TGARCH(1,1)
4.68E-06

(3.629078)*
-0.010627

(-0.538071)
0.148378

(4.506476)*
0.910362

(47.14626)*



ARMA(1,1)-CGARCH(1,1)
0.000175

(4.658052)*
0.966618

(65.45751)*
0.091889

(3.356853)*
-0.069458

(-1.74835)*
-0.297759

(-0.599195)


ARMA(1,1)-AGARCH(1,1)
0.000175

(4.581565)*
0.967027

(65.25953)*
0.090850

(3.234563)*
-0.051504

(-1.13626)*
-0.024862

(-0.417570)
-0.313717

(-0.583336)

ARMA(1,1)-GARCH(1,1)-M





0.226647

(1.593963)

PART D. FTSE-100 INDEX

MA(3)-GARCH(1,1)
4.91E-06

(2.561083)*
0.101103

(5.178385)*


0.871683

(35.19951)*


MA(3)-EGARCH(1,1)
-0.284334

(-3.219563)*
0.114085

(4.276354)*
-0.084444

(-3.90661)*
0.977934

(113.7834)*



MA(3)-TGARCH(1,1)
3.83E-06

(2.371285)*
0.001886

(0.101888)
0.116015

(4.559407)*
0.916980

(45.06125)*



MA(3)-CGARCH(1,1)
0.000182

(4.651287)*
0.974448

(82.12447)*
0.100010

(5.354077)*
-0.004880

(-2.00581)*
-0.992592

(-183.435)*


MA(3)-AGARCH(1,1)
0.000169

(6.380075)*
0.962613

(60.75907)*
0.106080

(4.855029)*
-0.124425

(-2.12158)*
0.124862

(1.755137)*
0.224441

(0.532059)

MA(3)-GARCH(1,1)-M





0.008561

(0.380532)

PART E. NASDAQ INDEX

ARMA(2,2)-GARCH(1,1)
8.58E-06

(2.896162)*
0.106137

(5.922024)*


0.879599

(49.16841)*


ARMA(2,2)-EGARCH(1,1)
-0.426582

(-4.417888)*
0.161077

(4.459399)*
-0.097746

(-3.75514)*
0.961880

(97.61466)*



ARMA(2,2)-TGARCH(1,1)
1.44E-05

(3.291283)*
0.014430

(0.727473)
0.156851

(4.782775)*
0.874770

(42.23617)*



ARMA(2,2)-CGARCH(1,1)
0.000599

(2.723072)*
0.981105

(95.41908)*
0.126877

6.823572)*
-0.101747

(-3.19434)*
-0.302216

(-0.922194)


ARMA(2,2)-AGARCH(1,1)
0.000592

(2.780061)*
0.980359

(93.48862)*
0.130745

(6.951805)*
-0.146428

(-4.00174)*
0.062651

(1.165047)
-0.214080

(-0.771935)

ARMA(2,2)-GARCH(1,1)-M





0.040127

(0.419659)

Notes:

· We report the results from GARCH-type models using in-sample data

· T-statistics in the parentheses

· * Significant at the 5% level

Table 3. Minimum Capital Risk Requirements: Short and Long Positions

INDEX/HORIZON
5-day
10-day
15-day

PART A. ASE INDEX

MCRRS
0.07881
0.11242
0.14151

MCRRL
0.07792
0.11133
0.13592

PART B. DAX INDEX

MCRRS
0.04575
0.06791
0.08676

MCRRL
0.04519
0.06538
0.08161

PART C. DOW JONES INDEX

MCRRS
0.04032
0.05907
0.07491

MCRRL
0.03939
0.05648
0.07013

PART D. FTSE-100 INDEX

MCRRS
0.03716
0.05481
0.06969

MCRRL
0.03901
0.05649
0.07106

PART E. NASDAQ INDEX

MCRRS
0.05195
0.07927
0.10189

MCRRL
0.04648
0.06736
0.08369

Notes:

· MCRRS: Minimum Capital Risk Requirement for a short position.

· MCRRL: Minimum Capital Risk Requirement for a long position .

� Christos Floros is a Lecturer in Banking and Finance in the Department of Economics at the University of Portsmouth, UK.


� Researchers prefer to conduct simulations and other methods (RiskMetrics, GARCH) to calculate VAR, for more details see Angelidis et al. (2004), So and Yu (2005).


� Akgiray (1989), Connolly (1989) and Baillie and DeGennaro (1990) find that GARCH processes fit the data better than ARCH normal processes.


� The use of bootstrapping for calculating MCRRs contains three steps. First, a GARCH model is estimated, where conditional variance values are generated and a set of standardised residuals are constructed. The next step is to forecast the conditional variances, means and standard deviations. Finally, the bootstrap loop constructs the future paths of the series over the holding period, and the maximum and minimum prices achieved over that period are saved in order to construct the MCRR for long and short positions.


� Following the Basle Committee rules, the adequacy of the VaR models is determined using out-of-sample tests.
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